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We demonstrate numerically that a brief burst consisting of two to six spikes can propagate in a stable
manner through a one-dimensional homogeneous feedforward chain of nonbursting neurons with excitatory
synaptic connections. Our results are obtained for two kinds of neuronal models: leaky integrate-and-fire
neurons and Hodgkin-Huxley neurons with five conductances. Over a range of parameters such as the maxi-
mum synaptic conductance, both kinds of chains are found to have multiple attractors of propagating bursts,
with each attractor being distinguished by the number of spikes and total duration of the propagating burst.
These results make plausible the hypothesis that sparse, precisely timed sequential bursts observed in projec-
tion neurons of nucleus HVC of a singing zebra finch are intrinsic and causally related.
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I. INTRODUCTION

A question of great interest to neurobiology is how ani-
mals learn to generate temporal patterns of muscle activa-
tion. An example that has been much studied in recent years
because of its relevance to human speech �1� and because of
the rich variety of possible experiments is how songbirds
learn to sing a song by auditory-guided vocal feedback �2�. A
young male bird first memorizes the song of an adult male of
the same species. Then over many months, over many itera-
tions �more than 50 000 iterations for a zebra finch �3��, and
by just listening to his own vocalizations, a young male
learns to vary the activation of its respiratory and syringeal
muscles until his song is able to match accurately the origi-
nal memorized song. This is an impressive feat given that an
adult song might last several seconds, that there is auditory
structure that lasts less than 10 ms, that many syringeal and
respiratory muscles need to be coordinated, and that some
species of songbirds are able to learn and sing many different
songs. Nearly all details of this process remain poorly under-
stood, in particular how the young male memorizes a com-
plex song and how auditory feedback is used to adjust the
pattern of muscle activation until the songbird is able to re-
produce accurately the memorized song.

Studies of songbirds have shown that certain anatomically
and physiologically distinct brain regions called nuclei are
associated with the recognition, learning, and production of
song �see Fig. 1�. A recent experiment by Hahnloser et al. �4�
recorded extracellular action potentials �spikes� from neurons
in awake, singing male zebra finches and found that the neu-
rons in the nucleus HVC �5� that project to the robust
nucleus of the arcopallium �abbreviated as RA �5�� have the
remarkable properties of firing sparsely and precisely during
singing. �In the following, HVC neurons that project to RA
will be abbreviated as HVCRA neurons.� Typically, each
HVCRA neuron fires a brief burst of about three to four
spikes once per song motif with each burst lasting about
6 ms. �A motif is a cluster of distinct auditory syllables that
is repeated as a single pattern and that lasts an average of
0.6 s for zebra finch songs.� Measurements during successive
motifs from a given adult male bird show that each burst

from a particular HVCRA neuron is aligned with certain
acoustic features of the motif to a precision of about 0.7 ms
�4�. These bursts are important to understand since they are
believed to provide the temporal framework for organizing
the syllables of a song �6�.

The observation that each HVCRA neuron bursts just once
per motif and other data which show that there is a repro-
ducible temporal ordering of HVCRA neurons according to
when they fire their single burst per motif �4� suggest the
hypothesis that bursts propagate along a feedforward net-
work of excitatory HVCRA neurons �6�. The idea is similar to
a path of dominoes such that the falling of one domino
causes the next domino in the path to topple. Here, a given
HVCRA neuron receives one or more bursts from other
HVCRA neurons that have fired recently during the motif. In
response, the given neuron itself fires a burst that helps to
activate neurons that fire later during the motif. That each
HVCRA neuron fires exactly once per motif implies that the
connections are feedforward �although this assumption can
be weakened if a recurrent burst arrives while some earlier

FIG. 1. Schematic anatomical diagram of a sagittal cross section
of one hemisphere of a zebra finch brain, showing the major nuclei
associated with the learning and production of song. The nucleus
HVC plays a central role since it receives auditory and other input,
it drives the premotor nucleus RA �4�, and it sends information to a
parallel anterior forebrain pathway �nuclei X, DLM, and LMAN�
that plays a role in the learning and maintenance of a song. There
are two HVC nuclei, one on the left and one on the right side of the
songbird’s brain.
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neuron is still in a refractory state �7��. The bursts continue to
propagate until the chain ends and the motif stops or perhaps
there is a branch point to a different chain whose dynamics
generate a different motif.

While there has been much previous theoretical research
concerning when spikes can propagate along excitatory net-
works of different kinds �8–14�, the songbird experiments on
HVC of Hahnloser et al. during singing �4� and related ex-
periments by Mooney of bursts in HVC projection neurons
during audition �15� motivate asking new theoretical ques-
tions about the propagation of a burst through various kinds
of networks.

In this paper, we show that a minimal feedforward
architecture—a one-dimensional �1D�, homogeneous, excita-
tory chain of nonbursting neurons—can support the stable
propagation of a brief high-frequency burst. By studying two
kinds of chains, one with leaky integrate-and-fire �LIF� neu-
rons and one with more realistic single-compartment
conductance-based neurons �abbreviated as HH neurons for
Hodgkin-Huxley like�, we show that a burst can propagate in
a stable manner that does not require a careful choice of
neuronal model nor a careful tuning of model parameters.
Depending on the values of parameters such as the maximum
synaptic conductance, we find that each kind of 1D chain
�LIF or HH� has multiple attractors that differ in the number
of spikes and in the total width of the propagating burst.

Our calculations demonstrate that a brief high-frequency
burst similar to those observed in HVC can propagate in a
stable manner along a simple excitatory chain of neurons. �A
similar result was announced independently by Jin and col-
laborators �7�, who studied a more complicated model. We
discuss this preprint briefly in Sec. IV below.� Our results
make plausible one of the simplest explanations of the result
of Hahnloser et al.: namely, that the observed bursts of
HVCRA neurons during singing are intrinsic to HVC in that
external input from other brain regions is not needed to gen-
erate the bursts �except the first burst� and in that the bursts
are causally related such that one burst initiates the genera-
tion of the next burst. Our results also make some predictions
such as the existence of multistability �different kinds of
propagating bursts can occur in the same chain depending on
how the chain is activated� and that transitions from one kind
of propagating burst to another kind �differing in the number
of spikes and burst width� can occur as parameters are var-
ied. New experimental studies of HVC, especially using op-
tical methods with high time resolution �16� that can exam-
ine the spatiotemporal activity of many neurons
simultaneously, may help to confirm these ideas.

