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Pattern formation in spatiotemporal chaotic systems is investigated. Temporally chaotic and spatially ordered
patterns are observed by varying the coupling strength. Spatial orderings emerge spontaneously due to self-
organization of partial and nonlocal chaos synchronization, governed by various types of spatial symmetries.
The first and secondary bifurcations from spatially disordered chaos to chaos with different levels of spatial
orderings are observed and the scaling behaviors associated with these bifurcations are statistically analyzed.
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Chaos has been investigated extensively for more than a
half century. In recent decades, the study of spatiotemporal
chaos has attracted much attention �1,2�; in particular, the
problem of pattern formation in chaotic extended systems
has become one of the focuses in nonlinear science �3–7�.
Due to the sensitivity of chaotic trajectories to their initial
conditions and the unpredictability �i.e., randomness� of the
long-time evolutions of chaotic orbits, one can hardly antici-
pate that chaotic units can construct patterns with strictly
ordered space structures. This is the reason why spatial or-
derings of pattern formation in spatiotemporal chaos have
been investigated much less than those of pattern formation
in stationary and periodic media �8–13�, and thus it is theo-
retically interesting to investigate the possible formation of
patterns in spatiotemporal chaos with ordered space struc-
tures.

In this paper, we find that spatially ordered structures can
occur spontaneously from spatially disordered and tempo-
rally chaotic extended systems by homogeneously increasing
space couplings. These spontaneous orderings are due to the
self-organization of chaos synchronization and collective be-
haviors among chaotic units. The self-organization of chaos
synchronization is governed by different kinds of space sym-
metries. Some interesting bifurcations, such as continuous
spatial symmetry breaking bifurcation and on-off intermittent
bifurcation are found. These bifurcations have been known
in stationary and periodic media or in low-dimensional cha-
otic systems, while in our work we find these critical scaling
features among a large number of desynchronous chaotic
units, and these features serve as the precursors of self-
organization of chaos synchronization.

We take two-dimensional coupled Rössler oscillators with
fixed boundary conditions as our example:

u̇ij = − vij − wij + �u�2u ,

v̇ij = uij + avij + �v�2v ,

ẇij = b + wij�uij − c� + �w�2w ,

�2x = xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij ,

u,v,w�i = 0, j� = u,v,w�i = N + 1, j� = 0,

u,v,w�i, j = 0� = u,v,w�i, j = N + 1� = 0,

x = u,v,w; i, j = 1,2, . . . ,N . �1�

In our case, the single Rössler oscillator �14� is chaotic, and
the coupled oscillators show temporal chaos �Fig. 1�a�� and
spatial randomness �Fig. 1�b�� for small coupling strength as
one can generally expect.

Now our interest is in what kinds of spatial orderings can
spontaneously occur on homogeneously varying the control
parameters and how �i.e., via what kinds of bifurcations�
these spontaneous orderings appear. To do so we gradually
increase the coupling strength �=�u=�v=�w of Eqs. �1� and
study the system response to this parametric variation. We
first find that there exists a critical coupling strength �=�c1,
above which a spatial ordering of mirror symmetry

u,v,w�N

2
+ i, j� = u,v,w�N

2
− i, j� ,

0 � i �
N

2
, 0 � j � N ,

or u,v,w�i,
N

2
+ j� = u,v,w�i,

N

2
− j� ,

0 � i � N, 0 � j �
N

2
, �2�

is established �here, if N is odd, we take �N+1�� 2 to be the
central line of the i or j axis�. An interesting point is that
under the symmetry of Eqs. �2� the system dynamics is still
chaotic. In Figs. 2�a�–2�c� we show the snapshots of vari-
ables uij for different time moments, and in Fig. 2�d� the*Electronic address: ganghu@bnu.edu.cn
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temporal evolution of an arbitrary space site is plotted in the
u-v phase plane. It is clear that the trajectory of any space
unit is chaotic and the spatial patterns also vary chaotically
in time. However, the mirror symmetry �2� is kept in the
entire chaotic evolution of Eqs. �1�. We thus explore the
coexistence of strictly spatial ordering with desynchronous
chaotic evolution in a high-dimensional spatiotemporal
system. The key point for this interesting observation is par-
tial and nonlocal chaos synchronization �15� self-organized
in different clusters governed by the mirror symmetry of
Eqs. �2�.

