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Energy aspects of the synchronization of model neurons
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We have deduced an energy function for a Hindmarsh-Rose model neuron and we have used it to evaluate
the energy consumption of the neuron during its signaling activity. We investigate the balance of energy in the
synchronization of two bidirectional linearly coupled neurons at different values of the coupling strength. We

show that when two neurons are coupled there is a specific cost associated to the cooperative behavior. We find
that the energy consumption of the neurons is incoherent until very near the threshold of identical synchroni-
zation, which suggests that cooperative behaviors without complete synchrony could be energetically more

advantageous than those with complete synchrony.
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I. INTRODUCTION

Energy is an important aspect to be contemplated in the
normal behavior of the brain. At just 2% of body mass, the
human brain consumes 20% of human metabolic energy [1].
In the gray matter of rodent brain action potentials and
postsynaptic effects are predicted to consume much of the
energy, 81%, with the resting potential and glutamate recy-
cling consuming a smaller amount, 16% [2]. Energy usage
depends strongly on the action potential rate and the energy
expended on signaling is a large fraction of the total energy
used by the brain. In fact, energy is a constrain on the coding
and processing of sensory information [3]. Some research
approaches evaluate the required metabolic energy to main-
tain neural activity [1-4] and also to understand energy effi-
cient neural codes compromising representational capacity
and metabolic energy expenditure [5], but these approaches
lack a comprehensive model of the electrical energy balance
in the neuron. Although great effort is being devoted to the
study of models showing the irregular spike bursting charac-
teristic of some neurobiological systems [6-9], no extensive
work has been done on the energy considerations of their
dynamical behavior. Yet, in arrays of biological structures
coherent oscillations are thought to play a substantial role in
information processing [10,11] and the required collective
behaviors could be influenced by their electrical energy cost
[12]. One possible reason for this lack of energy models is
that the available kinetic models of a single neuron [13-15]
are usually qualitative models of motion with no clear con-
nection with the source of energy that is required to maintain
its activity. In that situation, the study of their dynamical
properties from an energy perspective requires one to find an
energy function for the specific model of the neuron under
study. In Ref. [16] we developed a method to assign an en-
ergylike function to a chaotic system described by equations
of motion. This energy function was used as a measure to
study its dynamics and, in particular, to evaluate the cost of
maintaining a certain degree of synchrony with other chaotic
oscillators.

In this paper we find for the Hindmarsh-Rose model of a
neuron [ 17] a function of the state space variables that can be
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considered as the electrical energy of the neuron in each of
the different states of its dynamical behavior. The
Hindmarsh-Rose model, which exhibits a dynamical behav-
ior similar in several aspects to the properties of real neu-
rons, is described by the following equations of movement:

i=y—ax’+bx*+ & - pz,
y=c—dx’ -y,

Z=rls(x—xp) = 2], (1)

where to ensure dimensional consistency we have added
two additional parameters & and p. This is a qualitative
model whose dimensional consistency does not usually
deserve much attention. Nevertheless, the dimensional
consistency of the model is relevant to our study in order
to be able to ascertain whether the energy function that
emerges from its dynamics is dimensionally consistent
with the true physical energy for a neuron. In the model,
variable x is a voltage associated to the membrane potential,
variable y, although in principle associated to a recovery
current of fast ions, has been transformed into a voltage, and
variable z is a slow adaptation current associated to slow
ions. Parameter / is a external current input. The time vari-
able of the model is dimensionless. For the numerical results
of this work we fix the usual parameters to the values
a=1(mV)? 5=3.0mV)"!, ¢c=1.0mV, d=5.0 (mV)",
s=4.0 uS, xo=—1.6 mV, and r=0.006. These numerical val-
ues have been frequently used since Ref. [18]. The two new
parameters are fixed to é=1 MQ and p=1 MQ. For values
of the external current input 2.92 nA </<3.40 nA the sys-
tem exhibits a multitime scale spike-burst chaotic behavior
[10]. We have fixed the external current value to I=3.2 nA.

II. HINDMARSH-ROSE ENERGY

The procedure followed to find an energylike function for
a chaotic system has been reported in detail in Ref. [16] and
can be summarized as follows. Consider an autonomous dy-
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namical system x=f(x) where x € R" and f:R"—R" is a
smooth function. The velocity vector field f(x) can be ex-
pressed as sum of two vector fields f(x)=f,(x)+f,(x), one of
them, f,(x), conservative containing the full rotation and the
other, f,(x), dissipative containing the divergence [19]. Tak-
ing the conservative vector field, the equation VH” f.(x)=0
defines for each dynamical system a partial differential equa-
tion from which a function H(x) can be evaluated. This func-
tion H(x) is a generalized Hamiltonian for the conservative
system x=f,(x) as long as it can be rewritten in the form
x=J(x) VH where J is a skew symmetric matrix that satisfy
Jacobi’s closure condition [20]. If that is the case, we con-
sider H(x) as an energy associated to the original system
x=f(x). This energy is dissipated, passively or actively, due
to the dissipative component of the velocity vector field ac-
cording to the equation, H=VHT f,(x).