The rest of this paper is organized as follows. Section II
discusses some details of the two classes of mathematical
neurons that we use in the 1D chains and how the excitatory
synaptic currents are modeled. Section III presents numerical
results mainly for a 1D chain of HH neurons �as opposed to
LIF neurons�, especially the existence of different attractors
corresponding to different kinds of propagating bursts. The
paper concludes in Sec. IV, where key results are summa-
rized. We also discuss there how our results are related to
alternative hypotheses such as the hypothesis that the burst-
ing arises from propagation through synfire chains �8� or by
a central pattern generator �CPG�.

In a second paper �17,18�, we will discuss how noise and
network heterogeneities affect the propagation of bursts
through a synfire chain. This second paper shows that our
key conclusions still hold: a brief high-frequency burst can
still propagate in a stable manner for a range of noise
strengths and for various amounts of heterogeneity. How-
ever, we also find that single spikes, even if synchronized
across a synfire pool, do not propagate in a stable way for
most of the parameters studied, which suggests that short
bursts of several spikes are important for achieving robust
propagation through realistic synfire chains.

II. METHODS

In this section, we discuss some experimental data that
justify the study of a one-dimensional chain of excitatory
neurons and we also point out some of the experimental
details that are ignored in our model. We also discuss some
details of the integrate-and-fire and conductance-based neu-
ronal models with excitatory synapses that we use in the 1D
chains. The Appendix provides further details of equations
and parameter values.

A. Homogeneous 1D chain of excitatory neurons

The physiological properties of HVC neurons and how
they are interconnected within HVC are poorly understood
�15,19–22� so that it is not possible at this time to develop a
quantitative model of the HVC microcircuitry—say, at the
level of hippocampus models �23�. Researchers have shown
�15,21� that there are at least three main classes of neurons:
excitatory neurons that project to nucleus RA, excitatory
neurons that project to area X in the anterior forebrain path-
way, and inhibitory interneurons �15,21� that connect only to
other neurons within HVC. Recent paired-electrode record-
ings by Mooney and Prather �20� have shown that each type
of HVC neuron makes local connections with the other two
types of HVC neurons but details of the connections such as
the number, kinds, and strengths of synapses are incom-
pletely known.

Of special importance for this paper is the experimental
observation that HVCRA neurons synapse with other HVCRA
neurons �20�. Thus it is possible for a feedforward network
of excitatory neurons to exist in HVC, although we empha-
size that there is no evidence presently for such a network.
Further, there are of the order of 40 000 HVCRA neurons in
HVC �6�, which should be sufficiently many to create a chain
whose dynamics spans a motif or even several motifs. �Since
the observed bursts in HVCRA neurons last 6 ms �4�, a chain
of about 100 pools of neurons would suffice to span a motif
of 0.6 s, provided that the bursts do not overlap in time.�

To determine in principle whether the propagation of a
burst can explain the experimental data �4,15�, we study one
of the simplest possible feedforward networks: namely, a
one-dimensional homogeneous feedforward chain of identi-
cal neurons such that each neuron connects via a single iden-
tical excitatory synapse with the next neuron of the chain.
The assumption of homogeneity is not realistic biologically
but reduces the parameter space of the calculations and in-
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creases our ability to understand how the existence and prop-
erties of a propagating burst depend on parameters.

Our 1D model leaves out many experimental details �we
discuss this further in Sec. III below�, of which two are es-
pecially important: the need for multiple pathways and the
presence of inhibitory neurons. First, as pointed out by
Abeles �8� and others, transmission of information along a
one-dimensional chain is not robust since damage to any
neuron in the chain can alter or stop the transmission of
information. �That HVC is robust is demonstrated by the fact
that the adult song of a zebra finch changes little over the life
of the bird, even though there is ongoing neurogenesis and
hence a steady turnover of HVCRA neurons �24,25�.� If some
kind of propagation occurs in HVC, there must be parallel
pathways.

A widely studied example of a feedforward neuronal ar-
chitecture with multiple pathways is a synfire chain �8,9,26�;
see Fig. 2�a�. Although there are variations of this architec-
ture, a synfire chain is usually described as a strictly feedfor-
ward chain of pools of neurons such that the neurons in one
pool project only to neurons of the next pool. Reliable trans-
mission occurs even in the presence of noise or of network
heterogeneities because of the multiple paths and also be-
cause each neuron receives spikes from many neurons of the
previous pool and the spikes spontaneously become highly
synchronized as propagation continues �8,9�. The arrival of
synchronized spikes at the many synapses of a given synfire
neuron causes a large postsynaptic current that triggers new
spikes with a probability that can approach certainty.

The idea that the sparse brief bursts observed in HVCRA
neurons are causally connected by sequential firing through

some kind of chain has been proposed by experimentalists
�6,27� and assumed in several theoretical studies �28–30�. In
a recent experiment �26�, calcium imaging and timing studies
of intracellular recordings have suggested the existence of
synfire chains in the visual cortices of mice and cats but no
similar imaging study has yet been carried out for songbirds.

The dynamics of our one-dimensional homogeneous
chain is equivalent to the dynamics of a homogeneous noise-
less synfire chain �homogeneity here means equal numbers
of identical neurons per pool all connected in identical ways
from one pool to the next� such that all spikes within a given
pool have become perfectly synchronized. This is an impor-
tant observation since the synapse that connects one neuron
to the next in the 1D chain of Fig. 2�b� then has to be strong
to correspond to the many synapses of a neuron in the full
synfire chain. In general, noise, heterogeneities, delay times,
and imperfect synchronization of spikes cause the dynamics
of a synfire chain to differ from that of our 1D chain so that
simulations of real synfire chains are needed to understand
these effects on the propagation of a burst �7,17,18�.

