
Clustering algorithm for determining community structure in large networks

Josep M. Pujol,* Javier Béjar, and Jordi Delgado
Software Department, Technical University of Catalonia, Jordi Girona 1-3 A0-S106, 08034, Barcelona, Spain

�Received 10 February 2006; revised manuscript received 15 March 2006; published 17 July 2006�

We propose an algorithm to find the community structure in complex networks based on the combination of
spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the
best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its
efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for
clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outper-
forms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the
results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and
large networks in the range of tens and hundreds of thousand vertices.
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I. INTRODUCTION

Clustering plays a key role in the analysis and exploration
of data. In short, clustering is the method by which meaning-
ful clusters, or groups, within collections of data are created.
These clusters are intended to group individuals—or
samples—who are similar to each other so that the hidden
structure within the collection of data is revealed, resulting in
a valuable acquisition of knowledge. Data mining and ma-
chine learning are disciplines that extensively work with
clustering, in particular, with data sets composed by indi-
viduals and attributes. The aim is to identify groups of indi-
viduals that are similar based on their attributes. However,
thanks to the recent collective effort on analyzing and com-
piling very large networks, there is a growing interest in
methods based on the structure—topology—of the networks
rather than on the individuals’ attributes.

This method for clustering is possible thanks to the char-
acterization of many systems as networks. Despite the very
different nature of modeled systems �the Web �1�, sexual
relations �2�, scientific collaboration �3,4�, protein interac-
tions �5�, the Internet �6�, phone calls �7��, they do exhibit a
nontrivial pattern of interactions. One of the regularities
found in complex networks �8,9� is the high cliquishness of
the network �10�, which leads to the fact that there are groups
of vertices that are very interconnected among them with few
interactions outside the groups. Therefore, there is an im-
plicit community structure within complex networks.

Girvan and Newman �11� proposed an algorithm to ex-
tract the community structure from complex networks that
has become one of the most used among the researchers in
this community. From that important work, a branch of re-
search on complex networks has turned into clustering algo-
rithms able to discover the community structure in those net-
works. To evaluate the accuracy—or quality—of a
community structure yielded by a clustering algorithm New-
man and Girvan devised a quantitative measure called modu-
larity Q. Although there are other quantitative measures �12�,
modularity is widely accepted in the physics community. Q
is defined in �13� as

Q = �
i

�eii − ai
2� . �1�

Modularity is the addition of the modularity of all the
groups, Q=�iqi. Thus, for each group i that contains k ver-
tices, the modularity is calculated as the fraction of edges
that have both ends pointing at vertices in group i, eii. The
fraction of intragroup edges is confronted with the fraction
of edges of that group, ai, which are edges whose end points
belong to at least one of vertices in i. This successful mea-
sure has been adopted not only to bench-mark the accuracy
of the clustering but also as the fitness value for clustering
algorithms based on optimization. Finding the partition of
groups that maximizes Q is believed to be a NP-hard prob-
lem, which makes a brute force exploration impossible for
networks bigger than dozens of vertices. However, several
search heuristics can be applied to explore the huge space of
states to find a good partition. Following this approach, many
algorithms have investigated different exploration heuristics
to find the community structure while maximizing Q. New-
man proposed in �14� a hill-climbing heuristic to create the
hierarchy following an agglomerative strategy. The baseline
is that every single node is a cluster, then the pair of clusters
whose union produces the biggest increment in Q are merged
into one. The process is repeated until only one cluster re-
mains. By following the merging operations, the hierarchy
that reveals the community structure is built. However, a
hill-climbing heuristic cannot escape a suboptimal maxi-
mum. Therefore, other search heuristics were devised. For
instance, Guimerà and Amaral �15� proposed a simulated an-
nealing approach. Duch and Arenas �16� proposed an algo-
rithm based on extremal optimization. Both algorithms were
able to extract the community structure more accurately in
terms of modularity, although they were not as efficient as
Newman’s fast algorithm �14�. Newman has very recently
proposed another clustering algorithm �17� that outperforms
the previous algorithms in both modularity and efficiency,
although it is not as efficient as his previous fast algorithm
�14�. Danon et al. �18� have also very recently presented a
modification of Newman’s fast algorithm that while main-
taining its computation efficiency yields more accurate par-
titions in terms of modularity.

