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The fluctuation theorems for the currents and the dissipated work are considered for molecular motors which
are driven out of equilibrium by chemical reactions. Because of the molecular fluctuations, these nonequilib-
rium processes are described by stochastic models based on a master equation. Analytical expressions are
derived for the fluctuation theorems, allowing us to obtain predictions on the work dissipated in the motor as
well as on its rotation near and far from thermodynamic equilibrium. We show that the fluctuation theorems
provide a method to determine the affinity or thermodynamic force driving the motor. This affinity is given in
terms of the free enthalpy of the chemical reactions. The theorems are applied to the F1 rotary motor which
turns out to be a stiff system typically functioning in the nonlinear regime of nonequilibrium thermodynamics.
We show that this nonlinearity confers a robustness to the functioning of the molecular motor.
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I. INTRODUCTION

Thanks to the recent advances in biophysics, it is nowa-
days possible to observe the dynamics of single biomol-
ecules such as the molecular motors. Experiments have been
devoted to linear motors such as the actin-myosin or the
kinesin-microtubule motors, as well as to rotary motors such
as the FoF1-ATPase and bacterial flagellar motors. These mo-
tors are powered by adenosine triphosphate �ATP� or proton
currents across a membrane �1�. These molecular motors
take part to the cellular metabolism and are therefore work-
ing under nonequilibrium conditions. A major preoccupation
today is to understand the nonequilibrium thermodynamics
of these motors. Because of their nanometric size and their
incessant exchanges with their environment, they are ex-
posed to molecular fluctuations and their behavior is thus
stochastic as observed experimentally. Accordingly, their
motion is unidirectional only on average and random steps in
the direction opposite to their mean motion can occur. The
mean motion stops at the thermodynamic equilibrium. When
the chemical fuel is in excess with respect to its equilibrium
concentration, the motor is driven out of equilibrium and its
random motion shows a privileged direction on average. The
dependence of the mean motion on the chemical concentra-
tions of the reactants and products is a problem of nonequi-
librium statistical thermodynamics in the presence of the
chemical reactions. According to thermodynamics, out-of-
equilibrium chemical reactions are characterized by the con-
cept of affinity introduced by De Donder for macroscopic
systems �2�. We may wonder whether such concepts from
thermodynamics are still relevant for nanometric motors
which are affected by the thermal fluctuations.

The purpose of the present paper is to develop the non-
equilibrium statistical thermodynamics of molecular motors
and to show that the affinities of the chemical reactions pow-
ering the motor can be determined from the fluctuations of
the motion of the motor. The affinities are the thermody-
namic forces driving the motor and are therefore central
quantities for the nonequilibrium thermodynamics of the mo-
tor. Here, we propose a method to obtain experimentally

these quantities. This method is based on the fluctuation
theorems we have recently derived for nonequilibrium
chemical reactions �3–6�. The fluctuation theorems state that
the ratio of the probabilities for forward and backward dis-
placements is equal to the exponential of the entropy irre-
versibly produced during a given time interval. This entropy
production is related, on the one hand, to the work dissipated
and, on the other hand, to the currents and affinities of the
irreversible processes taking place in the motor. Originally,
fluctuation theorems have been formulated for mechanical
systems �7–14�, but we have recently been able to extend
them to chemical systems �3–6�. On this ground, we here
consider the molecular motors which are mechanochemical
systems. We show that the fluctuation theorems can be used
to determine the affinity or thermodynamic force acting on
the motors.

Beside the general theory, we study in detail the F1 rotary
motor �15–21�. Its stator is composed of six proteins. Three
of them catalyze the hydrolysis of ATP, which drive the ro-
tation of a shaft. An actin filament or a bead can be glued to
this shaft. In vivo, the shaft of this F1 complex is glued to a
proton turbine known as Fo which is located in the internal
membrane of mitochondria. The whole FoF1-ATPase synthe-
tize ATP from proton currents across the membrane. The F1
protein complex can function in reverse by using the chemi-
cal energy of ATP and serve as a motor which performs
mechanical work. Such rotary motors can be modeled as
stochastic processes including the diffusive rotation of the
shaft and the random jumps between the chemical states
�15–17,22�. Such processes describe the motion as a succes-
sion of random jumps occurring between the different pos-
sible orientations of the shaft and the chemical states of the
motor. The stochastic description is a suitable framework to
take into account the molecular fluctuations which affect not
only the mechanical motion of the shaft but also the chemi-
cal reactions. Indeed, the reactants and products enter and
exit the motor at random times. The reduction of the more
complete description can be envisaged if the rotation shows
discrete steps and substeps so that the shaft has fast motions
between well-defined orientations corresponding to the
chemical states of the motor. In this case, we may introduce
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a stochastic process based on discrete states. Because of their
stochasticity, we can only know the transition rates of the
random jumps between the discrete states. These transition
rates depend on the chemical concentrations according to the
mass action law of chemical kinetics �23�. This simple model
allows us to obtain various analytical results and describes
successfully the behavior of motors. Furthermore, this for-
mulation allows us to derive fluctuation theorems and de-
velop the nonequilibrium statistical thermodynamics of
molecular motors.

We first consider a fluctuation theorem for the entropy
production �3�. This allows us to study the fluctuations of the
work dissipated by the irreversible processes. The connection
to Jarzynski’s nonequilibrium work theorem �24� is dis-
cussed. Next, we use the fluctuation theorem for the currents
�4–6�, which here correspond to the rotation rate of the mo-
tor shaft and to the rates of ATP consumption and adenosine
diphosphate �ADP� release by hydrolysis. Since this fluctua-
tion theorem concerns the nonequilibrium fluctuating cur-
rents, we can study the dependence of the mean currents on
the affinities provided by the difference of chemical poten-
tials and determine if the molecular motor functions in the
linear or nonlinear regimes of nonequilibrium thermodynam-
ics. Finally, we obtain estimations of the time necessary in
order to observe random rotations in the direction opposite to
the mean motion as described by the fluctuation theorems.
Our analysis is complementary to the work reported in Ref.
�25� especially about the chemical aspects and because we
here give exact analytical expressions �in particular, for the
generating functions of the large deviations� and quantitative
results concerning the F1 motor.

The plan of the paper is as follows. In Sec. II, we give a
summary of the stochastic description along with the two
fluctuation theorems. In Sec. III, we introduce a stochastic
model describing the rotary molecular motors. The fluctua-
tion theorems are shown to apply and analytical results are
obtained. In Sec. IV, we study the case of the F1 motor.
Conclusions are drawn in Sec. V.

II. STOCHASTIC DESCRIPTION AND FLUCTUATION
THEOREMS

In the stochastic description, we are interested in the prob-
ability P�� , t� to find the system in a state � at time t. This
probability obeys the master equation

dP��,t�
dt

= �
�,��

�W�������P���,t� − W−�������P��,t�� .