A second important experimental detail that we leave out
of our model is the presence of the inhibitory HVC interneu-
rons. Our justification for this assumption is simply that the
function of these interneurons is not known. Proposed math-
ematical models for sequence generation and sequence rec-
ognition incorporate inhibitory neurons in various ways
�29,31–33� but there is no support yet for these models in the
context of the songbird system. We argue that ignoring the
inhibitory neurons is a useful first step toward understanding
the HVC microcircuitry since the calculations discussed be-
low show that a minimal idealized 1D chain of identical
excitatory neurons already suffices to produce a stable propa-
gating burst, in which case other effects such as noise, inho-
mogeneities, and interneurons could be included perturba-
tively. Further, some experiments suggest that ignoring the
interneurons may not be too severe an assumption. HVC
interneurons tend to fire rapidly, chronically, and in approxi-
mate synchrony throughout a motif �6� and rapidly and
chronically during audition of a bird’s own song �15�, so that
the interneuron spikes might not be closely correlated with
the brief sparse bursts of the HVCRA neurons. In this case,
the main purpose of the interneurons might to prevent run-
away excitation of the projection neurons.

We conclude this section with the technical observation
that our assumption that the 1D chain is homogeneous and
that there is no delay along axons �the axons along the chain
have effectively zero length� allows the 1D chain to be simu-
lated by integrating numerically a single neuron with a single
afferent synapse. During the integration, the output of the
neuron can be stored in memory and then used as input to the
same neuron which then represents the next neuron in a
chain. A related idea was used by Reyes �11�, who used a
single real hippocampal neuron in a slice together with the
dynamic clamp technique to simulate a synfire chain consist-
ing of many pools of identical neurons.

B. Leaky integrate-and-fire model of an HVCRA neuron

We studied propagation of bursts along 1D chains consist-
ing of one of two types of neurons: leaky integrate-and-fire

FIG. 2. �a� Schematic diagram of a feedforward synfire chain
consisting of successive pools of neurons �vertical column of
circles�. Each pool contains excitatory HVCRA neurons that fire
approximately synchronously to activate neurons in the next pool.
The horizontal hollow arrow on the left represents input that can
initiate the synfire chain. The hollow arrows at the top of each pool
indicate efferents that could convey information from a given pool
to other brain areas. �b� Schematic diagram of the one-dimensional
homogeneous feedforward excitatory chain that we study in this
paper. In the biologically unrealistic but theoretically convenient
case that all neurons in the synfire chain of �a� are identical, that all
neurons in one pool connect to neurons in the next pool in the same
way with identical synapses, that axonal delays between pools can
be ignored, and that there is no noise, the 1D chain will have dy-
namics identical to a synfire chain whose spikes have become fully
synchronized.
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neurons that are described in this section, and more realistic
conductance-based Hodgkin-Huxley neurons that are de-
scribed in the next section. Neither neuronal model bursts
intrinsically when subject to a direct current �dc� external
stimulus. Provided that an initial burst is applied to the first
neuron of the 1D chain, we find that successive neurons are
capable of generating an identical output burst when stimu-
lated itself by a burst.

With respect to conductance-based models, LIF models
�34� are attractive since they have fewer parameters, lead to
efficient numerical simulations, and are sometimes amenable
to analytical methods. The kth LIF neuron of the 1D chain
�k�1� was modeled as a first-order nonautonomous ordinary
differential equation

�m
dvk

dt
= v0 − vk + R�Ie

k�t� + IS
k�t�� , �1�

where the parameter �m is the capacitive RC-time scale of the
neuronal membrane, the variable vk�t� is the potential differ-
ence across the membrane of the kth neuron in the chain, the
external current Ie

k�t� of the kth neuron is a specified function
�in this paper applied only to the first neuron to initiate ac-
tivity in the chain�, the synaptic current IS

k�t� arises from
spikes in the previous �k−1�st neuron of the chain �see Eqs.
�2� and �3� below�, the parameter v0 is the resting potential
toward which the potential v asymptotes in the absence of
external and synaptic currents �Ie= IS=0�, and the parameter
R is the total resistance of the membrane.

Equation �1� was supplemented with the usual spiking
rule that, whenever the potential vk�t� is increasing and
crosses a specified threshold value vthresh�v0, the neuron is
assumed to have spiked and the potential vk is instantly and
discontinuously decreased to a reset value vreset�v0. An ab-
solute refractory period was included in this LIF model by
freezing the potential vk to the value vreset for a time interval
trefract after a spike. We found that including a refractory in-
terval of trefract=1 ms produced only minor qualitative
changes to the results obtained in the absence of a refractory
period; for example, a 1-ms refractory period expanded by a
modest amount the basins of attraction for the different
stable propagating bursts discussed in Sec. III �see Fig. 6
below�. Although HVCRA neurons show some accommoda-
tion �15�, we did not include this detail in our LIF model.

The total postsynaptic current IS
k�t� of the kth neuron in

the chain was assumed to be a linear accumulation

IS
k�t� = �

i

Is�t − ti
k−1� �2�

of postsynaptic currents Is�t− ti
k−1� associated with spikes that

occurred in the previous �k−1�st neuron of the chain at times
ti
k−1� t. �Equation �2� also assumes that there are no time

delays arising from the time for a spike to propagate from
one neuron to the next.� The time dependence of the synaptic
conductivity associated with a single spike at time ti

k=0 was
modeled as a double exponential �34�, leading to the follow-
ing expression for the postsynaptic current per spike:

Is�t,v� = nI0�e−t/�1 − e−t/�2��vs − v� . �3�

The slow and fast time constants �1 and �2 had, respectively,
the values 1.1 ms and 0.2 ms to match roughly the 4.0-ms
onset-to-peak time constants observed in paired intracellular
recordings of HVCRA neurons �20�. The value I0=0.3 nA
was chosen to give a 1.0-mV peak excitatory post-synaptic
potential �EPSP� which is consistent with experiment �20�.
The number n, which varied from 1 to 32, indicated the
synaptic strength in terms of the number of synchronous
spikes that a neuron would receive if placed in a uniform
synfire chain with n neurons per pool and all neurons of one
pool connecting to all neurons in the next pool �with syn-
apses of the same form Eq. �3��. The range 1–32 was found
empirically to span the range of stable dynamics; see Fig. 6
below.