Modularity optimization methods are neither the first nor
the only ones to work on clustering in complex networks. In*Electronic address: jmpujol@lsi.upc.edu
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�11�, Girvan and Newman reviewed classical hierarchical
clustering algorithms on networks, showing that some clas-
sical distance measures were not well suited to work with
complex networks. Although the review done by Girvan and
Newman in �11� was essentially correct, it overlooked two
relevant areas that were already working in clustering of
complex networks. Sociology was addressing clustering in
social network analysis �19�. On the other hand, Computer
Science was also working on clustering of a particular in-
stance of complex networks: the Web. Gibson et al. �20� and
Kumar et al. �21� addressed clustering based on the analysis
of the links between Web pages. A common tool used to
address clustering on the Web is spectral analysis. However,
this technique is applicable to any kind of network, for in-
stance, newsgroups �22� and protein networks �23�. Spectral
analysis has also been used in many other areas besides clus-
tering. For instance, in workload distribution between pro-
cessors �24� and to find the relevant vertices of a network
�25,26�. Obviously, not all clustering is limited to spectral
analysis. Flake et al. �27� proposed an alternative approach
based on minimum cut-trees over expanding networks that
worked over the Web and could be applied to other kinds of
networks. However, we find particularly interesting cluster-
ing based on random walks �28,29�, which can be seen as a
particular case of the spectral analysis. The underlying idea
behind clustering using random walks is very intuitive: if a
random walker starts in a given node, it will tend to visit
more often vertices that belong to the same community of
the initial node. Thus, provided that there is community
structure, a random walker will spend most of the time stuck
within the community from which it started.

Our algorithm is a combination of spectral analysis and
modularity optimization in order to achieve a good compro-
mise between efficiency and accuracy of the cluster. Spectral
analysis is used to reduce the number of initial vertices of the
network: by means of a set of random walkers we create an
initial partition of the network in a number of groups much
smaller than the initial number of vertices. Consequently, the
number of merge operations required to build up the hierar-
chy is reduced. Asymptotically, our algorithm has a complex-
ity O�n2�, which is the same complexity of Newman’s fast
algorithm �14�. However, in terms of computational cost it is
more efficient since the complexity can be decomposed as
O�ns�+O�s2�, where n is the number of vertices and s is the
number of groups in the initial partition produced by the
random walkers. Despite s being smaller than n, it is not
upper-bounded by a sublinear function of n, so that the com-
plexity remains O�n2�. Yet, it is clearly more efficient and
allow us to analyze very large networks in reasonable time
while maintaining high-quality clustering.

II. ALGORITHM

The proposed algorithm, henceforth PBD �after the initials
of the authors�, consists of an agglomerative hierarchical
clustering where the initial groups are those produced by an
initial partition of the network. The first step of the algorithm
consists of a process of s random walkers traversing the net-
work. The transition probability matrix M is defined as

M = �A + I�D−1, �2�

where I is the identity matrix and D is a diagonal matrix of
the form Dii=1+� jAij. Thus, Mij is the probability to go to
node j from node i. The process carried out by the random
walkers is defined by

Gt+1 = M�Gt, �3�

where Gt is the matrix that contains the probability distribu-
tion of each random walker, Gij

t is the probability that the
random walker j is at node i at time t. Usually, the process is
repeated iteratively until the stationary state is reached. How-
ever, we are interested in the transient state for all random
walkers; consequently, the process is repeated until we ob-
tain GT, where T is set to 3. Therefore, each random walker
has done three jumps, which is the minimum number of hops
to complete the shortest path to the origin point. Once the
stochastic process is finished, each node i is classified into
the group j, which corresponds to the largest column at row
i in G. Through this process, the initial n vertices are classi-
fied in approximately s groups and all the vertices of the
same groups share that they were visited the most by the
same random walker. Consequently, this means that they
have a high degree of neighbors in common, which implies a
community. Although this method is far from perfect, it al-
lows us to drastically reduce the initial number of groups.
The final number of groups might not correspond exactly to
s since random walkers could preclude others. A random
walker i is precluded when all vertices by a random walker i
are also visited more often by other random walkers; conse-
quently, the visited nodes are classified into others groups
rather than the group started by i. Furthermore, since the
Markov process is only iterated T times, there is no guaran-
tee that all vertices will be visited at least once, and in this
case an extra group with a single node is created.