In the Hindmarsh-Rose model given by Eq. (1) the vector
field f(x) can be expressed as sum of the following vector
fields:

—ax® +bx>+ &l

y=pz
fo=|-a? | and f,= c-y . (2
rsx —rsxg—1rz

As it can be observed f, is a divergence free vector that
accounts for the whole rotor of the vector field and f, is a
gradient vector that carries its whole divergence. Conse-
quently, the energy function H(x,y,z) will obey the follow-
ing partial differential equation, (y— pz)%—dxzi—?+rsx%
=0, which has the cubic polynomial solution

H =p[§dx3 +rspx +(y - pz)2], (3)

where p is a parameter. It can be proved the existence of a
local skew-symmetric structure matrix J(x,y,z) that guaran-
tees that this A function is formally a generalized Hamil-
tonian (details will be published elsewhere) and so an energy
for the Hindmarsh-Rose neuron. Note that as in the model
time is dimensionless and every adding term in Eq. (3) has
dimensions of square voltage, function H is dimensionally
consistent with a physical energy as long as parameter p has
dimensions of conductance. In this paper we fix parameter p
to the arbitrary value p=1 S. Figure 1 shows the isosurface
H=45 pl. The Hindmarsh-Rose attractor is also shown.

The energy derivative H=VH” f,(x) is given by

HI2p = (bd — rspa)x* + &Ix* — y* — adx’ + (¢ + prsx,)y
— plc + prsxo)z + p(1 + r)yz + rspbx> + rspélx
- p*rz?. (4)

It can be easily checked that the energy derivative is also
dimensionally consistent with a dissipation of energy. The
two first adding terms in Eq. (4) are definite positive, that is,
they always contribute energy, and the third term is always
definite negative helping to the quick release of energy in the
membrane. As the time scale parameter r is very small, the
last three adding terms can be neglected. The rest of the
adding terms are not definite and their net contribution to the
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FIG. 1. (Color online) The energy isosurface of H=45 pJ for a
Hindmarsh-Rose neuron. The neuron attractive manifold is also
sketched.

balance of energy in the normal activity of the neuron de-
pends on the particular parameterization of the model. To
estimate the energy needed to generate action potentials the
terms contributing energy will have to be identified. Figure
2(a) shows a series of action potentials (variable x in the

model neuron) and Fig. 2(b) shows the energy derivative H
corresponding to that series. In Fig. 2(c) a detail of the en-
ergy derivative corresponding to a train of two action poten-
tials is also shown. For each action potential it can be appre-
ciated that the energy derivative is first positive, contributing
energy to the spike, and then negative, quickly releasing part
of that energy to relieve the membrane potential. During the
resting state between the two spikes the energy derivative
remains slightly negative, still releasing energy, until the on-
set of the following action potential.

As the states of an isolated Hindmarsh-Rose neuron are
confined to an attractive manifold, Fig. 1, the range of pos-
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FIG. 2. (a) Action potentials and (b) energy derivative for the
Hindmarsh-Rose model neuron. (c) Details of the energy derivative
associated to two action potential spikes showing the energy con-
tributed to the cell to generate the spike (positive area) and the
ulterior release of that energy.

011905-2



ENERGY ASPECTS OF THE SYNCHRONIZATION OF...

20 T T T

2
I
— =
315 g 1
P %
S 2
g g0
2 £
2 10f 5
-1
N 5600 5800 6000
jo)]
5
c
E0] 5t |
Y 2 3 4 5 6

External current | [nA]

FIG. 3. Average consumption of energy vs external current
I. The plateau at O corresponds to the nonenergy consuming
quiescent state of the neuron. The energy consumption is sensitive
to the different firing regimes of the neuron which are reflected
in the successive plateaus. The nonsmooth region between
2.92 nA<I<3.40 nA corresponds to the chaotic regime. Inset:
High-frequency repetitive firing regime of the neuron at
I1=3.75 nA, the approximate frequency of the firing is 0.04 Hz.

sible values of its energy is recurrent and the long term av-
erage of its energy derivative is zero. This leads to the ap-
parent paradox that the electrical activity of the isolated
neuron occurs with no average energy consumption. How-
ever, it has to be considered that the average involves a glo-
bal balance of energy. The model itself incorporates, in a
nonexplicit way, components which are responsible of the
energy consumption together with others which are the en-
ergy suppliers. Altogether, the whole balance is zero in the
long run. However, the average energy consumption per unit
time of the neuron, that is, the metabolic energy that has to
be supplied to the neuron to maintain its activity, corresponds
to the long term average of only the positive component of
the energy derivative.