�1�

Such a master equation is known to describe molecular fluc-
tuations down to the nanoscale �23�. An H theorem can be
derived for this master equation by introducing the quantity
S�t����P�� , t�S0���−��P�� , t�ln P�� , t�. The identification
of this quantity with the entropy of the system should be
validated by agreement with experiments. For macroscopic
systems, this justification has been carried out by comparison
with the known thermodynamics. This identification is here
adopted as a working hypothesis. The entropy is defined in

the units of Boltzmann’s constant kB. The master Eq. �1�
rules the time evolution of this entropy. Its time derivative
dS /dt can be separated into an entropy flux and an entropy
production. The H theorem is that this entropy production is
always non-negative �26,27�. Here, we are interested in the
stationary state where the probabilities become time indepen-
dent, dPst��� /dt=0. In such nonequilibrium steady states,
the entropy production is given by

�diS

dt
�

st
=

1

2 �
�,�,��

J���,���A���,��� � 0 �2�

in terms of the mesoscopic currents

J���,��� � Pst���W������� − Pst����W−������� �3�

and the mesoscopic affinities

A���,��� � ln
Pst���W�������

Pst����W−�������
. �4�

The entropy production vanishes if and only if the conditions
of detailed balance

Peq���W������� = Peq����W−������� �5�

are satisfied for all � ,� ,��, which defines thermodynamic
equilibrium.

A. The fluctuation theorem for the dissipated work

The random process is a sequence of random jumps oc-
curring at successive times 0� t1� t2� ¯ � tn� t and form-
ing a history or path

��t� = �0→
�1

�1→
�2

�2→
�3

¯ →
�n

�n. �6�

During this path, the lack of detailed balance can be charac-
terized by considering the quantity:

Z�t� � ln
W�1

��0��1�W�2
��1��2� ¯ W�n

��n−1��n�

W−�1
��1��0�W−�2

��2��1� ¯ W−�n
��n��n−1�

.

�7�

This quantity fluctuates in time and the generating function
of its statistical moments is defined by

q��� � lim
t→�

−
1

t
ln	e−�Z�t�
 , �8�

where 	·
 denotes the statistical average with respect to the
stationary probability distribution of the nonequilibrium
steady state. All the moments of the quantity �7� can be re-
covered by multiple differentiations with respect to the pa-
rameter � at the value �=0. This generating function can be

obtained as the maximal eigenvalue L̂�g��=−q���g��, of the
operator

�L̂�g����� � �
�,��

�W+��������W−�������1−�g����

− W−�������g���� �9�

as shown by Lebowitz and Spohn �11�.
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The generating function �8� obeys the fluctuation theorem

q��� = q�1 − �� �10�

as a consequence of the microreversibility �3,5,11�. The gen-
erating function �8� identically vanishes q���=0 at thermo-
dynamic equilibrium where the conditions of detailed bal-
ance are satisfied. A further property is that the mean entropy
production of the reaction in the nonequilibrium steady state
is given by

�diS

dt
�

st
=

dq

d�
�0� = lim

t→�

1

t
	Z�t�
st � 0. �11�

The symmetry of the generating function �8� is related to
a large deviation property of the probability distribution of
Z�t� / t in the following way �3,11�:

Prob�Z�t�
t

� �	,	 + d	��
Prob�Z�t�

t
� �− 	,− 	 + d	��  e	t �t → � � , �12�

which is the usual form of the fluctuation theorem.
In order to obtain the thermodynamic interpretation of the

quantity Z�t�, we notice that the ratio of the forward and

backward transition rates of an elementary process ��
−�

�

�� is

given by

W�������
W−�������

= e
�K�−K���, �13�

where K� is the thermodynamic potential of the state � and

= �kBT�−1 is the inverse temperature. The relations �13�

hold if the transitions ��
−�

�

�� are slow enough that the system

has the time to settle into quasiequilibrium states � charac-
terized by some thermodynamic potential K�. This
corresponds to the assumption of local thermodynamic
equilibrium. Since chemical reactions take place inside
the molecular motor, an adequate thermodynamic potential
is the grand-canonical potential or reduced free energy
J=E−TS−�i=1

c �iNi=F−�i=1
c �iNi in the case of isothermal-

isochoric-isopotential processes where the volume is fixed
as well as the temperature T and the chemical potentials �i of
the different molecular species Xi. For dilute solutions,
the chemical potentials are related to the concentrations by
�i=�i

0+kBT ln��Xi� /c0� where c0 is a standard reference
concentration. In the case of isothermal-isobaric-isopotential
processes with the pressure fixed instead of the volume, the
appropriate thermodynamic potential is the reduced free en-
thalpy K=E−TS+ PV−�i=1

c �iNi=G−�i=1
c �iNi. We remark

that this potential is not identically vanishing because the
system is not homogeneous so that Euler’s thermodynamic
relations here do not apply. According to Eq. �13�, the quan-
tity �7� is given by

Z�t� = ln�
j=1

n W�j
�� j−1�� j�

W−�j
�� j�� j−1�

= 
�
j=1

n

�K�j−1
− K�j

�

= 
�K�0
− K�n

� = 
�ext� + 
�
i=1

c

�iNi �14�

if an external torque �ext is applied to the shaft of the motor
and if � is the increase of its angle during the time interval
t. We denote Ni the number of molecules of the species i
entering the motor during the same time interval. Ni is
positive for the reactants and negative for the products.
Equation �14� can be rewritten as

Z = 
�W − G� = 
Wdiss, �15�

where W=�ext� is the work performed on the system by the
external torque, while G=−�i=1

c �iNi is the change of free
enthalpy in the whole system including the reservoirs of mol-
ecules. The difference between the work performed on the
system and its change of chemical free enthalpy is the work
dissipated by the irreversible processes.

Now, we notice that the generating function of the quan-
tity Z�t� vanishes at �=0 and �=1 by the fluctuation sym-
metry �10� so that we find

	e−Z�t�
 = 	e−
�W−G�
 � 1 for t → � , �16�

which is analog to Jarzynski’s nonequilibrium work theorem
�24�. A consequence of the inequality 	ex
�e	x
 is the in-
equality

	W
 � 	G
 �17�

for the work performed on the system. We recover the
Carnot-Clausius inequality giving the maximum possible
work performed by the motor

	G
 = �
i=1

c

�i	Ni
 � 	Wmotor
 �18�

since Wmotor=−W and the chemical free enthalpy consumed
by the motor is G=−G. The inequality �18� is the
analog of Carnot inequality here for motors working
under isothermal-isobaric-isopotential conditions. The equal-
ity is reached for a motor functioning arbitrarily close to
equilibrium.

In a nanomotor, the dissipated work �15� fluctuates be-
cause of the thermal noise, obeying the fluctuation theorem
�12�.