On further increasing �, one can find the second critical
coupling strength �c2, characterizing the secondary bifurca-
tion from the mirror symmetric state �2� to a central symmet-
ric state. In Figs. 2�e�–2�h� we do exactly the same as in
Figs. 2�a�–2�d� with � increased above �c2. From these fig-
ures, we observe again chaotic variations of trajectories as
well as chaotic evolution of the spatial pattern. On the other
hand, the space central symmetry
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is strictly satisfied during the entire chaotic motion. Now the
self-organization of partial chaos synchronization goes to a
higher level, and this process is governed by the central sym-
metry of Eqs. �3�, which forms a large symmetry group in-
cluding the one of Eqs. �2� as partial elements. All symmetry
properties of Figs. 2�a�–2�c� and Figs. 2�e�–2�g� are certainly
consistent with the system dynamics and the boundary con-
ditions of Eqs. �1�. However, whether the system can actu-
ally realize these symmetries from initial conditions without
such symmetries depends on the competition between tem-
poral chaoticity and spatial couplings. In Fig. 1�b� no spatial
symmetry is observed for very weak couplings, while by
increasing homogeneous coupling, in Figs. 2�a�–2�c� and
2�e�–2�g�, states with mirror and central symmetries become
stable successively. In the case of mirror symmetry, the ini-
tial distribution determines the actually realized horizontal or
vertical symmetry axis.

To explore the general features of the spontaneous order-
ings in spatiotemporal chaos, we investigate the bifurcation
coupling thresholds for different system sizes. In Fig. 3�a�

FIG. 1. Chaotic trajectory of a Rössler oscil-
lator and a snapshot of spatiotemporal chaos. Nu-
merical simulations of Eq. �1� start from random
initial conditions with the parameter settings a
=0.45, b=2.0, c=5.5, N=33 �these parameters
are fixed in all the following simulations, unless
specified otherwise�, and �=�u=�v=�w=0.1. �a�
Chaotic temporal evolution of a Rössler oscillator
�i=17, j=17�. �b� A snapshot of the spatial con-
tour pattern at an arbitrary moment after long
transient.

FIG. 2. Chaotic patterns under different cou-
pling strengths and the corresponding chaotic tra-
jectories. �a�–�c� The same as Fig. 1�b� with
�=1.91. The space contour varies chaotically be-
tween different patterns with the same mirror
symmetry. t= �a�30 200, �b� 30 550, and �c�
30 930 t.u.. �d� Chaotic temporal evolution of the
trajectory of an arbitrary space site �i=11, j=6�.
�e�–�g� The same as �a�–�c� with �=2.3. Chaotic
variation of patterns with space ordering of strict
central symmetry is observed. t= �e�4050, �f�
5700, and �g� 7750 t.u.. �h� The same as �d� with
�=2.3.
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the two critical couplings �c1 and �c2 are plotted against the
system size N. The quadratic power law relations

�c1,c2 = A1,2N2 + B1,2N + C1,2 �4�

are verified. These relations may be explained heuristically
by the second-order diffusion couplings. The continuous ver-
sion of the coupled oscillators Eqs. �1� is u̇= f�u�+� ·�2u,
which obeys a scaling invariant relation L→�L ,�→�2�
with L being the system size of the continuous system. Con-
sidering the correspondence L�N, we can reasonably antici-
pate the quadratic form Eq. �4�, in which the linear and con-
stant corrections may be caused by discretization-induced
deviations. When drawing the curves of Fig. 3�a�, we justify
mirror symmetry and central symmetry by Emin�10−8 and
Emax�10−8 in a time interval over 104 time units �t.u.� after
a long transient time, with Emin and Emax defined in Eqs. �5�.
Increasing � from 0.1 with the step ��=0.01, �1 and �2 are
plotted and the system is found to transit from no symmetry
to mirror symmetry and from mirror symmetry to central
symmetry, respectively. From Fig. 3�a�, it is obvious that
�c1,c2→� for N→�. Therefore, the phenomena of chaotic
spatial orderings of Fig. 2 can be observed in systems with
large but finite size rather than in the infinite-size limit,
which is sharply different from the pattern formations in con-
ventional stationary or periodic systems. This, however, does
not deny the significance of these interesting organization

phenomena since the system size effect becomes crucially
important in describing the properties of many practically
important systems such as confined chemical reaction sys-
tems �16�, hydrodynamical systems in tiny vessels �17�, and
various mesoscopic systems �18�.

For quantitatively measuring the spatial orderings of Eqs.
�2� and �3�, we define the following error quantities:

E1�m� =
1

N
�
i=1

N �u�i,
N

2
+ m� − u�i,

N

2
− m�� ,

E2�m� =
1

N
�
i=1

N �u�N

2
+ m, j� − u�N

2
− m, j�� ,

Emin = min„E1�m�,E2�m�… ,

Emax = max„E1�m�,E2�m�… . �5�

It is clear that for any 0�m�
N
2 we have

Emin 	 0, Emax 	 0, no symmetry,

Emin = 0, Emax 	 0, mirror symmetry Eqs . �2� ,

Emin = 0, Emax = 0, central symmetry Eqs . �3� . �6�

In Figs. 3�b�–3�d� we choose � in the ranges of ���c1,
�c1����c2, and �	�c2, respectively, and plot Emin�t� and
Emax�t� obtained by numerically computing Eqs. �1�. The
conclusions of Eqs. �6� are fully confirmed by numerical
simulations.

