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Network community structure and loop coefficient method

L. Vragovi¢ and E. Louis
Departamento de Fisica Aplicada, Instituto Universitario de Materiales and Unidad Asociada del Consejo Superior de Investigaciones
Cientificas, Universidad de Alicante, San Vicente del Raspeig, Alicante 03690, Spain
(Received 17 October 2005; revised manuscript received 10 April 2006; published 11 July 2006)

A modular structure, in which groups of tightly connected nodes could be resolved as separate entities, is a
property that can be found in many complex networks. In this paper, we propose a algorithm for identifying
communities in networks. It is based on a local measure, so-called loop coefficient that is a generalization of
the clustering coefficient. Nodes with a large loop coefficient tend to be core inner community nodes, while
other vertices are usually peripheral sites at the borders of communities. Our method gives satisfactory results
for both artificial and real-world graphs, if they have a relatively pronounced modular structure. This type of
algorithm could open a way of interpreting the role of nodes in communities in terms of the local loop
coefficient, and could be used as a complement to other methods.
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I. INTRODUCTION

In recent years, there has been an increasing interest in
analyzing the community structure in networks [1,2]. Very
often complex networks can be divided into modules with a
large number of internal edges, interconnected by a smaller
number of external links. Such a purely topological decom-
position is usually accompanied by different functional roles,
such as in the case of related web sites [3,4], animal com-
munities [5,6] or biochemical networks, and electronic cir-
cuits [7-10].

Approaches to network division can be classified into
spectral analysis methods [11-17], maximization of modular-
ity [18-23], agglomerative methods [24-29], and link re-
moval methods [30-33]. A detailed review of various ap-
proaches can be found in Refs. [1,2].

Some of the methods focus on local topological proper-
ties. The algorithm of Radicchi et al. [32] uses a local mea-
sure based on counting the number of short loops that run
through each edge. In most cases, an intermodular link
would not be a part of too many short loops. Focusing on
triangles, Radicchi et al. introduced the edge clustering co-
efficient that represents the fraction of realized triangles over
potentially possible triangles going through a particular
node. A network is decomposed by cutting edges with the
smallest value of the edge clustering coefficient, which is
recalculated after each removal step. The disadvantage of
this method is that it cannot be applied to networks with a
small number of triangles. In order to overcome this short-
comming, Radicchi et al. used measures based on squares
and bigger loops, slightly improving the performance of the
basic algorithm.

Eckmann and Moses proposed a concept of a local curva-
ture, which is equivalent to the standard clustering coeffi-
cient and depends on the average distance between the first
neighbors of a reference node [34,35]. This method is based
on the assumption that nodes within a high curvature region
belong to the same community. The disadvantage of this
method is the same as in the previous case: it cannot be
applied to networks with low clustering.

II. THE METHOD

In this paper we propose a method based on a local quan-
tity which takes into account the smallest loops running
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through a particular node. It is based on the shortest distance
between the first neighbors (j and k) of one site (i), when this
site is cutoff, denoted as dj;;. In principle, it is a modification
of the local efficiency introduced by Latora and Marchiori
[36]. In our version, however, the paths dj;; are allowed to

FIG. 1. A simple network consisting of two modules. Core and
peripheral sites are represented by black and white symbols, respec-
tively. The clustering coefficient: C(A)=1, triangle core; C(A)
=1/3, triangle peripheral; and C(M,J)=0, for all square nodes.
The loop coefficient: D(A)=1, triangle core; D(A)=1/3, triangle
peripheral; D(H)=1/2, square core; and D(C1)=1/6, square periph-
eral. The clustering coefficient of a peripheral node in the clustered
module is smaller than for the core nodes. However, the clustering
coefficient cannot distinguish between the peripheral and core
nodes in the declustered module, as it is equal to zero for all sites.
On the other hand, the loop coefficient of the peripheral sites is
smaller than that of the core sites, no matter whether triangle loops
are present or not.
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FIG. 2. (Color online) Comparison of the modularity of the
division into four initial modules (blue circles) with the modularity
of the division obtained by our method (red stars) for the computer-
generated graphs described in the text. For each k,,, we plotted the
modularity of 40 different network realizations. Full black line is
the average performance of our method, while black dashed and
dotted lines are intervals of one and two standard deviations around
the average, respectively.

go also through nodes that are not the first neighbors of i Ref.
[37]. The modified local efficiency of an arbitrary node i
reads

D(i) = 22 — (1)

k(k l)j#ker k/z

where I'; refers to a subgraph of the first neighbors. In the
cases of k;=1 and k;=0, we take D(i)=0. This quantity is a
counterpart of the clustering coefficient C(i) defined as the
ratio of the existing number of links between the neighbors
of a site i and its maximum possible number k;(k;—1)/2

C(l E E I’ljk, (2)

k(k j:/:ker

where n; =1 if there is a link between j and k, and n;=0
otherwise.