B. The fluctuation theorem for the currents

Another far-from-equilibrium relation has been derived
recently �4,5�. It concerns the currents crossing the system in
the nonequilibrium steady state. Indeed, the nonequilibrium
affinities or thermodynamic forces A� driving the system out
of equilibrium generate currents j��t� of heat or particles.
The fluctuations of these nonequilibrium currents obey a
symmetry relation given by
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Prob�� 1

t
�

0

t

j��t��dt� = ����
Prob�� 1

t
�

0

t

j��t��dt� = − ����
 e��A���t �t → � � .

�19�

As before we can introduce the generating function of these
currents in order to study their fluctuations

Q�����;�A��� = lim
t→�

−
1

t
ln	e−�����0

t dt�j��t��
 . �20�

In the nonequilibrium steady state, the mean current of the
process � is given by

�J� =
�Q

���
�

���=0�
�21�

and the higher-order moments can be obtained by successive
differentiations, which shows that the function �20� generates
the statistical moments of the currents. The symmetry �19� of
the fluctuations is then reflected into a symmetry of the gen-
erating function

Q�����;�A��� = Q��A� − ���;�A��� �22�

in terms of the macroscopic affinities driving the system out
of equilibrium.

In the near-equilibrium regime, such a symmetry can be
used to derive the Onsager reciprocity relations for transport
coefficients �28� along with corresponding Green-Kubo for-
mulas �29,30�. As this result is valid far from equilibrium, it
also implies symmetry relations for the nonlinear response
coefficients �4–6�. This theorem thus provides a unified
framework to derive the linear and nonlinear response theory
of nonequilibrium statistical mechanics.

The construction of this fluctuation theorem is based on
the graph analysis of the master Eq. �1� introduced by
Schnakenberg �26�. A graph is associated with the process in
which the states � are represented by vertices while the dif-
ferent edges correspond to the different mechanisms of tran-
sitions � between the states. In this scheme, the macroscopic
affinities A� are identified by calculating the quantity �7�
along the cycles of the graph. The current appearing in the
fluctuation relation �19� then corresponds to the current
crossing the edges used to close the cycles.

The Legendre transform H������ of the generating func-
tion �20� is the decay rate of the probability that the currents
take given values ����

Prob�� 1

t
�

0

t

j��t��dt� = ���� � e−H������t �t → � � .

�23�

The fluctuation theorem �22� translates into

H��− ���� − H������ = �
�

A���. �24�

If this relation is evaluated at the mean values ��=J� of the
currents the decay rate vanishes H��J���=0 and we recover
the entropy production

H��− J��� = �
�

A�J� = �diS

dt
�

st
. �25�

From this viewpoint, Eq. �24� appears as a generalization of
the fundamental Eq. �25� of nonequilibrium thermodynamics
to fluctuating systems. By using Eqs. �11� and �21�, Eq. �25�
can be rewritten as

�diS

dt
�

st
=

dq

d�
�0� = �

�

A�� �Q

���
�

���=0�
, �26�

which shows that the fluctuation theorems for the dissipated
work and the currents are closely related �5�.

These results are applied in the following section to the
model of molecular motor.

III. THE DISCRETE-STATE MODEL

A molecular motor is naturally functioning on a cycle of
transformations between different mechanical and chemical
states corresponding to different conformations of the protein
complex. All these states form a cycle of periodicity L cor-
responding to the revolution by 360° for a rotary motor or
the reinitialization for a linear motor. The transitions between
the states �M�� are caused by the chemical reactions of the
binding of the reactants X��= +1� and the release of the
products Y��= +2�

X + M��
k−1

k+1

M�+1�
k−2

k+2

M�+2 + Y �� = 1,3, . . . ,2L − 1�

�27�

with a cyclic ordering M2L+1�M1. The reversed reactions
��=−1� and ��=−2� are included to allow the system to
reach a state of thermodynamic equilibrium if the nonequi-
librium constraints are relaxed. The quantities k� denote the
reaction constants. For the F1 rotary motor, the overall reac-
tion is the hydrolysis of the reactant X=ATP into its prod-
ucts Y=ADP, Pi �16–20�. Viewed as motors, DNA and RNA
polymerases are fuelled by the different triphosphates �ATP,
CTP, GTP, and TTP or UTP� and the product is a double or
single polymer strand.

For transmembrane motors such as Fo �15,17� or the bac-
terial flagellar motors �21�, the reactant is X=H+ on one side
of the membrane and the product is Y=H+ on the other side.
We notice that sodium ions Na+ play the role of protons H+

in special Fo motors �31�.
The probability to find the motor in the state M� is ruled

by the master equation

dP��,t�
dt

= w+2P�� − 1,t� + w−1P�� + 1,t�

− �w+1 + w−2�P��,t�, � odd, �28�
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dP��,t�
dt

= w+1P�� − 1,t� + w−2P�� + 1,t�

− �w−1 + w+2�P��,t�, � even, �29�

with the transition rates

w+1 � k+1�X� ,

w−1 � k−1,

w+2 � k+2,

w−2 � k−2�Y� . �30�

The graph associated with the system is depicted in Fig. 1. It
presents a unique cycle; hence a unique macroscopic affinity.
As explained in the preceding section, the macroscopic af-
finity is obtained by calculating the quantity �7� along the
cycle of the graph

A�C� � � ln�
�=1

2L
W���� + 1�
W�� + 1���

= L ln
w+1w+2

w−1w−2
= L ln

k+1k+2�X�
k−1k−2�Y�

.

�31�

It can also be expressed as A=� / �kBT� in terms of the
difference of chemical potentials ���X−�Y of the chemi-
cal reaction �27�.

The detailed balance conditions �5� should be satisfied at
the thermodynamic equilibrium, which implies the vanishing
of the affinity �31�. Accordingly, equilibrium is reached if
w+1w+2=w−1w−2 so that the reactant and product equilibrium
concentrations must satisfy

�X�eq

�Y�eq
=

k−1k−2

k+1k+2
. �32�

The stationary probability distribution is given by

Pst�� odd� =
w−1 + w+2

L�w+1 + w+2 + w−1 + w−2�
, �33�

Pst�� even� =
w+1 + w−2

L�w+1 + w+2 + w−1 + w−2�
. �34�

The steady state current �3� is constant according to Kirch-
hoff current law �26� and is given by

J =
w+1w+2 − w−1w−2

L�w+1 + w+2 + w−1 + w−2�

=
w+1w+2�1 − e−A/L�

L�w+1 + w+2 + w−1 + w+1w+2e−A/L/w−1�
. �35�

This corresponds to a kinetics of Michaelis-Menten type in
the absence of the products Y of the reaction �A= + � � where
the steady state current is given by

J =
k+1k+2�X�

L�k+1�X� + k+2 + k−1�
=

Jmax�X�
�X� + KM

�36�

with the maximum value Jmax=k+2 /L and the Michaelis-
Menten constant KM= �k+2+k−1� /k+1. An example of depen-
dence of the current on the affinity is depicted in Fig. 2.