As an illustrative application, relevant to the investigation
of energy efficient neuronal coding, we have calculated the
average consumption of energy of the Hindmarsh-Rose neu-
ron at different values of the external current / ranging from
1 to 6 nA. As it has been reported in Ref. [10] the external
current / modifies the permanent regime of the isolated neu-
ron. For sufficient low values of / the neuron is in a stable
quiescent state. As / increases, a low frequency train of regu-
larly spaced spikes appears. A further increase in / leads to
periodic bursts of two or more spikes per burst. For interme-
diate values of I there is a chaotic regime. For large values of
I the neuron is in a high-frequency repetitive firing state. Our
results show, Fig. 3, that the energy consumption of the neu-
ron during its signaling activity is discontinuous with 7 and
very sensitive to the different firing states. The initial plateau
at zero corresponds to the neuron in its quiescent state where
no electrical energy is required and the next plateaus corre-
spond to the subsequent firing states. The nonsmooth regime
between 2.92 nA</<<3.40 nA corresponds to the chaotic
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FIG. 4. Energy of one of the two bidirectionally coupled neu-
rons averaged on the attractor at different values of the coupling
strength k. In the inset a time series of its energy at k=0.30 is shown
as an example of energy pattern.

regime, and the continuous, nearly linear, increase with [
corresponds to the high-frequency periodic regime. The inset
in Fig. 3 shows the firing regime of the neuron at
I=3.75 nA, the approximate frequency of the firing is
0.04 Hz. The parallelism of this result of energy consump-
tion with the one obtained in Ref. [10] for the time-averaged
firing rates versus the external current / is remarkable. This
parallelism supports the assumption that energy consumption
increases linearly with the mean firing rate [5] and, conse-
quently, with the representational capacity of a possible neu-
ronal code.

III. SYNCHRONIZATION ENERGY

The possibility of assigning an energy value to a particu-
lar state of a given neuron permits evaluating its energy bal-
ance in the process of synchronization with other neurons. To
do so, let us force two identical neurons to mutually synchro-
nize via linear bidirectional feedback coupling to the x com-
ponent, x,-:yi—ax?+bx[2+§1—pzi+k(xj—xi), yi=c—dxI -y,
and z;=rs(x;—x()—z;], where k=0 is the coupling strength
and i,j=1,2 and i+ are the indices for the neurons.

We have computed the average energy and the average
dissipation of energy of each of these neurons at different
values of the coupling strength k ranging from k=0 to
k=0.6. Figure 4 shows the energy of a neuron averaged on
its respective manifold at different values of the coupling
strength k. As soon as the coupling is engaged the average
energy of the neuron starts to increase with the coupling
strength. The average energy reaches a maximum at
k=0.17 and begins a slow decline followed by a second rise
to a maximum at about k=0.42. After that the average energy
quickly falls, at k=0.467, to its initial uncoupled level. Al-
though both neurons follow different temporal trajectories
the aggregate data for their average energy and average dis-
sipation are identical. The inset illustrates a time series of
energy of one of the neurons at k=0.30.
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FIG. 5. The two largest Lyapunov exponents of the transversal
system of two bidirectionally linearly coupled Hindmarsh-Rose
neurons at different values of the coupling strength k.

Several considerations are pertinent. As at every value of
k the average energy corresponds to the average on a trajec-
tory virtually covering the whole manifold we can contem-
plate this average energy as characterizing the manifold it-
self. From this perspective the process of increasing the gain
k leads the neuron through a set of manifolds of different
energies. For a linear feedback coupling identical synchroni-
zation implies that the interaction term equals zero, conse-
quently, identical synchronization can only occur at the same
value of the energy that corresponds to the original non-
coupled situation at k=0. This occurs at k=0.467, as it can
be seen in Fig. 4.