An homogeneous chain was then obtained by using for
each LIF neuron the same ten parameters �m, v0, R, vthresh,
vreset, trefract, n, I0, �1, and �2 and the same function, Eq. �3�,
for the postsynaptic current per spike. A time constant �m
=15 ms was used to approximate the in vivo response time
�15�, and a membrane resistance of R=60 M� was chosen to
match the impedance of HVCRA neurons �15�. Other param-
eter values used were v0=−70 mV, vthresh=−55 mV, vreset
=−75 mV, and trefract=1.0 ms.

The chain of LIF neurons represented by Eqs. �1�–�3� was
integrated by using a forward-Euler method �35� with a con-
stant time step of �t=0.01 ms. �Smaller time steps by factors
of 4 did not lead to significant changes in the results.� The
supplementary reset and refractory rules were applied at the
end of each time step. For most runs, a zero external current
Ie

k=0 was assumed for each neuron of the chain except for
the first neuron, for which a step function was used to stimu-
late a burst. The code was programmed and run using the
computational mathematics program MATLAB version 6.5
�36�.

C. Single-compartment Hodgkin-Huxley model
of an HVCRA neuron

The second neuronal model that we used to study the
propagation of a burst in a 1D chain of excitatory neurons
was a single-compartment model based on the Hodgkin-
Huxley equations with five representative conductances. The
evolution equation for the membrane potential vk�t� of the
kth neuron in the chain was

Cm
dvk

dt
= �

i=1

5

gi�t,vk��vi − vk� + Ie
k�t� + IS

k�t� . �4�

The symbols have the following meanings: Cm is the total
membrane capacitance, gi�t ,v� is the voltage-dependent con-
ductance of the ith kind of membrane channel, vi is the rest-
ing potential for the ith channel, and the currents Ie

k�t� and
IS

k�t� have the same meaning as in Eq. �1�. The Appendix
gives the details of parameter values and other evolution
equations related to the conductances gi.

Although more realistic in terms of its time dependence,
the HH model, Eq. �4�, is not necessarily more scientifically
appropriate than LIF models since the properties of the vari-

MENGRU LI AND HENRY GREENSIDE PHYSICAL REVIEW E 74, 011918 �2006�

011918-4



ous membrane conductances are only partially known for
HVC neurons �15,19,21,37�, the spatial distribution of the
channels in HVC neurons has not been determined �which
would be needed to construct accurate multicompartment
models�, and little is known about the type, strengths, and
locations of synapses in HVC. We did find that a single-
compartment HH neuron with five conductances is only able
to match some features of the experimental HVC data, and it
is not clear which experimental details are more important
than others to include in the process of fitting a mathematical
model to data. For these reasons and because this paper is
concerned whether in principle an HVC-like burst can propa-
gate stably through an excitatory chain, the conductances of
the HH model, Eq. �4�, were only loosely based on existing
HVC data.

Our starting point for choosing the conductances in Eq.
�4� was a recent paper by Prinz et al. �38�, which showed that
an eight-dimensional phase space obtained by varying the
maximum conductances of eight channels �whose functional
properties were obtained from lobster stomatogastric neu-
ronal data� contained a great diversity of dynamical behavior.
We chose the functional forms of the leakage, sodium, and
potassium channels from this paper and added two other
channels as suggested by current-clamp data of HVC neu-
rons �37�: a fourth channel was a low-threshold transient
calcium current, and a fifth channel was a calcium-activated
potassium current �denoted in the following by the symbol
KCa�. The calcium channel was chosen to activate around
−50 mV and inactivate around −80 mV with time scales
such that the channel could be activated transiently �37,39�.
The KCa conductance activates the potassium current after
intracellular calcium concentration rises, with a functional
form adopted from Yamada’s model �40�. The maximum
conductances of all five conductances were adjusted itera-
tively by hand to produce a short spike width and to generate
a spike adaptation with a high initial firing rate as observed
by Kubota and Saito �37�. A reasonably good fit to the
Mooney in vivo data �see Fig. 1 of Ref. �15�� unfortunately
could not also match Kubota and Saito’s in vitro spike pro-
files of Ref. �19� and vice versa. �We hope to obtain more
complete fits to HVC data by adding more channels and
more compartments when more anatomical and physiologi-
cal data become available.�

The total synaptic current was also assumed to satisfy the
linear relation, Eq. �2�, but an � function �34� was used in-
stead of Eq. �3� to approximate the time-dependent probabil-
ity of a channel opening. The EPSC arising from a spike that
occurs at time t=0 had the form

Is�t;v� = gsC� t

�s
�e−t/�s�vs − v� , �5�

where the constant C with value e normalizes the maximum
value of the expression C�t /�s�exp�−t /�s� to 1. This normal-
ization makes the parameter gs the maximum conductance,
which we varied over the range 0–0.55 nS. In Eq. �5�, the
synaptic time constant �s was fixed with value 7 ms and the
synaptic reversal voltage vs was set to 120 mV to make the
synapse excitatory. Equations �4�, �2�, and �5� together with

the evolution equations for gate variables given in the Ap-
pendix were integrated with the Neuron simulation code ver-
sion 5.6 �41�, with a constant time step of �t=0.1 ms.

III. RESULT AND DISCUSSION

A. Results for a 1D homogeneous chain of HH neurons

The calculations discussed below of one-dimensional ho-
mogeneous chains using the LIF or HH neurons of the pre-
vious section with excitatory synapses show that a brief
high-frequency burst similar to that observed in HVCRA neu-
rons during singing �4� can propagate stably over a range of
parameter values. These results make more plausible the hy-
pothesis that an excitatory chain of HVCRA neurons gener-
ates the sparse, precisely aligned bursts observed experimen-
tally �4�. Our results show further that different asymptotic
attractors can exist for given parameter values so that hyster-
esis can occur �different initial conditions can lead to differ-
ent nontransient dynamics�. The fact that the bursts exist as
an attractor means that there is a transient time during which
properties of the burst such as the number of spikes and burst
width �alternatively, the average burst frequency� evolve un-
til the final stable values are obtained. This transient time
varies with the initial state used to start the chain and with
the choice of parameters.

