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We report on a simple model of spatially extended antitumor system with a fluctuation in growth rate, which
can undergo a nonequilibrium phase transition. Three states as excited, subexcited and nonexcited states of a
tumor are defined to describe its growth. The multiplicative noise is found to have opposite effects: The
positive effect on a nonexcited tumor and the negative effect on an excited tumor.
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In the past decades, many studies have focused on biody-
namics �1–5�, especially noise biodynamics �6–10�. More
than ever, cancer research is now an interdisciplinary effort
which requires a basic knowledge of commonly used terms,
facts, issues, and concepts. Phase transition of tumor growth
induced by noises is one of the foundations in recent years
�11,12�. However, in all these studies the systems are zero-
dimension and insufficient to describe the real progress in the
field of tumor growth, furthermore at present the space has
become a fundamental variable to study �1,13,14�.

Chemotherapy and immunotherapy remain far from good
understanding, although they as a potential practical partner-
ship have attracted much attention of scientists for at least
one decade �15,16�. Focusing on the different responses of
tumor cells to chemotherapy and immunotherapy, more re-
cently Lake and Robinson suggested an interesting and sig-
nificant case for combining chemotherapy and immuno-
therapy in tumor treatments �15�.

In this paper, chemotherapy and immunotherapy are
joined by a spatially extended antitumor model with three
elements, which are �1� a spatiotemporal fluctuation of
growth rate induced by chemotherapy, �2� a model for an
immune response, and �3� a spatially extended form. On the
basis of the analyses of the stochastic differential equation
and relevant Fokker-Planck equation, we will show that the
spatiotemporal fluctuation can lead to a transition of the
growth of a tumor through both theoretical analyses and nu-
merical computations. Although noise-induced phase transi-
tion is a well-known phenomenon, double-faced effects of a
noise on a tumor system have not been reported. Here we
will show how this transition affects the tumor growth and
how the effects depend on the initial state of tumor. Our
results are clearly inconsistent with the zero-dimensional re-
ports that suggest the fluctuation of growth rate always puts
a tumor at a disadvantage �11,12�.

The tumor-growth under immune surveillance can be de-
scribed by means of insect outbreak model �1,17–19�, which
in nondimensional units is given by
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where u is the population of tumor cells, r is their linear per
capita birth rate, and K is the carrying capacity of the envi-
ronment, respectively. �u2 / �1+u2�, defined as an immune
form, quantifies the abilities of immune cells to recognize
and attack tumor cells. In general, chemotherapy can lead to
a fluctuation of tumor growth, simply a fluctuation of tumor
growth rate r �10,11�. If we wish to consider the spatiotem-
poral component of tumor growth, the growth rate r in Eq.
�1� should be rewritten as r0+�i�t�, where �i�t� is the Gauss-
ian noise, white in time and space, with zero mean and au-
tocorrelation defined by ��i�t��=0, ��i�t�� j�t���=2�2�i,j��t
− t��, in which �2 is the noise level and i , j are lattice sites.
The equivalent stochastic differential equation of Eq. �1� will
be �19,20�,
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here n�i� is the set of the 2d nearest neighbors of site i; d and
D are the spatial dimension and the diffusion coefficient,
respectively.

The above equations are general and cover different kinds
of tumor growth and diffusion phenomena, especially non-
equilibrium growth. We would like to seek the existence of
nonequilibrium phase transition induced by multiplicative
noise, in systems described by these equations. Such a phase
transition is characterized by the appearance of multiple
steady state probability distributions pst�
ui��, which has been
applied successfully in numerous stochastic problems
�20,21�. If set f�ui�=r0ui�1−ui /K�−�ui

2 / �1+ui
2� and g�ui�

=ui�1−ui /K�, one will obtain the corresponding Fokker-
Planck equation of Eq. �2�,
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B�ui� = �2g2�ui� . �4�

For simplicity of notation, we drop the subscript i. The
stationary solution to Eq. �3� is given to be �20�,

pst�u� = Z exp� 2
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where Z is a normalization constant, and

E�v� = �vi�v j� =
 v jpst�v j�vi�dv j �6�

represents the steady state conditional average of v j at neigh-
boring sites j�n�i�, given the value vi at site i.