Contrary to clustering or quadrilateral coefficients
[38,39], the modified local efficiency does not depend exclu-
sively on the presence of triangles, or squares or any other
particular kind of loops, but only on loops in general [37]. It
simply takes into account any of the smallest loop going
through a reference site i and its pair of neighbors (j,k). In
the rest of the paper we will refer to D(i) as loop coefficient.
A similar measure (cyclic coefficient) was recently intro-
duced in Ref. [40], and defined as the inverse of the full
length of the shortest loop S}, =dy;+2, instead of the shortest
path dy,;. As the smallest possible loops are triangles, the
cyclic coefficient takes values between O and 1/3. On the
other hand, the loop coefficient varies from 0 to 1 [37].
Moreover, if only the shortest paths dy,;=1 are taken into
account, the loop coefficient D(i) coincides with the standard
clustering coefficient C(i).

We note that core nodes, defined as nodes fully sur-
rounded by sites belonging to the same community, usually
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have large fraction of closely connected neighbors (not “nec-
essarily” directly linked) and thus large values of the loop
coefficient. On the other hand, peripheral vertices which are
also linked to the nodes of the other modules tend to have
smaller loop coefficients. The reasoning is the same as in the
case of Radicchi et al. [32]. If one of the first neighbors of a
reference node belongs to another module, then it is not
closely connected with other first neighbors of that periph-
eral node thus leading to both smaller loop coefficient of the
analyzed node and smaller edge clustering coefficient of the
intermodular link. On the basis of the value of the loop co-
efficient, we intend to interpret the role of each node classi-
fying them as core inner nodes or peripheral sites, see Fig. 1.
We note, however, that our method cannot be applied to trees
that have no loops.

We start by calculating the loop coefficient of all sites, a
calculation that is performed only once. After sorting the
nodes we obtain something like a relief, with hills represent-
ing core nodes of distinctive modules and valleys corre-
sponding to peripheral sites connected by intermodular links.
In the first step we identify the nodes with the largest loop
coefficient and start building modules around them. Their
first neighbors are interpreted as the first layer of peripheral
sites, so that they are put into the same group as the corre-
sponding highly clustered initial node. If several initial nodes
share the same peripheral sites, they are grouped together
representing one single module, no matter if directly linked
or not. They resemble a plateau with a common valley.

In the next steps, when smaller values of the loop coeffi-
cient are considered, a new module is created if an analyzed
node is not a member of any existing group, i.e., if it is
surrounded by nodes of even smaller loop coefficient. Creat-
ing a new module, we follow the initialization procedure
described above. However, in most cases the analyzed node
will already be attached to some of the core sites with larger
loop coefficient. Again, the first neighbors of a reference site
that still do not belong to any module are put into the current
group.

We also check the first neighbors of a given node that are
already peripheral members of other modules. We determine
the number of links pointing from a reference site i to the
inner nodes of its group in(i), and the number of external
links to other modules out(i,m), where m counts the external
modules. This is done in order to evaluate the current decom-
position against the criteria of the community definition [32].
In a strong sense, a community is a subgraph when in(i)
>out(i,m) for every i, i.e., each node has more internal than
external connections. As such a criterion is rarely fulfilled for
peripheral nodes, another definition has been proposed [32].
In a weak sense, a community is a subgraph when X;in(i)
>>.> out(i,m), focusing on the total number of internal and
external links. In our case, we need to analyze only periph-
eral sites, as all inner nodes have only internal links. We
further weaken the community criteria, assuming that a node
is correctly grouped if the number of the internal links in(i)
is larger than the biggest number of external links, i.e.,
in(i) >max[out(i,m)], no matter if =, out(i,m) is larger than
in(i) even for each of the peripheral nodes, or even if the
number of internal links is eventually smaller than the total
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FIG. 3. (Color online) Decomposition of the karate club network of Zachary [1,30,41,42,44]. Nodes and links are arranged in the same
way as in Fig. 4(a) of Ref. [30]. Members of the administrator’s faction are represented by circles, while others belonging to the instructor’s
faction are drawn as squares, diamonds, or triangles. Internal links are plotted as full lines, and external intermodular links as dashed lines.
The numbers attached to each node are the values of the loop coefficient. The member number 3 of Ref. [30] (upper bold square), whose
membership was incorrectly determined by Girvan-Newman algorithm, is put into the correct group. One node is misclassified (node number
10 of Ref. [30], here lower bold square), because it has only one connection with both administrator’s and instructor’s factions. Diamond
nodes (numbered as 6, 7, and 17 in Ref. [30]) are identified as a separate submodule, connected with the main part of the instructor’s faction
by an intermodular layer of triangle nodes (numbered as 5 and 11 in Ref. [30]). Several steps that led to this decomposition are shown in Fig.