Since these qualitative conclusions turned out to be simi-
lar for LIF and HH neuronal models, we report here results
mainly for the HH models of Sec. II C and mention briefly in
the next section how the results differ for a chain of LIF
neurons. Since the parameter spaces for LIF and HH neurons
are high-dimensional �10 parameters for LIF, about 25 pa-
rameters for the HH neurons, and these do not include the
choice of the functional form Is�t ,v� for the EPSC per spike�,
to establish our key results we varied only one parameter
systematically—namely, the maximum synaptic conductance
gs of Eq. �5� for HH neurons or, equivalently, the number of
synchronous presynaptic spikes n of Eq. �3� for LIF neurons.

Figure 3 shows how the same initial burst of five spikes
propagates through a 1D excitatory chain of HH neurons for
several different values of the maximum synaptic conduc-
tance gs. The initial burst was created by using an external
current Ie

1�t� of Eq. �4� for the first neuron in the chain to
inject a square pulse of current that caused five spikes to
appear in rapid succession. For a synaptic coupling strength
gs smaller than about 0.1 nS, Fig. 3�a� shows that the initial
burst rapidly dies out by the third neuron of the chain and
all spikes disappear. Over a range of stronger couplings,
0.2�gs�0.4 nS, the initial bursts evolves into a stable, in-
variant propagating burst that can have one to five spikes
�columns �b� and �c� of Fig. 3�. For stronger couplings
gs�0.4 nS, the initial burst is unstable and the number of
spikes grows steadily without limit. However, other initial
conditions can lead to stable bursts in this range, an example
of hysteresis.

Figure 4 provides a more global understanding of the
transient dynamics and resulting attractors. In each panel,
the vertical axis indicates the number of spikes observed in
a burst while the horizontal axis indicates the position k of
a neuron along the chain. For a weak synaptic coupling
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gs�0.2 nS, all initial states decay to zero spikes �not shown
in the figure�. For a synaptic coupling of gs=0.3 nS �Fig.
4�a��, initial bursts with three or more spikes decay within
four neurons to a common final burst of three spikes. An
initial burst with two spikes evolves slightly to an invariant
burst with also two spikes, and a similar conclusion holds for
an initial burst with a single spike. As the synaptic strength is
increased to gs=0.35 nS �Fig. 4�b��, the number of attractors
increases so that stable bursts with one to five spikes are
observed depending on the initial state of the first neuron.
The transient time is still rather short, with the final number
of spikes stabilizing in all cases within three neurons
�k	3�. Finally, for synaptic couplings stronger than about
0.4 nS �Fig. 4�c��, stable and unstable states are observed
depending on the initial state of the first neuron. The unstable
bursts all grow at the same rate, with an extra spike appear-
ing for each next neuron traversed.

The transient dynamics of Fig. 4 is presented in somewhat
finer detail in Fig. 5, which shows that a nontransient propa-
gating burst is characterized by at least two parameters: their
total width and the number of spikes. For example, the same
beginning state B1 can evolve into three different end points
depending on the synaptic coupling strength gs: point E1
with three spikes, point E2 with four spikes and with a
slightly longer width of 45 ms, and an unstable state
�triangles�.

Finally, Fig. 6 indicates the approximate basins of attrac-
tion that exist for different initial current amplitudes �hori-
zontal axis� and different maximum synaptic conductances
�vertical axis�. The plotted numbers indicate the number of
spikes observed in the asymptotic state for the specified axis
values. This plot shows again how all states decay away for
sufficiently weak synaptic coupling, how all states are un-
stable for sufficiently strong coupling, and that stable propa-
gating bursts with one to six spikes can be found for inter-
mediate coupling strengths. The basins of attraction turn out
to be of comparable size except for the tiny basin corre-
sponding to a six-spike burst.

B. Results for a 1D homogeneous chain of LIF neurons

Our results for homogeneous chains of LIF neurons were
qualitatively similar to the above results for chains of HH
neurons, and we do not show the corresponding results. In-
stead of initiating the chain with a current pulse, the first LIF
neuron of the chain was initiated with a synaptic current
corresponding to a burst of equally spaced spikes whose
times of occurrences ti

0 were specified as initial data �see Eq.
�2��. Similarly, instead of a maximum conductance gs being
varied, the synaptic coupling strength n of Eq. �3� was varied
between 1 and 32 which we found to span the same kinds of
states discussed in Figs. 3 and 6, from a zero-spike final state

FIG. 3. �Color online� Propagation of an initial five-spike burst through an homogeneous one-dimensional excitatory chain of HH
neurons, for different maximum synaptic conductances gs of Eq. �5�. Each column corresponds to a fixed gs value, and successive rows of
a given column show the membrane potential vk�t� as a function of time for successive neurons in the chain �k=1,2 , . . . �. �a� For a weak
synaptic coupling strength gs=0.1 nS, the initial burst decays by the third neuron. �b� For a stronger coupling gs=0.2 nS, the initial bursts
decays to an invariant single spike. �c� For gs=0.3 nS, the initial burst evolves to a stable state with three unevenly spaced spikes. �d� For
still stronger couplings gs�0.45 nS, the initial burst can be unstable for some initial states and the number of spikes increases steadily.
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to an initial burst that grew without bound in width and in
the number of spikes. Because the LIF neurons have no in-
tracellular calcium dynamics, the number of spikes in the
final state was primarily determined by the initial spike num-
ber. In contrast, the intracellular calcium current of a HH
neuron can boost depolarization and maintain propagating
bursts in cohesion so that chains of HH neurons have bigger
basins of attraction for stable bursts.

C. Other hypotheses and related theory

We discuss briefly here some other hypotheses and related
theoretical work that might explain the data of Hahnloser et
al. �4� and of Mooney �15� but that do not involve the propa-
gation of bursts through a feedforward network.