A. The fluctuation theorem for the dissipated work

Let us first consider the fluctuation theorem for the dissi-
pated work. Its generating function is given by the maximal
eigenvalue of the operator �9� which here reads

w+2
� w−2

1−�g�� − 1� + w−1
� w+1

1−�g�� + 1� − �w+1 + w−2�g���

= − q���g���, � odd, �37�

w+1
� w−1

1−�g�� − 1� + w−2
� w+2

1−�g�� + 1� − �w−1 + w+2�g���

= − q���g���, � even. �38�

Its maximal eigenvector g�� is then given by

g�� odd� = 2�w−1
� w+1

1−� + w+2
� w−2

1−�� �39�

g�� even� = �r1 − r2� + ��r1 − r2�2 + 4�w−1
� w+1

1−� + w+2
� w−2

1−��

��w+1
� w−1

1−� + w−2
� w+2

1−���1/2. �40�

The corresponding maximal eigenvalue is

FIG. 1. Graph associated with the discrete-state model.

FIG. 2. Current J=V versus the affinity A for the six-state model
�L=3�. The transition rates take the values w+1=2,w+2=4,w−1=1
and w−2 is used as the dependent parameter.
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q��� =
1

2
�w+1 + w+2 + w−1 + w−2 − ��w+1 + w−2 − w−1 − w+2�2

+ 4�w−1
� w+1

1−� + w+2
� w−2

1−���w+1
� w−1

1−� + w−2
� w+2

1−���1/2� ,

�41�

which is depicted in Fig. 3 for different values of the affinity.
It vanishes at equilibrium and satisfies the fluctuation theo-
rem q���=q�1−��. This function can be used to generate all
the moments of the fluctuating quantity �7� and in particular
the mean entropy production which is obtained by calculat-
ing its first derivative

dq

d�
�0� =

w+1w+2 − w−1w−2

w+1 + w+2 + w−1 + w−2
ln

w+1w+2

w−1w−2
. �42�

This quantity is nothing else than the product of the mean

current J �35� with the macroscopic affinity A�C� � �31�

diS

dt
= JA , �43�

which is the form expected from nonequilibrium thermody-
namics �23�.

It is interesting to note that the graph of Fig. 1 is identical
to the one for a model of ion transport in membranes �6�.
Indeed, one can check that in the case k±�=ke±�, �=1,2, we
recover the solution of Ref. �6�. However, we here have two
different types of transitions, which change the structure of
the generating function by introducing the square and
squareroot terms.

B. The fluctuation theorem for the rotation

We now consider the fluctuation theorem for the currents.
In our case, we have seen in Sec. III that there is only one
affinity and hence one current. The current fluctuation theo-
rem thus takes the form

Prob�1

t
�

0

t

j�t��dt� = + ��
Prob�1

t
�

0

t

j�t��dt� = − ��  eA�C� ��t �t → � � �44�

with A�C� � given by Eq. �31�. As explained in Sec. II B, the
current j�t� is the current crossing the edge closing the cor-
responding cycle. In our case, there is a unique cycle and
every edge could be chosen in order to close the cycle. Ac-
cordingly, the current appearing in Eq. �44� could be any of
the 2L edges, meaning that the current fluctuation theorem is
valid independently of our choice of the cross section used to
measure the current.

The time integral of the current appearing in Eq. �44�
here corresponds to the signed cumulated number of pas-
sages along one of the edges, which is equivalent to the
number Rt of revolutions by 360° of the molecular motor
during a time t

Rt = �
0

t

j�t��dt�. �45�

This is an observable quantity and the fluctuation relation
can be checked by numerical simulations. We used the
Gillespie algorithm to simulate the master equation of the
system. Since the system is ergodic, we may use a suffi-
ciently long trajectory to verify the fluctuation theorem for
the steady state in the t→� limit. The probability distribu-
tion of the current up to a time t=300 is depicted in Fig. 4 for
different affinities. We see that the probability distribution
functions are shifted to the right as we increase the affinity.
The rotation velocity, i.e., the mean number of revolutions
per unit time, is given by

FIG. 3. Generating function �41� for the six-state model �L=3�.
The transition rates take the values w+1=2, w+2=3, w−1=1, and
w−2=3, 2, 1.6. The different curves increase with the affinity.

FIG. 4. Probability distribution functions of Rt for t=300 and
for different values of the affinity in the six-state model �L=3�. The
transition rates take the values k±1=10 e±�, k±2=15 e±� so that the
affinity reads A=12�. � takes the values 0, 0.025, and 0.05.
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V = lim
t→�

1

t
	Rt
 =

w+1w+2 − w−1w−2

L�w+1 + w+2 + w−1 + w−2�
= J , �46�

which corresponds to the mean current �35� in the nonequi-
librium steady state. We also see in Fig. 4 that the probability
to observe negative events decreases as the affinity is
increased.

The fluctuation relation �44� is verified in Fig. 5: The
probability of negative events is predicted to be given by

Prob�Rt = − r�  Prob�Rt = r�e−rA. �47�

The relation is clearly satisfied, even if the time t is finite. We
notice that the negative events are already very rare.

Moreover, from the probability distribution functions of
Fig. 4, it is possible to compute the generating function of
the rotation

Q��;A� = lim
t→�

−
1

t
ln	e−�Rt
 �48�

by calculating the sum

e−tQ���  �
r=−�

+�

P�Rt = r�e−r�. �49�

The results are shown in Fig. 6 where they are compared
with the function

Q��� =
1

2
�w+1 + w+2 + w−1 + w−2 − ��w+1 + w−2 + w−1 + w+2�2

+ 4w+1w+2�e��−A�/L + e−�/L − 1 − e−A/L��1/2� , �50�

which is derived here below. This generating function has the
symmetry Q���=Q�A−�� of the fluctuation theorem. We
point out that the fluctuations have a non-Gaussian character
since a Gaussian distribution would have a quadratic
generating function. Moreover, we see that the large devia-
tions of the current and of the irreversible work �7� are of the
same nature: We can recover the generating function �41� of
the dissipated work Z�t� by setting �=�A: q���=Q�A��.

This means that, from a large deviation point of view, the
fluctuations of a trajectory between the complete revolutions
of the motor are negligible so that the quantity Z�t� can be
assimilated to

Z�t� � ln
W��0��1�W��1��2� ¯ W��n−1��n�
W��1��0�W��2��1� ¯ W��n��n−1�

 ARt.