The partition of the network heavily depends on which
vertices are seeds—origins—of the random walkers. This
problem is very much related to classical clustering algo-
rithms �30,31� such as k-means �32�. How many seeds are
required and where to place them is an open question �33�.
We propose a straightforward heuristic that selects which
vertices will be the seeds for the random walkers, i.e., to
define G0. Let R be the fraction of the most connected ver-
tices chosen as seeds. If ki�z, a random walker will start at
node i, where the connectivity threshold z is defined as the
maximum connectivity that makes the partition composed of
the most connected nodes larger or equal to R, � j=z

j�max�k�

p�kj��R, where p�kj� is the fraction of vertices with connec-
tivity kj. The parameter R allows us to decide approximately
the number of seeds, although the initial number depends on
the structure of the network. For R=1, there would be too
many seeds for the algorithm to be efficient. On the contrary,
R�0 would be very efficient, but the partition would be
ill-constructed. In our experiment, we set R to 1

5 and obtain
good results for a wide variety of networks, as shown in
Tables I and II. Future work will look into different heuristics
to choose the seeds, the quality-efficiency trade-off of our
algorithm is really dependant on this process, and other heu-
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ristics more elaborate might provide better results than our
current straightforward selection rule.

The complexity of finding the seeds for the random walk-
ers is O�n�. The connectivity distribution and the connectiv-
ity threshold z can be computed in linear time respect to the
number of vertices. In fact, the first approach we tried was to
get the nR most connected nodes, which would entail a sort
operation with cost O�n log n�. This option was discarded in
favor of the connectivity threshold due to the extra cost,
which our algorithm intends to minimize.

The stochastic process defined in Eq. �3� has the iterative
multiplication of two matrices, M and G, of dimension n
�n and n�s, respectively. However, thanks to the sparse-
ness of both networks the cost can be reduced from O�n2s� to
O�ms�, where m is the number of edges. For each random
walker j, its probability distribution can be calculated in the
worst-case scenario with cost O�m�. Thus, the final cost can
be considered O�ns� because the number of edges scales
with n in the limit of large n.

Once the initial partition is created, the algorithm builds
an agglomerative hierarchical clustering. This method con-
sists of creating a series of partitions of the data:

Cs ,Cs−1 , . . . ,C1, where first Cs consist of s single clusters
�groups�, and the last C1, consists of a single group contain-
ing all the individuals. The method iteratively joins the two
individuals or clusters �groups of individuals� that are most
similar. Thus, after s−1 join operations, the clustering is
complete and the result is a binary tree known as dendro-
gram, which reveals the underlying structure of the data.

Let us say that the initial partition yielded s groups, de-
spite the fact that it is an upper bound, since some groups
might be empty because their random walkers were pre-
cluded by others. For each group j, the contribution to the
total modularity; that is qj =ejj −aj2 can be calculated in lin-
ear time O�s�. The group that contributes the least to the total
modularity Q—let us say j such that j=argmink�qk�—is se-
lected to be joined to the group that maximizes the increment
of modularity as defined in the following equation:

�Q = �2eij + eii + ejj� − �ai + aj�2 − �eii − ai
2� − �ejj − aj

2� .

�4�

The increment in total modularity is the modularity of the
merged group �2eij +eii+ejj�− �ai+aj�2 minus the contribu-
tion to the modularity of both groups, qi and qj. Equation �4�
can be reduced trivially to Eq. �2� of Newman’s fast algo-
rithm �14�

�Q = 2eij − 2aiaj = 2�eij − aiaj� . �5�

In the event that two candidates, i1 and i2, have the same
effect over the total modularity, the candidate group chosen
will be the one that has the least modularity, min�qi1

,qi2
�.

Thus, groups with low modularity are preferred in the merge
operation.