In order to clarify the types of bifurcations at �c1 and �c2,
we study the system behaviors in the parameter regions
0��ci−��1, i=1,2. We find that as � increases toward �c1
from below, Emin decreases continuously �see Figs. 4�a� and
4�b��, and Emin=0 as �
�c1. Figure 4�c� shows that this
continuous decreasing tendency obeys a power law of

Emin � ��c1 − ��0.5 �7�

where Emin is the time average about 4�104 t.u. after ne-
glecting a transient of 104 t.u. Thus the bifurcation at �c1 is a
second-order bifurcation �19� characterized by a symmetry
transition. On the other hand, as � increases toward �c2 from
below, a typical on-off intermittency of Emax is observed for
0��c2−��1 �see Figs. 4�d� and 4�e��. Moreover, the sta-
tistics of the off-state period practically follows a − 3

2 power
law at the bifurcation �	�c2,

P�T� � T−3/2, �8�

as shown in Fig. 4�f�, where T is the time period of an off
state between two successive bursts of Emax and P�T� is the
probability density of the number of the off states having
period T.

When we consider the phase change of the system by
increasing � from ���c1, we observe successive symmetry
bifurcations at �c1 and �c2. So far, the second-order symme-
try breaking bifurcation is well known in spatiotemporal
nonchaotic �stationary and periodic� systems and the on-off

FIG. 3. Quadratic relation between �c and N and temporal evo-
lutions of error quantities Emax,Emin defined in Eq. �5�. �a� Critical
�c1 and �c2 plotted vs system size N. Circles and triangles represent
the numerical justifications of �c1 and �c2, respectively. Solid lines
denote analytical quadratic fittings of these critical thresholds. �b�
�=1.0��c1, Emax	0, and Emin	0. Desynchronous state without
spatial symmetry. �c� �c1��=1.91��c2, Emax	0 and Emin=0.
Chaotic state with mirror symmetry ordering. �d� �=2.3	�c2,
Emax=0 and Emin=0. Chaotic state with central symmetry ordering
�i.e., mirror symmetries against both horizontal and vertical axes
i=N /2 and j=N /2�.
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intermittency bifurcation has been justified for desynchroni-
zation of homogeneous chaos �20�. Here we explore obser-
vation of these bifurcations successively in real space for
high-dimensional and spatially disordered spatiotemporal
chaotic systems. The fascinating points found here are that
the bifurcations of Fig. 4 and the space symmetry orderings
of Fig. 2 are realized by self-organization of chaos synchro-
nization between a large number of desynchronous chaotic

space units. After the bifurcations chaotic trajectories of
space units far away from each other can be organized into
some groups in the manner of Eqs. �2� and �3� and the sites
in each group are strictly synchronized among each other,
leaving large desynchronized space units in between. This
organization is spontaneously performed by the system via
different instabilities. From Figs. 4�c� and 4�f�, it is interest-
ing to see that the bifurcations at �c1 and �c2 belong to two
different types. If we use Emin and Emax as quantitative mea-
sures for these two bifurcations, the two quantities have
completely different behaviors around the bifurcations. The
former shows a continuous reduction of Emin with increase of
� �from ���c1� and Emin reduces to zero at �c1, while the
latter maintains the Emax amplitude of bursts of on-off inter-
mittency practically unchanged with increase of � ����c2�
and the average time interval of off states diverges to infinity
as �→�c2. These features and classifications of bifurcations
have been observed in low-dimensional systems. Here we
find that these bifurcations and organizations can appear in
spatially disordered chaotic extended systems.

In conclusion we have studied the problem of pattern for-
mation in spatiotemporal chaostic systems. The most signifi-
cant observations are the following. Various strict spatial or-
derings can be constructed by chaotic units, and these
ordered structures are due to the partial chaos synchroniza-
tion between different clusters of space units self-organized
under various spatial symmetries. A second-order symmetry
breaking bifurcation and on-off intermittency bifurcation are
justified at instabilities of these phase transitions. In this pa-
per the results are reported for a specific Rössler model only.
We have tested a number of other models, and similar results
are observed, indicating the wide generality of the findings
of the present work. We believe that the results in the present
work have just touched a small corner of the problem of
pattern formation in spatiotemporal chaos. Further investiga-
tions on the formation of rich ordered structures and on the
diverse transitions between these structures and between dif-
ferent types of spatiotemporal chaos are needed.
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FIG. 4. Temporal evolutions of error quantities Emax,Emin and
power law relations in the neighborhood of two critical points.
�a�,�b� The same as Fig. 3�b� with Emin plotted. �a� �=1.765, Emin

	0.619. �b� �=1.78��c1	1.785, Emin	0.000883. �c� Emin plot-
ted vs �c1−�. A second-order continuous phase transition with scal-
ing relation Emin� ��c1−��0.5 is justified. �d�,�e� The same as Fig.
3�c� with Emax plotted. �d� �=2.06. �e� �=2.10��c2	2.105. On-
off intermittency of Emax variation is justified for ���c2. �f� P�T�
plotted vs T with T being the time length of an off state between
two adjacent Emax bursts and P�T� being the probability density of
off states having life length T. Typical T−3/2 law is obviously
observed.
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