�51�

This result is exact for the mean value of Z�t� �4,26� as can
be seen from Eqs. �11� and �43�, but we see that it also holds
for the large fluctuations of Z�t� in this particular example.
The reason is that the rest term in Eq. �51� is bounded by
some constants independent of t so that this term becomes
negligible in the long-time limit. The discrepancy observed
in Fig. 6 between the theoretical and numerical values of the
generating function are due to the exponential decrease of
the statistics of random events as �→A where Q��=A�=0.
In this case, the direct statistical method is not efficient to
compute the generating function which require an exponen-
tially growing statistics. This discrepancy is not caused by a
finite-time effect �6� because it remains present if we in-
crease the time while keeping constant the number of trajec-
tories used in the statistics. Moreover, the very good agree-
ment of the fluctuation relation seen in Fig. 5 is a good
indication that the finite-time corrections are negligible.

The theoretical distribution �50� can be derived by the
following reasoning. Let us consider the probability distribu-
tion P�� ,r , t� to be in the state � at time t while having done
a displacement of r steps. The symmetry of the system im-
poses P�1,r , t�= P�3,r , t�= ¯ = P�2L−1,r , t� and P�2,r , t�
= P�4,r , t�= ¯ = P�2L ,r , t�. The evolution equation is then
given by

dP�1,r,t�
dt

= �w+2P�2,r − 1,t� + w−1P�2,r + 1,t��

− �w+1 + w−2�P�1,r,t� , �52�

FIG. 5. Comparison between the prediction �47� of the fluctua-
tion relation for negative events and the numerical simulations
in the six-state model �L=3�. The transition rates take the values
k±1=10e±�, k±2=15 e±� with �=0.03 or A=0.36.

FIG. 6. Generating functions calculated with the direct statistical
method in the six-state model �dashed lines�. Comparison is made
with the theoretical function �50�. The transition rates take the same
value as in the preceding figures and the affinity take the values
A=0.3 and A=0.36.
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dP�2,r,t�
dt

= �w+1P�1,r − 1,t� + w−2P�1,r + 1,t��

− �w+2 + w−1�P�2,r,t� . �53�

Now introducing the generating functions

F��,t� = L �
r=−�

+�

e−r�P�1,r,t� , �54�

G��,t� = L �
r=−�

+�

e−r�P�2,r,t� , �55�

the system becomes

�F��,t�
�t

= �w+2e−� + w−1e��G��,t� − �w+1 + w−2�F��,t� ,

�G��,t�
�t

= �w+1e−� + w−2e��F��,t� − �w+2 + w−1�G��,t� ,

�56�

with the initial conditions

F��,t = 0� = L �
r=−�

+�

e−r��r0Pst�1� = LPst�1� , �57�

G��,t = 0� = L �
r=−�

+�

e−r��r0Pst�2� = LPst�2� , �58�

corresponding to the stationary state. The solution of the sys-
tem �56� is given by the exponential of the time evolution

matrix M̂� so that

F��,t� = L exp�a + d

2
t���cosh�t

2
�

+
a − d


sinh�t

2
��Pst�1� +

2b


sinh�t

2
�Pst�2�� ,

�59�

G��,t� = L exp�a + d

2
t��2c


sinh�t

2
�Pst�1� + �cosh�t

2
�

+
d − a


sinh�t

2
��Pst�2�� , �60�

where a=M11, b=M12, c=M21, d=M22, and
=��a−d�2+4bc. If we are only interested in the total dis-
placement regardless of the final position of the motor, we
have to look at the quantity F�� , t�+G�� , t�= 	e−�St
, where St

is the signed number of steps the motor performs during a
time t. This corresponds to the finite time generating function

of the displacement as e−tQ̃��,t�= 	e−�St
. The long time behav-

ior is controlled by the maximal eigenvalue M̂�f��=−Q̃���f��

Q̃��� =
1

2
�w+1 + w+2 + w−1 + w−2 − ��w+1 + w−2 + w−1 + w+2�2

+ 4w+1w+2�e2�−A/L + e−2� − 1 − e−A/L��1/2� , �61�

which gives the infinite time generating function of the dis-
placement of the motor

Q̃��� = lim
t→�

−
1

t
ln	e−�St
 �62�

as can be checked from the solution �60�. This generating
function presents the symmetry

Q̃��� = Q̃� A

2L
− �� . �63�

The finite time corrections to the fluctuation theorem �63�
can be calculated from the solution �60�. The corresponding
current and higher-order moments of the distribution can be
derived in a systematic way from this generating function.
The displacement of the motor will thus satisfy the fluctua-
tion theorem

Prob�St/t = + ��
Prob�St/t = − ��

 exp
A�t

2L
�t → � � . �64�

During a random trajectory over a time interval t, the total
displacement St can be written as St=2LRt+�t, where Rt is
the number of revolutions and �t can only take integer values
between 0 and 2L−1 depending on the stochastic trajectory.
This term is necessary because a random trajectory does not
necessarily consist in an integer number of revolutions. Since
this term is bounded, each revolution roughly corresponds to
2L steps we can guess that the scaling ��2L� must be made
to relate the generating function �61� to Eq. �50�:
Q���= Q̃�� /2L�. In the long-time limit, the quantities Rt / t
and St / t thus have the same fluctuations so that the rotation
of the motor satisfies the large-deviation relation

Prob�Rt/t = + ��
Prob�Rt/t = − ��

 exp A�t �t → � � , �65�

which is in very good agreement with the numerical results.
The generating function �50� allows us to derive not only

the mean current but also the higher-order moments by dif-
ferentiation. Indeed

� �Q

��
�

�=0
= lim

t→�

	Rt

t

= V =
w+1w+2 − w−1w−2

L�w+1 + w+2 + w−1 + w−2�
,

�66�

which is the same as Eq. �35�. Continuing the differentiation,
we get the diffusion coefficient of rotation as

� �2Q

��2 �
�=0

= lim
t→�

−
	�Rt − 	Rt
�2


t
= − 2D , �67�

which is explicitly given by
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D =
w+1w+2 + w−1w−2

2L2�w+1 + w+2 + w−1 + w−2�

−
�w+1w+2 − w−1w−2�2

L2�w+1 + w+2 + w−1 + w−2�3 . �68�

A typical dependence of the diffusion coefficient is depicted
in Fig. 7. The diffusion coefficient characterizes the fluctua-
tions in the rotation of the motor. The correlation time of the
successive revolutions can be defined as the decay time of
the time correlation function of the random variable
cos�2�Rt� for instance. The correlation time is related to the
diffusion coefficient by �=1/ ��2��2D�. On the other hand,
the mean period of one revolution is given by T=1/ �J�. The
persistence of rotation can be characterized by the quality
factor Q=2�� /T= �J � / �2�D�. The rotation is systematic if
Q�1. This quality factor vanishes around the thermody-
namic equilibrium where the fluctuations are important
and preclude the possibility of persistent rotation. For the
present model, the maximum value of the quality factor is
Qmax=4L in which case rotation is not much affected by
the fluctuations. We notice that the verification of the fluc-
tuation theorem by a direct statistics is easier in the regime
where the quality factor is Q�1. On the other hand, the
cumulants derived from the generating function �50� are re-
lated to those derived for the displacement of the motor by

� �nQ̃

��n �
�=0

= �2L�n� �nQ

��n �
�=0

. �69�

This means in particular that the fluctuation theorem �63�
or �64� for the displacement of the motor should be easier

to observe experimentally than the one �65� for the full
revolutions.