The merge operation can be performed in the worst-case
scenario in linear time with respect to the current number of
groups, thus O�s�. Furthermore, the operation needs to be
done s−1 times. Therefore, the complexity of building up the
hierarchy is O�s2�. The search heuristic proposed is ex-
tremely greedy since it only takes into consideration pairs of
groups, provided that one groups is fixed. Conversely, New-
man’s fast algorithm calculates the gain of modularity for
each possible pair of groups. Besides that, other algorithms

TABLE I. Comparison between maximum modularity Q and number of communities g obtained by
Newman’s fast algorithm �N�, Duch and Arenas extremal optimization algorithm �EO�, and the PBD algorithm.

Network size �n� QN gN QEO gEO QPBD gPBD

Zachary 34 0.3807 3 0.4176 4 0.3937 4

LSI 139 0.6428 6 0.6572 7 0.6604 6

C. Elegans 453 0.40 10 0.4376 10 0.4164 7

Directors Board 598 0.8046 21 0.8113 27 0.8273 16

Scientometrics 2678 0.5555 24 0.6042 19 0.5629 10

Erdös �2002� 6927 0.6723 57 0.6520 88 0.6817 20

Cond-Mat 27519 0.6653 324 0.6790 647 0.7251 44

Word-Net 75606 0.7963 453 N/A N/A 0.7885 47

WWE ND 325729 0.9273 2192 N/A N/A 0.9272 83

Actors ND 498925 0.7243 2113 N/A N/A 0.7297 14

TABLE II. Comparison between CPU time t �in seconds� be-
tween the Newman’s fact algorithm and the PBD algorithm. It also
includes the number of random walkers required to create the initial
partition sPBD.

Network Size �n� tN tPBD sPBD

Zachary 34 0.002 0.014 16

LSI 139 0.003 0.015 42

C. Elegans 453 0.026 0.064 118

Directors Board 598 0.038 0.031 125

Scientometrics 2678 1.6 0.320 619

Erdös �2002� 6927 3.14 2.6 2155

Cond-Mat 27 519 125.8 11.2 6224

Work-Net 75 606 490.6 204.1 38 701

WWW ND 325 729 10 932.1 1775.6 86 908

Actors ND 498 925 34 208.3 3326.3 118 897
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based on modularity optimization usually have even more
expensive search heuristics that allow a better exploration at
the expense of efficiency. Our proposal was designed to fo-
cus on efficiency, as it can be seen in the heuristic decisions
made by the algorithm. However, as we will show in the
experiments section, this focus on efficiency does not neces-
sarily imply a loss of quality of the clustering.

A. Parallelization

To reduce even further the execution time of the algorithm
its parallelization could be easily implemented. The stochas-
tic process as defined in Eq. �3� can be carried out in parallel
by different computers or processors. To calculate the prob-
ability distribution of a given set of random walkers, only the
transition probability matrix is required. Thus, the matrix G
of dimension n�s could be split column by column into a
set of smaller matrices of dimension n��, where ��s. This
would drastically reduce the cost of the stochastic process.
Unfortunately, the modularity optimization step cannot be
parallelized so easily. Thus, trivial parallelization would only
affect the spectral analysis part of the algorithm. Although
this part is the most expensive part in the algorithm O�ns�,
the modurality optimization O�s2� would still be executed
sequentially. Therefore, the asymptotic cost of the PBD algo-
rithm would still be O�n2�.

B. Working example with Zachary’s network

To illustrate our algorithm, we include an execution on
the Zachary network �34�, which is a well-known data set in
the literature of community extraction. In Fig. 1, we can find
the network at the different stages of the execution of the

algorithm. Figure 1�a� shows which vertices, labeled 2, are
seeds of the random walkers, 16 in total. Thus, s is 16 com-
pared to the original 34 vertices. In Table II, the relation
between network size n and the number of random walkers s
for a wide range of networks is shown. Figure 1�b� shows the
initial partition of the networks produced by the random
walker process, described in Eq. �3�. The initial 34 vertices
are grouped into 13 groups. This partition has a modularity Q
of 0.1547. From that point on the algorithm starts the modu-
larity optimization stage governed by Eq. �4�. At each step,
two of the remaining groups are joined according to Eq. �4�.
Figures 1�c� and 1�d� show the network divided into four and
two groups, respectively.