Using the Weiss mean-field approximation �22,23�, ne-
glecting the fluctuation in the neighboring sites, i.e., E�v�
= �u�, independent of v, and imposing the self-consistent re-
quirement m= �u�, we obtain

m =



0

+�

upst�u,m�du



0

+�

pst�u,m�du

= F�m� . �7�

For future transaction we set in all the analyses and simu-
lations r0=1.0 and K=10.0, respectively. The numerical so-
lution of this last equation for parameter values D=0.01 and
�2=8.0�10−3 is shown in Figs. 1 and 2. The solution, m, as
a function of immune coefficient, �, is obtained by the inter-
section point between F�m�=m and F�m�=y�m� �here y�m�
represents the function in the middle position of Eq. �7��.
Obviously, the average populations of tumor cells exhibit a

monostable state for low and high values of �, but unstable
state for intermediate value of �. The critical points are �c1
=2.156 and �c2=2.209, which divide the states of the tumors
into three levels: excited state �E�, subexcited state �S�, and
nonexcited state �N�. Here E and N correspond to stable
states but S represents an unstable state, which has two or
three possible values. From the biological point of view, we
noted that N, S, and E correspond to the early, rapid and
saturated stage of the development of a tumor, respectively.
Such distribution is based on the curve of a tumor growth. In
the case of weak noise level, the above results mean that the
state of a tumor is determined by the immune coefficient.

When the noise level, �2, increases, what will happen? To
answer this question, we consider E and N, respectively. As
shown in Fig. 3, the stationary probability distributions pst�u�
change from a monostable state to a bistable state with in-
creasing noise intensity, and more quantitative results are

FIG. 1. The solution, m, of the self-consistency equation is the
intersection point between F�m�=m and F�m�=y�m� for noise level
�2=8.0�10−3.

FIG. 2. m as a function of �2 given by Eq. �7�. The points
correspond to the intersection of curves in Fig. 1. The critical im-
mune coefficients are �c1=2.156 and �c2=2.209, respectively,
which divide the state of a tumor into three levels: excited �E�,
subexcited and �S�, nonexcited �N�.

FIG. 3. Stationary probability distributions of average popula-
tion of tumor cells for different noise intensities and immune coef-
ficients. The parameters are �a� �=2.12, �2=0.01, �b� �=2.30, �2

=0.01, �c� �=2.12, �2=0.40, �d� �=2.30, �2=0.40.
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given by Fig. 4. For a tumor with excited state, Fig. 4 dis-
plays that the growth of a tumor can be held back to a sub-
excited state with increasing the noise level. Conversely, for
a nonexcited tumor, the noise can lead the tumor to the sub-
excited state. Note that the nonexcited state can have a phase
transition to the subexcited state, but not to the excited state,
which might depend on not only the noise but also other
factors. These theoretical results are confirmed by corre-
sponding simulations of a one-dimensional system, which is
indicated schematically in Fig. 5. Our computational results
are strictly obtained through a numerical integration of the
set of stochastic differential equations �2� �24,25�. In the
simulations, we consider three sizes, 16, 32, and 64 lattices,
but do not find the one-dimensional finite size effect. It is an
important future work to analyze multidimensional phase
transition of a tumor system in such a homogeneous circum-
stance.

In conclusion, we have found strong evidence for the ex-
istence of noise-induced different nonequilibrium phase tran-
sitions in a tumor system. More interestingly, whether a
noise will be an advantage to a tumor depends on the initial
state of the tumor. When a tumor is excited, a noise can
induce its decay. On the contrary, if a tumor is inactive, a
noise can stimulate its growth. Provided that the noise results
from a treatment as chemotherapy, our results suggest that
estimating the state of a tumor is a crucial work just before
the treatment begins.
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