4.

number of external links [i.e., 2in(i) <22, out(i,m)].

A correction is made if a peripheral node is connected to
one or more external groups with out(i,)=in(i). In such a
case we change the membership of the analyzed site and of
all its nearest neighbors, whose membership was determined
in the current step. We put them into the external group m
corresponding to the largest out(i,m). The membership of
other nearest neighbors that were classified in previous steps
is not changed. If there are more than one external group
with the same out(i,m) [that could be equal to in(i)], we
identify the right group by looking for the external (or inter-
nal) neighbor of the analyzed node i within these groups that
has the largest loop coefficient. Finally, after dealing with
nodes with the smallest loop coefficient, we do the last cor-
rection step, changing only the membership of nodes whose
max[out(i,m)] is eventually larger than in(i), not altering
their (already grouped) neighbors.

Concerning the computational time, the most demanding
step is the determination of the loop coefficient for all nodes.
As each node must be temporarily cutoff from the network
and the new shortest paths between its first neighbors are
allowed to pass through any other node, the computational
time is N times longer than that needed to determine the
shortest paths between nodes (where N denotes the number
of vertices). This procedure could be shortened by limiting
the length of the shortest paths taken into account
(max[dy;]), so that larger separations do not contribute to
the loop coefficient (1/dy,;—0 for dy,;>max[dy,;]). For
max[dy,;]=1, we get the standard clustering coefficient. In
this approximation, most of the core nodes could be deter-

mined quite fast as sites with the largest clustering coeffi-
cient. However, it would significantly reduce the efficiency
of the method, especially in the case of sparse graphs with a
small amount of triangles.

III. THE IMPLEMENTATION
A. Computer-generated networks

We have applied our method to several widely used ex-
amples. First, we considered computer-generated networks
of known modular structure [30,41,42]. We created four
regular rings of 32 vertices and 256 edges, so that each node
has 16 links. Then, connections in each module were ran-
domized by pair-wise rewiring in order to get initial random
modules. In the next step, the four randomized modules were
interconnected by pair-wise rewiring, so that the degree of
each node k=k;,+k,, was kept constant. We examined the
performance of our algorithm on computer-generated graphs,
when the number of external links per node was varied from
kou=1 to k,,=7. For each value of k,, we generated 40
different networks. The measured quantity was the modular-

ity [18]
Q=Z (ei—aj). (3)

representing the difference between the fraction of the links
that fall within the communities (e;) and the expected value
of the same number of links distributed randomly, regardless
the community structure (a;=2e;;, with e;; being the fraction
of edges connecting nodes of group i with the nodes of group

016105-3



L. VRAGOVIC AND E. LOUIS

PHYSICAL REVIEW E 74, 016105 (2006)

(b)

(@)

FIG. 4. (Color online) Decomposition of the karate club network of Zachary [1,30,41,42,44]. After the first step (a) the nodes with the
largest loop coefficient of D(i)=1 (the values of the loop coefficient are given in Fig. 3) are identified as initial nodes of three modules. Their
nearest neighbors are put into the corresponding modules as peripheral sites. After four steps [(b) with D(i)=0.749], an intermodular layer
(triangle up, green) and one isolated node (triangle down, purple) appear as new distinct groups. The isolated node is assigned correctly to
the circle module in the final correction step. In the following steps, both circle- and square-modules grow. (c) The division after the tenth
step [with D(i)=0.558]. Compare with the final decomposition after the last correction step, given in Fig. 3.

J) [18]. Systems with Q> Qp, where Qp is a modularity of a
corresponding random graph with the same number of nodes
and links, seem to have a significant community structure
[43].

For each k,,,, we compare the modularity of the division
into four initial modules with the modularity of the division
obtained with our loop coefficient method (not necessarily
into four modules). As the number of external links is in-
creased, the initial modules are gradually falling apart and
the network is turning into a single global module. The
modularity of both divisions is decreasing, see Fig. 2. For
smaller number of external edges, the algorithm gave very
good results with all nodes correctly grouped. However, the
resulting modularity appears to be lower than the reference
one by 0.1-0.2. The cause of this discrepancy lies in the
sensitivity of our method, as the initial random modules are
divided into even smaller submodules that are strongly inter-
connected.