The community structure of Zachary’s is better seen in
Fig. 2. The maximum modularity is obtained by the partition
in 4 communities, achieving Q=0.3937. However, the origi-
nal empirical work on the Zachary Karate Club �34� found
two communities: those aligned with the instructor and those
aligned with the administrator. The division into two groups
produced by the PBD algorithm produces a high modularity
Q=0.3718. Also, the two original communities found em-
pirically correspond to the communities found by the algo-
rithm with the exception of node 10, which is misclassified.

It is evident that Fig. 2 is not a dendrogram over all the
vertices of the network, but a dendrogram over the initial
communities. As a consequence of the random walker pro-
cess, the structure between vertices belonging to the same
initial community remains unknown. However, this loss is
negligible since the relevant high-level structure is not af-
fected as can be seen in Fig. 2.

III. EXPERIMENTS

In order to further analyze our algorithm, we chose a set
of ten different networks of different sizes, ranging from 34
to 498 925 vertices. The networks modeled a wide spectrum
of systems. There are social networks, such as the Zachary
Karate Club �34� and the social network of the Software
Department �LSI� at the Technical University of Catalonia

FIG. 1. �Color online� Working of the PDB algorithm in the
Zachary network. �a� shows the initial vertices �labeled with 2�,
which are seeds for the random walkers vertices labeled. �b� shows
the initial partition of the network into communities produced by
the random walker stage. �c� and �d� show different partitions cre-
ated by the modularity optimization process. The optimal partition,
whose modularity is maximal, is shown in �c�.

FIG. 2. �Color online� Community structure of the Zachary net-
work produced by the PDB algorithm. Circles and squares over the
individuals denote to whom they align to after the karate club broke
up. Those who aligned with the instructor are represented by
circles, and those who aligned with the administrator are repre-
sented by squares.
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�35�; scientific collaboration networks, such as Cond-mat �4�
and the Erdös collaboration network �36�; citation networks,
such as Scientometrics �37�; and affiliation network among
Spanish top director boards �38�; a network of relations be-
tween words, such as WordNet �39�; metabolic networks,
such as the C. Elegans �40�; a portion of the Web from the
Notre Dame University data set �1�; and the last type of
network was the movie collaboration �41� network, again
obtained from the Notre Dame University data set �42�. In all
the networks we only worked with the biggest connex com-
ponent, removing all multiple relations and self-reference
edges.

A. Comparing modularity

Table I summarizes the highest modularity achieved by
Newman’s fast algorithm �QN� �14� and our algorithm
�QPBD�. For eight out of the ten tested networks, the PBD

algorithm produces a higher modularity, and the maximum
difference in favor of the PBD algorithm is in the cond-mat
network. Thus, in general, the PBD algorithm yields a slightly
better modularity than the Newman’s fast algorithm. How-
ever, as mentioned in the Introduction, there exist in the lit-
erature other algorithms based on modularity optimization
that also outperform the Newman’s fast algorithm �14�. In
Table I, we also included the results obtained by the extremal
optimization algorithm �EO� by Duch and Arenas �16�. In this
case the maximum modularity obtained by EO outperforms in
two of three cases the modularity obtained using PDB, and in
all the available cases it outperforms the modularity obtained
using the Newman’s fast algorithm. However, the complexity
of the algorithms that use elaborated search heuristics is su-
perior to the complexity of both the Newman’s Fast algo-
rithm and the PDB algorithm. For instance, EO’s complexity is
O�n2 log2n�. Thus, we can conclude that PDB has a good
balance between efficiency and quality.

B. Comparing the number of communities

Clustering, though, does not only depend on obtaining the
partition that maximizes modularity. The number of
communities—or groups—contained in the optimal partition
is also very important. In Table I, the number of communities
is denoted by gN, gEO, gPBD. We can clearly observe an order
gEO�gN�gPBD. Provided that maximum modularity does
not greatly differ between partitions, the huge differences in
the number of communities obtained by the different algo-
rithms are indeed striking and requires further study.

Provided we assume that modularity Q is a good measure
for community structure, we must take for granted that two
partitions with similar modularity are equally accurate.
Thinking otherwise would lead us to the conclusion that
modularity is not a good measure. Finding a bogus partition
that yielded higher modularity than a good partition would
mean that modularity is not representative of the structure.
Consequently, it could not be used as the fitness variable for
the optimization. However we do not believe that this is the
case.