While a feedforward network, especially a synfire chain,
is one of the simplest concepts that might explain sparse,
precisely timed bursting, there is much theoretical work dat-
ing back to the 1980s which shows that a recursive network
with inhibitory and excitatory connections is capable of

learning and producing different kinds of temporal sequences
�32,42�. These networks generalize the Hopfield attractor
model of associative memory �42,43� by allowing nonsym-
metric couplings between pairs of neurons and by using two
kinds of synapses: “fast” synapses that stabilize a given net-
work state and “slow” synapses that cause successive transi-
tions between the quasistatic network states. Thus there is no
difficulty in principle for a recursive network to store, gen-
erate, or learn many temporal sequences of the sort observed
in HVC. �We note that other classes of recursive models are
possible; e.g., Huerta and Rabinovich �33� discuss a model
with neurons that are strictly inhibitory or strictly excitatory,
rather than allow any neuron to have inhibitory and excita-
tory connections with other neurons.�

Asymmetric Hopfield-like recursive networks have sev-
eral attractive features for modeling HVC dynamics. The
HVC inhibitory neurons �15� can be incorporated in a natural
way since temporal sequences are stored via neuronal con-
nection strengths Jij that typically have positive �excitatory�
and negative �inhibitory� values. Recursive networks that

FIG. 4. �Color online� The dependence of transient dynamics and resulting attractors of propagating bursts on the initial injecting current
magnitude Ie

1�t� and on the synaptic conductance gs. For weak couplings with gs�0.2 nS, all initial states decay to zero �not shown here�.
�a� For gs=0.3 nS, there are multiple basins of attraction corresponding to asymptotic propagating bursts with one, two, or three spikes.
Transients decay rapidly by the third neuron of the chain. �b� Increasing the synaptic strength to gs=0.35 nS increases the number of
attractors, with final bursts containing one to five spikes. �c� For a larger synaptic conductance gs=0.45 nS, initial conditions lead to stable
or unstable states. An initial burst with six spikes will evolve to a slightly different invariant burst with also six spikes �squares�.
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generate sequences can evolve via a simple Hebbian learning
rule �32� from densely interconnected neurons �see Figs. 2
and 3 of Ref. �15�� and so are possibly easier to form during
maturation of brain tissue than purely feedforward networks.
Asymmetric Hopfield models are naturally fault tolerant and
error correcting so that details of a stored sequence are
weakly affected if neurons or synapses are modified, deleted,
or added. Finally, a single network of this kind is capable of
storing and generating many different temporal sequences,
which is consistent with the ability of some songbirds to
learn and sing many different songs �2�.

However, further work is needed to determine whether
existing recursive models �32� are capable of taking into ac-
count specific experimental details of HVC such as the fact
that an HVCRA neuron fires briefly just once during a 1-s-
long motif �a neuron is more likely to fire multiple times
during a motif if there are recurrent pathways�, that the time
interval between successive bursts is short �estimated to be
about 10 ms �6�; this is possibly too short for a separation of
time scales to exist between slow and fast synapses �32��,
that there is a precise alignment of bursts with auditory fea-
tures during singing �4� and during audition �15�, and espe-
cially that HVC inhibitory neurons fire tonically while the
HVC projection neurons fire sparsely during singing �4� and
during audition �15�. �There is no dynamical distinction be-
tween inhibitory and excitatory synapses in the recursive
models �32�.�

Another alternative explanation for the origin and precise
alignment of HVCRA bursts during singing and during audi-
tion is that these bursts are driven by precisely timed external
inputs. This possibility is suggested by the fact that other
nuclei such as NIF and Uva are known to provide distributed
input to HVC and to all three classes of HVC neurons
�44,45�. However, some experiments suggest that this is a
less plausible explanation than intrinsic generation of bursts
within HVC. For example, preventing auditory input to HVC
by destroying a bird’s cochlea �which deafens the bird� or by
lesioning nucleus NIF does not prevent a bird from singing;

nor does it cause a bird’s song to change substantially over
time scales of days. Although extracellular recordings of an
awake singing bird of the kind reported by Hahnloser et al.
�4� have not been carried out after deafening or lesioning, the
fact that the song does not change immediately suggests that
the same pattern of sparse bursts should still be observed in
HVCRA neurons. Since the inputs to HVC remain incom-
pletely characterized, external driving, or some combination
of external driving and intrinsic HVC circuitry, might be able
to explain the observed bursts of HVCRA neurons during
singing.

A variation of the idea of precise external input driving
the bursts in HVC is the possibility that part of HVC acts as
a central pattern generator that drives the HVCRA neurons.
For example, the time ordering of bursts in HVCRA neurons
observed by Hahnloser et al. �4� could arise from a CPG
composed of other HVC neurons such that the CPG connects
to the HVCRA neurons via axons of different lengths and so
with different delay times. �The dynamics of the CPG itself
could be explained as a nonsymmetric Hopfield model �32�
or a cyclic synfire chain.� A CPG-based model would differ
from a synfire chain in that a given burst does not trigger
causally the next burst like dominoes falling over along some
path. For example, destroying all HVCRA neurons that burst
at a certain time in a CPG model would not stop the firing of
HVCRA neurons that normally would burst a short time later.
A recent in vitro slice experiment �46� suggests that HVC has
intrinsic oscillatory dynamics consistent with the existence
of a CPG, but it is not yet known how these slice data relate
to the dynamics of HVCRA neurons during song.

IV. CONCLUSIONS

For an idealized one-dimensional homogeneous feedfor-
ward chain of excitatory nonbursting neurons, we have
shown by numerical calculations that a brief high-frequency
burst of two to six spikes can propagate in a stable way for
various choices of parameter values. Previous studies of ex-
citatory networks have not addressed the propagation of

FIG. 5. �Color online� Different synaptic conductances gs lead
to different final propagating burst widths and spike numbers,
which shows that the total burst duration is another important char-
acteristic of the final attractor. For gs=0.3 nS, the curve of block
symbols evolves into the point E1. For gs=0.35 nS, the curve with
diamond symbols ends in the point E2. For gs=0.45 nS, the propa-
gation is unstable �upper triangle� except for the initial condition at
point B2.