Another consequence of the current fluctuation theorem
concerns the consumption of molecules X of the chemical
fuel. Indeed, for every revolution of the motor, L molecules
of X are consumed. During a random trajectory over a time
interval t, the number Nt of molecules X consumed can be
written as Nt=LRt+�t where �t depends on the stochastic
trajectory and can only take the values 0 ,1 ,2 , . . . ,L−1. This
term is necessary because the number Nt does not necessarily
consist in an integer number of revolutions. Since this term is
bounded, the quantities Rt / t and Nt / t have the same fluctua-
tions in the long-time limit, whereupon the consumption of
X should satisfy the large-deviation relation

Prob�Nt = + n�
Prob�Nt = − n�

 exp
An

L
�t → � � . �70�

Finally, we notice that the current fluctuation theorem can
be used to obtain the affinity of the process from the prob-
ability distribution of the current, regardless of the detailed
mechanisms of transitions between the states �which are usu-
ally unknown�. This probability distribution function can
also be used to calculate the mean current so that we can
estimate the entropy production of the process thanks to the
formula �43�. With the help of the current fluctuation theo-
rem, the entropy production can thus be obtained from the
sole knowledge of the current distribution function, without
any knowledge of the microscopic transition mechanisms.

C. Mean time before negative fluctuations

We have shown in the preceding section that the probabil-
ity to observe negative fluctuations decreases exponentially
with the affinity driving the system out of equilibrium. Since
molecular motors usually operate far from equilibrium, one
can thus expect that negative fluctuations could be rare to
observe. Our purpose in this section is to derive the probabil-
ity distribution function of the time necessary to observe a
negative step of the motor.

This can be treated as a first-time passage problem: The
motor follows a trajectory but is absorbed as soon as it

FIG. 8. The states +1 and +2 correspond to the reactions driving
the motor in a forward rotation. The states −2 and −1 are the ab-
sorbing states and are reached by a backward transition.

FIG. 9. Mean waiting time T before a negative fluctuation in the
six-state model �L=3�. The transition rates take the values w+1=2,
w+2=4, w−1=1, and w−2 is used as the dependent parameter.

FIG. 7. Diffusion coefficient of the rotation as a function of the
affinity in the six-state model �L=3�. The transition rates take the
values w+1=2, w+2=4, w−1=1, and w−2 is used as the dependent
parameter.
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makes a backward step. Using the symmetry of the motor,
we can reduce the problem to the following system. The
motor can jump between the states +1 and +2 corresponding
to the reactions �= +1 and �= +2. The motor can also jump
backward because of the reactions �=−1 and �=−2, which
are associated with some states −1 and −2. As these states
are reached with a backward transition, they correspond to
the absorbing states of the system and cannot be left. This
system is schematically represented in Fig. 8.

The absorbing boundary conditions are taken into account
by imposing

P�− 1,t� = P�− 2,t� = 0 �71�

so that the probability distribution obeys the evolution
equation

dP�+ 1,t�
dt

= w+2P�+ 2,t� − �w+1 + w−2�P�+ 1,t� ,

dP�+ 2,t�
dt

= w+1P�+ 1,t� − �w+2 + w−1�P�+ 2,t� . �72�

Therefore, the evolution matrix M̂ of the system �72� does

not conserve the total probability P̄�t�� P�+1, t�+ P�+2, t�
which typically decreases exponentially in time. The prob-
ability distribution function of the absorbing time is thus
given by

f�t� = −
dP̄�t�

dt
. �73�

In particular, the mean absorption time is given by

T = �
0

�

dt t f�t� = �
0

�

dt P̄�t� �74�

after an integration by parts. The solution of the system �72�
can be expressed as

P� �t� = eM̂tP� �0� �75�

so that the mean absorbing time becomes

T = �
0

�

dtP̄�t� = �
0

�

dt�
k

�eM̂tP� �0��k

= �
0

�

dt�
k,l

�eM̂t�kl�P� �0��l = �
k,l

�− M̂−1�kl�P� �0��l. �76�

Calculating the inverse matrix M̂−1

M̂−1 = −
1

det M̂
�w+2 + w−1 w+2

w+1 w+1 + w−2
� , �77�

where det M̂ = �w+1+w−2��w+2+w−1�−w+1w+2, and using the
initial conditions P�+i ,0�=LPst�i� corresponding to the sta-
tionary state, one finds that the mean time before observing a
backward step is given by

T =
�w−1 + w+2��w+1 + w+2 + w−2� + �w−2 + w+1��w+1 + w+2 + w−1�

�w+1 + w+2 + w−1 + w−2��w+1w−1 + w+2w−2 + w−1w−2�
. �78�

In the limit case where w+1 ,w+2�w−1 ,w−2, the mean wait-
ing time becomes

T 
w+1 + w+2

w+1w−1 + w+2w−2
. �79�

This mean waiting time is depicted in Fig. 9 for the same
values of the transition rates as in Figs. 2 and 7.

Similarly, one can obtain the probability distribution and
all its moments 	tn
 because the exponential of the evolution

matrix M̂ can be calculated exactly.
Moreover, one can evaluate the probability that a trajec-

tory will ever reach a total displacement of −1 step. This
gives the approximate fraction of the trajectories required in
order to be able to observe the negative events considered in
the fluctuation relation �64�. This is different from the previ-
ous consideration where we have been interested in the nega-
tive fluctuations regardless of the total displacement. This
probability can be obtained by considering a random walk
where the sites correspond to the total displacement made by

the motor. The initial condition corresponds to a null dis-
placement, and we must consider the two cases where the
motor starts from a site of type �=1 or from a site �=2,
weighted with their respective probabilities. A well-known
result in the theory of Markovian random walks �see for
instance Ref. �32�� gives the probability which is given by

P =
w−1 + w+2

w+1 + w+2 + w−1 + w−2

F�w−2/w+1�
1 + F�w−2/w+1�

+
w+1 + w−2

w+1 + w+2 + w−1 + w−2

F�w−1/w+2�
1 + F�w−1/w+2�

, �80�

where

F�x� =
x + e−A/L

1 − e−A/L �81�

if A�0. For A�0, this probability is equal to unity P=1,
because the mean motion is backward. This probability is
depicted in Fig. 10 for the same values of the transition rates
as in Figs. 2 and 7. These results suggest that the fluctuation
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theorem becomes more and more evident if the system is
close to equilibrium and that the random backward rotations
of the motor become rare away from the equilibrium.