So, if we assume that modularity is a good measure, what
happens when two partitions having very similar modularity

have a very different number of groups? A first approach
would be to think that the partition with smaller number of
groups is more general than the partition with the larger
number of groups. Thus, partitions with smaller number of
groups would be, in principle, more interesting for several
reasons. �i� They would provide a more general perspective
on the underlying structure of the network, since they would
be able to find a meaningful partition at a higher level of the
structure. �ii� A small number of groups would simplify the
analysis of the obtained results. And �iii�, general or high-
order partitions could always be reclustered to further ana-
lyze the structure of a particular group if a more detailed,
fine-grained analysis was required. The opposite could not be
done; otherwise, the algorithm would have detected the more
general partition with higher modularity.

Table I shows that the PBD algorithm yields more general
partitions while having similar or better modularity. This ef-
fect is specially acute in large networks. One might conclude
from the results of the experiments that both EO and N algo-
rithms undergo an unnecessary over-specialization. For in-
stance, let us we take the optimal partition of the cond-mat
network. The PBD provides the highest modularity and the
smallest number of partitions, which is 647, 324, and 44
using EO, N, and PBD algorithms, respectively.

Figure 3 shows the evolution of Q in the cond-mat net-
work using N and PDB algorithm. Note that the modularity

FIG. 3. �Color online� Modularity Q over the execution of the
algorithms for the cond-mat network. The PBD algorithm is shown
as the solid line and the Newman’s fast algorithm �N� as the dashed
line. Note that the number of merge operations required for both
algorithms is different �PBD optimization stage starts with the parti-
tion given by the spectral analysis stage�. PBD algorithm requires
approximately the 22% of the merge operations performed by the N

algorithm. Both the figure and the inset contain the very same in-
formation, but it is depicted in a different fashion to better illustrate
the evolution of modularity. Note that the main figure is plotted in a
log scale, and the time goes from right to left. This is done in order
to magnify the last steps of the algorithms, which is when maxi-
mum modularity is found. We would like to remark that the number
of remaining groups decreases over time, while the number of
merge operations increases over time.
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obtained by the N algorithm is very close to its maximum
modularity when the number of remaining groups is in the
range between 40 and 1000. Once the partition contains
more than 1000 groups, it does not increase or decrease sub-
stantially until the number of groups in the partition reaches
40; at that point, modularity starts to decrease abruptly. This
range of stable modularity contains a partition with 44
groups, which is the maximum modularity found by the PBD

algorithm. This behavior is not observed in the evolution of
modularity for the PBD algorithm, which keeps increasing
modularity until it gets to the maximum and then it starts a
quick descent. Being on a plateau where modularity is nei-
ther increasing or decreasing significatively might suggest
that the search heuristic of the N algorithm could be stuck in
a local suboptimal state.

A more detailed study of the internal behavior of the N

and PBD algorithms is described in Fig. 4, where the evolu-
tion of the normalized size of groups to be merged is de-
picted. Each merge operation joins group i and j in a new
group z. The size of the two groups chosen by the algorithm

to be merged is expressed as rmo=
min�si,sj�

si+sj
. The ratio rmo has

values in the range �0. . . 1
2
�, when rmo is close to zero means

that there is one group that is clearly bigger than its counter-
part. When rmo= 1

2 both groups have the same size. It is easy
to see how the N algorithm tends to join groups of very
different size, whereas the PBD algorithm tends to do the
opposite, i.e., it prefers groups of similar size. Consequently,
the N algorithm produces at the very beginning groups of
extremely large size by joining a single vertice to a very
large group, when this group cannot accept more vertices a
new group is started. This behavior is clearly observed at
operation 6000, 10 000, and 15 000, approximately, creating
three massive groups of 13 000 vertices and leaving the rest
of groups composed mostly by individual vertices. This

might be the reason why the search heuristic fails to increase
modularity in the plateau of Fig. 3. Approximately from op-
eration 16 000 to 26 000, this behavior is not so evident,
where groups of similar same size are often merged. How-
ever, the behavior that merges very dissimilar groups appears
again between operations 26 000 and 27 000, overlapping
the plateau of modularity. At this point, big groups cannot be
merged obtaining a gain of modularity; therefore, the only
possible option left to be explored by the search heuristic is
to merge leftover groups of very few vertices into the exist-
ing big groups. As a consequence, the search heuristic gets
stuck in a situation where changes of modularity are mini-
mum and there is no escape from the suboptimal partition.
The bias of the N algorithm toward creating very large
groups has also been very recently reported by Danon et al.
�18�. We can see how this behavior is not present in the PBD