For k,,,>4, the initial modules become even more inter-
connected and our algorithm completely fails to recognize
them. We could only detect larger supermodules; a merger of
two or more initial groups or their parts. Having only two or
three groups, the modularity of some divisions drops sharply
(see Fig. 2 for k,,=5; 6 or 7). For k,,=7, our algorithm
hardly recognizes the initial modular structure, putting in
most cases the whole network into a single module (Q=0).

B. Real-world networks

We tested our method on two real-world networks: Za-
chary’s karate club [44] and the largest component of the

Santa Fe Institute collaboration network [1,30,41,42,45].

In the case of the karate club of Zachary [1,30,41,42,44],
the behavior of 34 members were observed during two years
in order to determine the network of friendships. After a
disagreement between the administrator of the club and the
instructor, the club was split into two groups. Applying our
algorithm on an unweighted network, we identified a modu-
lar structure somewhat richer than the one usually reported in
the literature [1,30,41,42]. We correctly identified two main
groups, with a small submodule and an intermodular layer
within the instructor’s faction. One peripheral node was mis-
classified (lower bold square in Fig. 3). As it has one link to
both main groups, the algorithm interpreted it as a peripheral
node of the instructor’s faction because its neighbor within
that group has a larger loop coefficient than the neighbor in
the correct administrator’s faction. Finally, in order to check
the quality of our division and to compare it with the division
previously obtained by Girvan-Newman method [30], we
calculated the modularity Q [see Eq. (3)]. The modularity of
our division into four groups is Q=0.378, while merging
submodules of the instructor’s faction into one larger module
we get the same modular structure as reported in [18], with
0=0.381. (See 4.)

The largest component of the Santa Fe Institute collabo-
ration network [1,30,41,42] consists of 118 scientists that are
connected if they coauthored one or more articles (links are
unweighted). The aim of any algorithm would be to identify
the communities that correspond to the particular fields of
research. The rough division resulting from our method is
shown in Fig. 5. We successfully resolved the group working
on the Structure of RNA and three groups of the Statistical
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FIG. 5. (Color online) (a) Rough decomposition of the largest component of the Santa Fe Institute collaboration network into five main
groups, having internal submodular structures. The modularity of this rough decomposition is Q=0.7. The sizes of the symbols represent
relative sizes of the groups, while the thicknesses of the connections correspond to the number of intermodular links. (b) A detailed
decomposition of the largest component of the Santa Fe Institute collaboration network with the structure of each of the five groups divided
into 15 submodules. The modularity of this detailed decomposition is Q=0.659. The color of the internal links is that of the corresponding
submodules, while the external links are plotted grey. Color and symbol codes for different disciplinary groups: Structure of RNA (red
triangles up, 29 members), Statistical Physics (green squares with 7 members, blue diamonds with 26 members, and magenta triangles down
with 15 members), Mathematical Ecology and agent-based models (brown circles, 41 members).

Physics; see Fig. 5 and compare with Ref. [30]. The modu-
larity of the division into five large groups is Q=0.7. Most of
these communities could be further divided into a main clus-
ter surrounded by smaller submodules. A detailed decompo-
sition [see Fig. 5 (b)] shows that these small submodules are
usually fully connected graphs, representing a group of co-
authors sharing a single publication. The modularity of the
division into 15 small subgroups is 0=0.659. Finally, our
algorithm could not make a clear distinction between the
communities of the Mathematical Ecology and the agent-
based models (both depicted with brown circles) that could
be resolved by Girvan-Newman method [30]. We could only
distinguish two interconnected small submodules of sizes 5
and 4 that are linked to the main group of the Mathematical
Ecology by a common coauthor.

IV. CONCLUSION

We have introduced a algorithm for identifying commu-
nities in networks that is based on a local property, the loop
coefficient. The method takes into account the smallest loops
of any size, and actually is a generalization of the widely
used clustering coefficient. Therefore, our method could be
applied to any kind of networks with loops, regardless of the
number of triangles. However, it is not suitable for analyzing

trees, without cycles. Our concept of community is based on
the core nodes having the largest values of the loop coeffi-
cient, surrounded by pheripheral nodes that are the origin of
intermodular links.

Applying our algorithm to both computer generated and
real-world networks with well defined community structures,
we got reasonable results that are in accordance with the
findings obtained by other methods. We were able to identify
both the rough division into the main communities and the
detailed division into smaller submodules and intermodular
layers. When the number of intermodular links in computer
generated systems is high, our method fails to make a dis-
tinction between the initial groups, assigning the majority of
nodes to a single supermodule.

The proposed algorithm gives a way of identifying the
core nodes using a new local measure, i.e., the loop coeffi-
cient. We hope that it could be used as a complement of other
methods, especially in combination with approaches focused
more on the boundaries of the modules.
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