FIG. 6. �Color online� Plot of the number of spikes observed in
a final nontransient propagating burst for different initial amplitudes
of a square current pulse of fixed duration 20 ms and for different
maximum synaptic conductances gs. Different basins of attraction
are observed, with zero-spike and unstable bursts having the largest
basins and roughly equal size basins for bursts with one to five
spikes in the final burst.
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bursts and so have not been directly relevant for recent ex-
periments concerning the properties of nucleus HVC. Previ-
ous studies �9� have also mainly involved networks of LIF
neurons �to reduce the computational effort� and so have not
taken into account the more complex dynamics and realistic
time scales of HH neurons, especially the effects of a cal-
cium current which experiments have shown to be present in
HVC neurons �19,37�. Our results show that stable bursts
exist over a range of parameter values for both LIF and HH
neuronal models so that the propagation of stable bursts in a
homogeneous chain is not sensitive to the choice of model or
of model parameters.

These results make plausible the hypothesis that the
sparse, precisely aligned high-frequency brief bursts ob-
served by Hahnloser et al. �4� in HVCRA neurons during
singing are intrinsic �do not need external input� and are
causally connected in that one neuron initiates bursting in the
next neuron and so on until the end of the chain. However,
other explanations of the sparse precise bursts are possible as
discussed in Sec. III C, and further experiments, especially
using methods that can analyze many neurons at once with
good time resolution, would be valuable in helping to distin-
guish feedforward chains from external driving, recursive
networks, or other mechanisms.

We have not addressed in this paper why HVCRA neurons
burst in the first place—i.e., why information is transmitted
as bursts rather than as a population of spikes. �Sparse firing
can aid the learning of sequences as pointed out by Fiete et
al. �47� but this does not require bursts specifically.� There is
somewhat of a paradox here in that the commonly posited
purpose of a burst is to increase the likelihood of accurate
transmission through a noisy network �48,49�, while a simi-
lar goal is achieved without bursts by using a synfire chain
�8�. Thus, if a synfire chain is the correct architecture for
HVCRA neurons, it is less clear why bursts are needed, espe-
cially since HVC has much less noise than cortical neurons
and HVC synapses are substantially stronger than cortical
synapses �20�. Unpublished calculations by the authors
�17,18� that extend the present paper to noisy heterogeneous
synfire chains do suggest that bursts are important for
achieving robust propagation even for a synfire architecture.

We finish this paper by summarizing some consequences
of the chain hypothesis and of our calculations for recent and
future songbird experiments.

�i� A simple consequence of the feedforward nature of an
excitatory chain is that an experimentalist in principle should
be able to initiate singing of an arbitrary contiguous segment
of a motif. For example, if it is possible to stimulate an
intermediate part of a chain in such a way that a burst begins
to propagate toward the end of the chain, a songbird might
then sing a motif that starts somewhere in the middle and
that then continues to its end. Similarly, physically terminat-
ing the chain at some intermediate point �say, with a local
lesion� could cause a motif to terminate before its usual end
point, or some combination of stimulating in the middle of
the chain and lesioning later in the chain could be imple-
mented in which case the motif could start somewhere in the
middle and terminate prematurely.

Electrical stimulation of HVC via a single extracellular
electrode in an awake behaving bird does not initiate singing

�50–52� but instead resets a motif to its beginning �if the
stimulus occurs while a bird was singing�. The failure to
initiate the singing of a motif, or part of a motif, does not
rule out the existence of an excitatory chain but instead could
imply that a carefully arranged pattern of input spikes might
be needed to initiate activity at some point in the chain,
especially if the network is a synfire chain for which most
neurons in a pool must fire in near synchrony for neurons in
the next pool to fire. Identifying the location of HVCRA neu-
rons in a chain by, say, optical imaging would be a valuable
prior step that could suggest how to work out an electrical or
photo-uncaging protocol �53� that could initiate a chain at an
arbitrary point along its length or could suggest how to le-
sion neurons that would terminate propagation of a burst
hence a motif prematurely.

�ii� Our calculations suggest that a homogeneous chain
based on LIF or HH neuronal models should generally have
multiple basins of attraction. Different kinds of asymptotic
stable bursts differing in the number of spikes and in their
total duration should be observed in nucleus HVC for differ-
ent values of synaptic strength and other neuronal param-
eters. Further, hysteresis can be expected such that, for iden-
tical experimental conditions, different initial states will
evolve to different kinds of asymptotic bursts.

Hysteresis under fixed experimental conditions can be ex-
plored by initiating different kinds of bursts. This may be
possible if the neurons at the beginning of the chain can be
identified and an appropriate stimulation protocol worked out
�see points �i� and �iii��.

Most nonlinear network models, including asymmetric
Hopfield models and CPG’s, also have multiple basins of
attraction, so this is not a distinguishing property of chain
models. However, the number and types of basins of attrac-
tion and how these basins vary under the influence of phar-
maceuticals that alter synaptic strengths may lead to predic-
tions that distinguish feedforward from recursive models.

�iii� Chains of neurons, like the neuronal models that
make up the chains, are driven dissipative systems so that
initial states will generally evolve through a transient before
settling into an asymptotic behavior �54�. Properties of a
burst such as its number of spikes and its set of interspike
intervals will evolve over time, with the transient time de-
pending on the choice of initial condition �how far the initial
state is from the attractor� and on neuronal parameters. Our
results such as Fig. 4 for an homogeneous HH neuronal
model suggest that transient times can in fact be rapid, just
four or fewer successive neurons. Figure 2 of Hahnloser et
al. �4� does not show evidence of transient behavior since
later bursts do not seem to be statistically different from
earlier bursts during the same motif. However, only a small
number �about 20� of HVCRA neurons have been sampled to
date in singing birds, and neurons that burst at the beginning
of a motif have not been found so further study involving
more neurons would be worthwhile. It may also be the case
that the songbird brain has evolved in such a way as to re-
duce or eliminate the duration of transients—for example, by
starting a chain with a state close to the asymptotic burst or
by using inhibitory neurons to accelerate convergence to syn-
chronized firing as bursts propagate from projection neuron
to projection neuron �55�.
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�iv� A one-dimensional chain is not robust since propaga-
tion terminates if any neuron in the chain dies. A more real-
istic synfire chain must have at least two neurons in a pool to
be robust and the neurons in a pool must synchronize their
spikes to some extent to achieve reliable transmission from
pool to pool �8�. A synfire chain hypothesis thus predicts that
there must be more than one HVCRA neuron bursting at any
give time �these are the neurons that belong to the same
pool� and further that neurons that burst at about the same
time should have nearly synchronous bursts. Thus Fig. 2 of
Ref. �4� may be incomplete and a high-resolution optical
study of HVC �or possibly a many-electrode study� during
the singing of a motif or during the audition of a bird’s own
song �15� may reveal multiple HVCRA neurons firing bursts
in synchrony.