algorithm. The greedy search heuristic used by the PBD algo-
rithm forces the worst group to be the one going to be
merged, and this results in groups having similar sizes. By
doing so, the search heuristic has many possible combina-
tions to explore, avoiding getting trapped too early in a local
suboptimum as it happened in the N algorithm. That is the
reason why the PBD algorithm is able to find in the cond-mat
network a higher modularity partition, which also has less
groups. As for the EO algorithm, we could not carry out the
same analysis, but it is plausible that the resulting large num-
ber of groups can be attributed to its divisive clustering strat-
egy.

In order to analyze with more detail the partitions yielded
by the N and the PDB algorithms, the distance between the
optimal partitions for the cond-mat network are calculated.
Gustafsson et al. �43� reviewed different distance measures
to compare partitions of the same network. Since we want to
look into the hypothesis that the partition yielded by the PDB

�PPBD� is more general than the partition yielded by N algo-
rithm �PN�, we chose the mdiv measure, which is the mini-
mum number of divisions to be applied to partitions A and B
to obtain the partition C defined in �44� as

C = �
i=1

�A�

�
j=1

�B�

�ai � bj� . �6�

Partition C is the union of all possible intersections be-
tween the groups in A and B. We rename C as PN-PBD. The
distance between partition PPBD and PN-PBD is 894, which is
the number of divisions to be applied to PPBD in order to
obtain PN-PBD. The distance between PN and PN-PBD is 614.
Thus, the total distance is 1508, which is the sum of both
distances. In order to have a baseline comparison for the
distance between PPBD and PN, we created a random parti-
tion Prand with the same cardinality as PPBD. The random
partition was replicated 30 times and so was the measure-
ment; the average distance between PN and Prand was 7166.7
with a standard deviation of 33.65.

C. Comparing efficiency

After comparing the quality of the clustering produced by
the PBD algorithm, we must turn our attention toward its
performance. As we already mentioned, all design decisions

FIG. 4. Behavior of the merge operation of the PBD �above� and
the N �below� algorithms. For each merge operation the normalized
ratio of the size of groups to be merged is calculated as rmo

=
min�si,sj�

si+sj
, where si and sj are the size of group i and j, respectively.

The merge operation creates a new group z= i� j of size sz=si+sj.
The line corresponds to the evolution of modularity Q.
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were biased toward improving the efficiency so that the al-
gorithm could cope with medium and large networks, which
other algorithms cannot handle in reasonable time. Table II
summarizes the run time �CPU time� of our algorithm com-
pared to the Newman’s fast algorithm, which is the reference
algorithm due to its efficiency. We are perfectly aware of the
problems related to comparison of algorithms based on run
time instead of only considering their complexity. In order
allow a fair comparison between both algorithms, we imple-
mented them from scratch optimizing them to the best of our
abilities. Needless to say, the runs were executed on the same
desktop computer �Pentium 4, 3 GHz� exclusively dedicated
to the experiment. Table II shows that PBD is much faster
than the Newman’s fast algorithm for networks bigger than
1000 vertices. Conversely, the PBD algorithm is slower than
the N algorithm for small networks. This is because the two
sequential processes—spectral analysis and modularity
optimization—that take place in the PBD algorithm. The dif-
ference in execution time heavily depends on the number of
random walkers �sPBD� required for the first stage of the PDB

algorithm. The smaller the ratio between network size and
the number of random walkers, the faster the PDB algorithm
is.

Figure 5 graphically shows the relation between network
size and the running time of both algorithms already seen in
Table II. The PDB algorithm clearly outperforms the New-
man’s fast algorithm, often by one order of magnitude. How-
ever, the asymptotic quadratic behavior of both algorithms is
evident, which lead us to think that our algorithm cannot
scale to very large networks of millions of nodes. Resorting
to parallelization would allow us to analyze networks of a
few million nodes in an acceptable time; however, the PDB

will undoubtedly become too slow for very large networks.
Nonetheless, it allows to shift the network size threshold far

enough to be useful for medium and large networks. Reduc-
tion of approximately one order of magnitude allows one to
shift from minutes to seconds or from hours to minutes. For
instance, the clustering of the largest network we had access
to was reduced from �9 h to just one.