IV. THE F1 MOLECULAR MOTOR

In this section, we apply the discrete-state model de-
scribed here above to the F1 motor studied by Yasuda and
coworkers in Ref. �19�. The F1 protein complex is composed
of three large � and 
 subunits circularly arranged around a
smaller � subunit. The three 
 subunits are the reactives sites
for the hydrolysis of ATP, while the � subunit plays the role
of rotation shaft to which a bead of 40 nm diameter is glued.
The mechanism of rotational catalysis was proposed by
Boyer using a bisite activation �20�. Nevertheless, experi-
mental data cannot distinguish for the moment between the
bisite and three-site activations. The observation �19� clearly
shows that the rotation takes place in six steps: ATP binding
induces a rotation of about 90° followed by the release of
ADP and Pi with a rotation of about 30°. Therefore, the
hydrolysis of one ATP corresponds to a rotation by 120° and
a revolution of 360° to three sequential ATP hydrolysis in the
three 
 subunits. The six successive states of the hydrolytic
motor M=F1 can thus be specified by the angle � of the shaft
and the occupancy of the sites of the three 
 subunits as

M1 = M�� = 0,�ADP + Pi, � ,x�� ,

M2 = M�� =
�

2
,�ADP + Pi,ATP,x�� ,

M3 = M�� =
2�

3
,�� ,ADP + Pi, x�� ,

M4 = M�� =
5�

6
,�x,ADP + Pi,ATP�� ,

M5 = M�� =
4�

3
,�x, � ,ADP + Pi�� , �82�

M6 = M�� =
11�

6
,�ATP,x,ADP + Pi�� ,

where x stands either for � or ADP for the bi- or three-site
mechanism. If the site is empty, the F1 complex jumps to the
following state with the rate k+1�ATP�, and with the rate k+2

if the site is occupied. The backward transitions being pos-
sible, the complex can jump to the preceding state with the
rate k−1 if the site is occupied and the rate k−2�ADP��Pi� if it
is empty. This process can be summarized by the following
reaction scheme:

ATP + M��
k−1

k+1

M�+1�
k−2

k+2

M�+2 + ADP + Pi�� = 1,3,5� �83�

with a cyclic ordering M7�M1. This is the model �27� with
L=3 with the transition rates

w+1 � k+1�ATP� ,

w−1 � k−1,

w+2 � k+2,

w−2 � k−2�ADP��Pi� . �84�

The graph of this six-state model is depicted in Fig. 11. The
threefold symmetry of the F1-ATPase is taken into account in
the model by the symmetry of the transition rates.

The standard free enthalpy of hydrolysis is equal to

G0 = GATP
0 − GADP

0 − GPi

0 = 50 pN nm. �85�

The temperature of the experiment of Ref. �19� is 23°C
so that the equilibrium concentrations of the reactant and
products obey

�ATP�eq

�ADP�eq�Pi�eq
=

k−1k−2

k+1k+2
= e−G0/kBT = 4.89 · 10−6 M−1,

�86�

which is a constraint on the reaction constants from equilib-
rium thermodynamics. We notice that, under physiological
conditions, the concentrations are about �ATP�10−3 M,
�ADP�10−4 M, and �Pi�10−3 M, so that ATP is in large
excess with respect to its equilibrium concentration
�ATP�eq4.89·10−13 M, which shows that the system is
typically very far from equilibrium.

The reaction constants k±� can be determined from the
experimental data �22�. In the absence of the products, the

FIG. 10. Probability P that a trajectory ever reaches a total
displacement of −1 step in the six-state model �L=3�. The transition
rates take the values w+1=2, w+2=4, w−1=1, and w−2 is used as the
dependent parameter.

FIG. 11. Graph associated with the six-state model.
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rotation velocity is observed to follow a Michaelis-Menten
kinetics in agreement with Eq. �36� of the model

V =
Vmax�ATP�
�ATP� + KM

�87�

with the maximum velocity Vmax=k+2 /3=129±9
revolutions per second and the Michaelis-Menten constant
KM= �k+2+k−1� /k+1=15±2 �M. Furthermore, the depen-
dence of the rotation velocity on the product concentrations
can be used to obtain that k−2 /k+1=13.7±0.4 M−1 �22�. Ther-
modynamic equilibrium �86� provides the last relation so that
the reaction constants are thus given by

k+1 = �2.6 ± 0.5�107 M−1 s−1,

k−1 = �138 ± 34�10−6 s−1,

k+2 = �387 ± 27� s−1,

k−2 = �3.5 ± 0.8�108 M−2 s−1. �88�

We observe that these reaction constants range over about 12
orders of magnitude, which is characteristic of a stiff sto-
chastic process.

The affinity of the cycle of Fig. 11 is defined as

A � 3 ln
k+1k+2�ATP�

k−1k−2�ADP��Pi�
, �89�

which vanishes at equilibrium. Figure 12 shows how the
concentration of ATP varies with the affinity for different
concentrations of the products. We see that the ATP concen-
tration is always very small at equilibrium.

The mean rotation velocity is depicted in Fig. 13 as a
function of the affinity �89� for different concentrations of
the products. We observe that the V-A curve is highly non-
linear as a consequence of the stiffness of the process. Even
the vanishing of the mean velocity at the thermodynamic
equilibrium A=0 is not visible in Fig. 13. A zoom is carried
out in the vicinity of equilibrium in Fig. 14 where we ob-
serve that indeed the mean velocity vanishes linearly with
the affinity as expected. This linear regime does not extend

by more than one decade around the equilibrium concentra-
tion. Typically, the motor is very far from equilibrium and is
functioning in the nonlinear regime. This shows the crucial
importance of these nonlinear regimes of nonequilibrium
thermodynamics for the understanding of biological molecu-
lar motors.

Another consequence of the stiffness of the motor is that
the diffusion coefficient depicted in Fig. 15 is small relative
to the mean velocity. For most values of the affinity, the ratio
of the mean velocity to the diffusion coefficient is about
V /D6, which is characteristic of a correlated rotation
slightly affected by the fluctuations.

Nevertheless, the fluctuation theorem holds even far from
equilibrium as we can see in Fig. 16 which depicts the gen-
erating function �41� of the dissipated work. We observe that,
indeed, the symmetry �10� of the fluctuation theorem is well
satisfied for different concentrations of ATP. Moreover, the
fluctuation theorem can be directly verified from the statis-
tics of the random steps forward and backward as shown in
Fig. 17 where we show that the fluctuation relation

FIG. 12. Concentration of ATP versus the affinity A according to
Eq. �89�.