Abeles has pointed out that there is an inverse relation
between the number of neurons needed in a synfire pool for
reliable propagation and the average strength of the synapses
between pools �8�. Using paired intracellular recordings,
Mooney and Prather �20� have shown that synapses between
HVCRA neurons are stronger than mammalian cortical neu-
rons by about an order of magnitude �the average EPSP mag-
nitude is about 2 mV compared to about 0.2 mV in cortex�,
so chains in HVC would be expected to have about an order
of magnitude fewer neurons in a pool. Given Abeles’s esti-
mate of about 50–100 neurons in a cortical pool, perhaps ten
or fewer neurons might be needed in an HVC synfire pool.
Assuming that the HVC bursts of average duration 6 ms are
nonoverlapping, a zebra finch motif of duration 0.6 s would
require about 0.6/0.006�100 successive pools to span the
motif, so a synfire chain in HVC might involve about 100

10�1000 neurons. This is a much smaller number than
the 40,000 HVCRA neurons estimated to exist in HVC. This
suggests that a synfire chain might be too simplistic an ar-
chitecture to justify the large number of HVCRA neurons.

�v� It is worth noting that a synfire chain architecture can
explain how an overall precise timing can be maintained in
HVC even though there is a steady and substantial turnover
of neurons in HVC throughout the life of the songbird
�24,25�. Since perfect synchronization of a pool is not
needed to guarantee transmission of information through the
next pool, a fraction of neurons in a given pool can alter their
properties or fail without degrading the transmission of in-
formation or its timing.

In conclusion, our calculations support the hypothesis that
the sparse bursts observed experimentally in HVCRA neurons
during singing can be understood as the propagation of
bursts through an excitatory feedforward synfire chain. How-
ever, further experiments and computational studies are
needed to confirm this hypothesis and to rule out the com-
peting hypotheses discussed in Sec. III C. Especially inter-
esting in the near term would be to understand some of the
quantitative details of the experiments—for example, the
production of a brief 6-ms burst of four spikes corresponding
to a frequency of about 600 Hz that is consistent with the
known properties of HVC neurons and of the HVC micro-
circuitry �20�. Although our results show that a brief burst
can propagate in a stable manner, we and others �7� have not
been able to construct neuronal models, or simple networks
of such models, that burst as rapidly and as briefly as actual
HVCRA neurons.

Note added. Recently the authors received a preprint by
Jin et al. �related to a recent conference presentation �7��
which independently confirmed that a brief high-frequency
burst analogous to that observed in HVCRA neurons could
propagate in a stable manner through a purely excitatory net-
work for a range of parameters. A direct comparison of our
results with those of Jin et al. is not possible since these
authors studied a synfire chain that was not strictly feedfor-
ward, that was heterogeneous and noisy, and that had many
neurons per pool. These authors also used a more compli-
cated neuronal model that had two compartments and extra
channels per compartment compared to our neuronal model.
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APPENDIX: HODGKIN-HUXLEY EQUATIONS
AND PARAMETERS

The single-compartment HH model of Eq. �4� had the
following five representative currents Ii�t�:

Ileak = ḡL�v − EL� ,

INa = ḡNam
3h�v − ENa� ,

IK = ḡkn4�v − EK� ,

ICa = ḡCam1
2h1�v − ECa� ,

IKCa = ḡKCan1
3�v − EKCa� , �A1�

with maximum conductances per unit area y �units of
mS/mm2� give by

ḡL = 0.003, ḡNa = 1.0, ḡK = 0.22,

ḡCa = 0.031, ḡKCa = 0.007, �A2�

and corresponding reversal potentials �units of mV�:

EL = − 70, ENa = 50, EK = − 80,

ECa = 120, EKCa = − 80. �A3�

The currents, Eqs. �A1�, depend on the membrane voltage
v�t� and on the gating variables m, h, n, m1, h1, and n1, which
determine the probability as a function of time for certain
channel subunits to be open. All the gating variables x�v�
except the KCa activation variable n1 obey the evolution
equation

��v�
dx

dt
= x��v� − x , �A4�

with the asymptotic value x��v� having the sigmoidal form
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x��v� = �1 + e−�v−v0�/v1�−1. �A5�

The time constant ��v� has the form

��v� = t2 + t1�1 + e−��v−v2�/v3��−1, �A6�

for the standard HH channels m, h, and n, and the form

��v� = t2 + t1exp	− �v − v2

v3
�2
 , �A7�

for the Ca channels m1 and h1 and KCa channel n1. Table I
gives the parameter values that we used in these various
expressions.

The KCa activation variable n1 obeys the evolution equa-
tion

�KCa
dn1

dt
= f��Ca�i� − n1, �A8�

where the expression �Ca�i denotes the average intracellular
calcium concentration, and the function f is given by

f��Ca�i� =
�Ca�i

��Ca�i + 0.001��1 + exp�− �v + 40�/20��
.

�A9�

The intracellular calcium concentration accumulates when
the low-threshold calcium channel is open and calcium ions
flow from extracellular solution into intracellular solution.
The phenomenological model for �Cai� was taken from Ref.
�56�:

�Ca�i = ��Ca�i0 − �Ca�i − F * �Ica��/�Ca, �A10�

where the equilibrium calcium concentration �Ca�i0 had the
value 0.00005 mM, the current-density factor F had the
value 3 mM – cm2/mA, and the time constant �Ca had the
value 200 ms. The KCa channel was chosen to imitate a
low-threshold transient calcium current observed in HVC
neurons by Kubota and Taniguchi �19�.
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