Computer-generated networks

To conclude, we include experiments carried out with the
computer-generated networks first proposed by Girvan and
Newman �11�, which have become a common testbed in the
field. Those networks are constructed with 128 nodes divided
into four groups of the same size. For each node, eight edges
are deployed. With probability Pin the edge is connected to a
node that belongs to the same group chosen at random. Oth-
erwise, the edge is connected to a node that does not belong
to the same group. Thus, the average degree of a node is 16.
Accordingly to the nomenclature of Girvan-Newman, we
will use zout which is the number of intercommunity edges
per node. It is important to note that for zout=12, the network
is totally random; that is, without community structure. An-
other important value for zout is 8, since it marks the bound-
ary between having more intercommunity than intracommu-
nity edges. The quality measurement is the fraction of
vertices that are correctly classified, explained in more detail
in �14�.

In Fig. 6, we can see the results obtained by our algorithm
compared to the results yield by the Girvan-Newman �GN�
algorithm based on edge betweenness �11�. We decided to
use the GN algorithm instead of the Newman’s fast algorithm
since it obtains slightly better results, and it is the reference
algorithm for this particular experiment �11�. Although the
results of GN outperform those obtained by the N algorithm,
it is not a suitable option for medium and large networks due
to its complexity; that is O�n3�.

The GN algorithm correctly detects the communities until
values of zout=6 are reached. From this point on, the quality

FIG. 5. �Color online� Comparison between the efficiency in
CPU time �in seconds� for ten networks of different sizes. The solid
circles show the results for the Newman’s fast algorithm. The re-
sults of the PBD algorithm are represented by solid squares.

FIG. 6. �Color online� Fraction of vertices correctly classified
using computer-generated networks. The circles show the result of
the Girvan-Newman algorithm �GN�. The squares show the results
of the PBD algorithm. Each point is an average over 50 networks.
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of the communities decreases very quickly. On the other
hand, the PBD algorithm detects the communities very well
up to values of zout=7; from that point on the performance
starts to decay, although the pace is more steady than in the
GN case. As already mentioned, other algorithms based on
modularity optimization perform much better in the
computer-generated networks example. For instance, Duch
and Arenas extremal optimization algorithm �16� starts to
decline at zout=8. However, its increase on clustering quality
is done at the expense of efficiency. Thus, it is unadvisable in
the case of large networks.

IV. CONCLUSIONS

In this paper, we have presented an algorithm to extract
community structure from networks by using a combination
of different existing methods. First, the algorithm uses spec-
tral analysis via the multiple random walker process to re-
duce the dimensionality of the network by creating the initial
partition of the network into communities. Then, a modular-
ity optimization process with a extremely greedy search heu-
ristic is applied to extract the underlying structure of the
network.

Experiments show that our algorithm outperforms the
Newman’s fast algorithm both in clustering quality and effi-
ciency. The Newman’s fast algorithm is the reference algo-
rithm in terms of efficiency, and while asymptotically both
algorithms are O�n2�, the PDB algorithm is always faster in
computation time for medium and large networks, as it has
been shown in the experiments.

The reason behind this is the reduction of dimensionality
provided by the random walker process, such that the cost of
the PBD can be expressed as O�ns� where s�n. Furthermore,
experiments also show that the PDB retrieves more general
community structure than other algorithms. The number of
existing communities in the partition with maximum modu-
larity is notably smaller in the case of the PBD. This fact
leads us to think that other algorithms tend to unnecessarily
over-specialize their clustering.

In summary, the presented algorithm is an interesting
choice when analyzing medium and large networks. The
structure of large networks can be found in reasonable time,
from seconds for a network of 27 000 vertices to less than
one hour for a network of 500 000 vertices. The gain in
efficiency does not come with a loss in the quality of the
clustering as the maximum modularity obtained by the algo-
rithm is comparable to the reference algorithms in the litera-
ture.
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