FIG. 13. Mean rotation velocity V of the F1 motor with a bead
of 40 nm diameter versus the affinity A for different concentrations
�ADP��Pi� of the products.

FIG. 14. Zoom of Fig. 13 giving the mean rotation velocity V of
the F1 motor versus the affinity A around the equilibrium at A=0 for
different concentrations �ADP��Pi� of the products.
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Prob�St = s�  Prob�St = − s�e−sA/6 �90�

for the probability Prob�St=s� for s=St steps over a time
interval t is indeed satisfied. This verification requires a sta-
tistics proportional to the inverse of the probability given by
Eq. �80� which is given in the caption of Fig. 17. As seen in
Fig. 17, the probability distribution of the displacement takes
here a specific form where the odd displacements are almost
never occurring. Indeed, for these values of the concentra-
tions of the chemical species, the probability to be on odd
sites is about four orders of magnitude lower than the prob-
ability to be on even sites. The system almost never stays on
odd sites and immediately jumps to the next or previous
sites.

As discussed previously, the F1 molecular motor is a stiff
process and typically operates in the nonlinear regime with a
quality factor close to unity. This means that large fluctua-
tions with negative events rapidly become inobservable.
Nevertheless, from the exact solution �60� one can see that

the finite time corrections to the fluctuation theorem usually
quickly become negligible. Therefore, one can hope to ob-
serve the symmetry relation �63� even for systems further
away from equilibrium if combined with a small enough
observation time. In cases where the finite time corrections
are not negligible, one can still calculate the finite time gen-
erating function from experimental data and compare to the
exact solution �60� at finite time.

According to Eq. �18�, the maximum work which can be
done per revolution by the F1 motor is G=3��ATP−�ADP

−�Pi
�=AkBT which can be read in Fig. 12 with

kBT=4.1 pN nm=4.1·10−11 J.

V. CONCLUSIONS

Molecular motors are functioning at the nanoscale where
the fluctuations are important in particular in the chemical
reactions maintaining these nanosystems out of equilibrium.
Accordingly, they require a stochastic description to take into
account the randomness of the reactive events and of the
environment. In this description, a central quantity of interest
is the affinity or thermodynamic force, which is given in
terms of the free enthalpy of the chemical reactions. The
affinity thus plays a crucial role in the nonequilibrium ther-
modynamics of molecular motors.

In the present paper, we have shown that the affinity can
be determined thanks to large-deviation relationships known
under the name of fluctuation theorems, which we have here
applied to molecular motors. The fluctuation theorems are
connected to Jarzynski nonequilibrium work theorem, as dis-
cussed in Sec. II. These theorems express a fundamental
symmetry of the molecular fluctuations, which has its origin
in the microreversibility. This symmetry concerns different
quantities such as the work dissipated in the irreversible pro-
cesses, the currents across the system, as well as the dis-
placement for linear motors or the rotation for rotary motors.

Considering a discrete-state stochastic model of molecular
motors, we have obtained fluctuation theorems for these re-

FIG. 15. Diffusion coefficient D of the F1 motor with a bead of
40 nm diameter versus the affinity A for different concentrations
�ADP��Pi� of the products.

FIG. 16. Generating function q��� of the dissipated work of
the F1 motor with a bead of 40 nm diameter versus the parameter
� for different concentrations of �ATP� and the fixed value
�ADP��Pi�=10−4 M2. We notice that q���=0 at equilibrium where
�ATP�eq=4.89·10−10 M.

FIG. 17. Probability Prob�St=s� �open circles� that the F1 motor
performs s=St steps during the time interval t=104 s compared with
the expression Prob�St=−s�e−sA/6 �crosses� expected from the fluc-
tuation theorem for �ATP�=6·10−8 M and �ADP��Pi�=10−2 M2.
The probability �80� is here equal to P=0.8.
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lated quantities. The probabilities of their fluctuations obey
general relationships which are valid far from thermody-
namic equilibrium and which say that the probabilities of the
forward to backward random motions of the motor are in a
ratio which only depends on the affinity of the process and
the number of reactive steps which have occurred during
some time interval. This provides a method to measure ex-
perimentally the affinity of the nonequilibrium process driv-
ing the molecular motor. The fluctuation theorem can be ex-
pressed for the number of revolutions of a rotary motor as
well as for the number of steps or the work dissipated during
some time interval. These quantities are related to each other
by a proportionality factor. The theory also provides the
mean current or mean rotation velocity as a function of the
affinity, as well as the diffusion coefficient characterizing the
fluctuations around the mean motion.

We have also studied the time required to observe steps in
the direction opposite to the mean motion. The shorter this
time, the higher the statistics of the backward random events
needed to use the fluctuation theorem. We have in particular
shown that this time is shorter if the fluctuating quantity is
the number of steps instead of the number of revolutions.

We have applied these considerations to the F1 motor,
which has been experimentally investigated by Yasuda and
coworkers �19�. This molecular motor is a protein complex
for the synthesis of ATP in mitochondria. In vitro, a bead can
be glued to its shaft and its rotation can be observed under
nonequilibrium conditions fixed by the concentration of ATP
with respect to the concentrations of the products of ATP
hydrolysis. The F1 motor is thus an example of a nonequi-
librium nanosystem affected by molecular fluctuations. The
reaction constants of the discrete-state stochastic model can
be fitted to the experimental data, which reveals that the
process is stiff because the reaction constants range over 12
orders of magnitude. Accordingly, the response of the system

to the nonequilibrium constraints, i.e., the mean rotation ve-
locity versus the affinity, is a highly nonlinear function. The
linear regime only extends over a very small interval of con-
centrations around chemical equilibrium. Under typical
physiological conditions as well as in the experiments by
Yasuda and coworkers �19�, the F1 motor functions very far
from equilibrium, deep in the nonlinear regime of nonequi-
librium thermodynamics. This nonlinearity confers to the ro-
tational motion a robustness which does not exist near equi-
librium. This robustness can be characterized by the quality
factor of the motor, which is given in terms of the ratio of the
mean rotation velocity over the diffusion coefficient. In the
nonlinear regime, the quality factor reaches a value close to
unity meaning that the successive rotations are statistically
correlated and thus remain essentially unaffected by the mo-
lecular fluctuations. Nevertheless, we can show that the fluc-
tuation theorem is satisfied close and far from equilibrium, in
both the linear and nonlinear regimes. The fluctuation theo-
rem here says that the ratio of the probability of a forward
rotation of the shaft to the probability of a backward rotation
determines the affinity of the process. This provides a
method to measure experimentally this affinity which is the
free enthalpy of the chemical reaction of hydrolysis. The
fluctuation theorem can therefore be used to obtain key in-
formation on the nonequilibrium thermodynamics of mo-
lecular motors.
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