For the two coupled neurons that we have analyzed it
has been reported [21] that synchrony is a multiscale phe-
nomenon that involves synchrony of bursts, that occurs at
k=0.45, and synchrony of spikes, that occurs at k=0.5. Ac-
cording to our energy results identical synchronization, that
is, synchronization of both bursts and spikes occurs at
k=0.467 a little before than what has been reported. This
result is confirmed by the evolution of the two largest
Lyapunov exponents of the transversal system that are shown
in Fig. 5. From k=0.462 both Lyapunov exponents are nega-
tive indicating that the neurons can be completely synchro-
nized. Our results for the Lyapunov exponents show some
degree of discrepancy with the ones presented in Ref. [21]
for the same neurons. The discrepancy could be attributed to
the possibly inaccurate linear approximation performed
there.

Note that evolving on manifolds of the same energy is a
necessary precondition for identical synchronization of two
neurons and that bidirectional coupling guarantees always
that precondition. Thus, a change in the mechanism of cou-
pling in such a way that the interaction term did not go to
zero at identical synchronization could permit both neurons
to synchronize at values of the gain parameter others than
k=0.467. For instance, enhancement of neural synchrony by
time delay has been recently published [22].

The fact that the whole curve of average energy versus k
is very nonsmooth is a reflection of the complex structure of

PHYSICAL REVIEW E 74, 011905 (2006)

45 45
4 4
35 N 3.5
3 3
2.5 25
20 20
2 y 2
y
0 o] X 0 0 x
(@) -20 -2 (b) -20 2

FIG. 6. State space portrait of a neuron for values of the cou-
pling strength (a) k=0.170 showing periodic behavior and (b) k
=0.171 showing an apparent chaotic regime.

manifolds for each neuron at different values of the coupling
strength k. Figure 6(a) shows the periodic appearance of the
neuron dynamics at k=0.170 while Fig. 6(b) shows the cha-
otic appearance for k=0.171. This changeable dynamics very
much conditions the quality of the synchrony between both
neurons.

As we have said before, although the average energy on
the manifold at every value of k is the same for both neurons
it does not mean that they follow an identical pattern of
energy. Figure 7(a) shows the cross correlation of the ener-
gies of both neurons at different values of the coupling
strength ranging from k=0 to k=0.5. The evolution of the
cross correlation is very illuminating of the behavior of both
neurons. At the very beginning both energies are uncorre-
lated but very soon reach a high degree of coherence that,
with the remarkable exception of the region 0.15<k<<0.25,
further increases monotonically until complete coherence at
k=0.467. In the region of gains approximately between
0.15<k<0.25, the cross correlation of both energies con-
stantly jumps from positive values very near to one to very
significant negative values. That is so because, in that region,
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FIG. 7. (a) Cross correlation between the instantaneous values
of the energies of both neurons at different values of the coupling
strength k. (b) Cross correlation of the energy derivatives.
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FIG. 8. Average energy derivative of any of the two bidirection-
ally coupled neurons at different values of the coupling strength k.
In the inset, a time series of the actual energy derivative at k=0.3 is
shown.

both neurons often change with parameter k from a regime in
which both are close to complete synchrony with chaotic
appearance, to a regime in which both are periodic and in
complete synchrony although shifted by half a period. This
shifted periodic synchrony has been called antiphase syn-
chrony [23].

If the neurons are forced to synchronize via a coupling
device their oscillatory region in the state space is different
from the one that corresponds to their free oscillation and,
consequently, their total average energy derivative is no
longer zero. That means that energy must be provided by the
coupling mechanism to balance the flow of energy [16]. This
energy is dissipated by the neurons and it is a direct and
specific consequence of their cooperative behavior. Figure 8
shows the pattern of the average dissipation of energy of one
of the neurons as a function of the coupling strength k. The
average dissipation of energy is zero at the starting point
and remains in general very near to zero except for a clear
burst between approximately k=0.15 and k=0.25. This result
shows that, in general, all the different regimes of synchrony
that the two neurons attain at different values of the coupling
strength work with a low net dissipation of energy but
that there is a region of values of the coupling strength,
0.15<k<0.25, where the activity of the neurons is more
energetically demanding. As we have seen before, Fig. 7(a),
in that region the qualitative behavior of the neurons is par-
ticularly changeable and antiphase synchronization is fre-
quent. A smaller second burst occurs for values of the cou-
pling strength between k=0.42 and k=0.46. After this second
burst the average dissipated energy returns to zero at
k=0.467 which means that the movement is again on the
synchronization manifold [16]. This fact confirms complete
synchronization at k=0.467.

Data from the cross correlation between the energy de-
rivatives of both neurons at different values of the coupling
strength are shown in Fig. 7(b). At low values of k correla-
tion remains around zero until it starts a slow linear increase
from k=0.2. The cross correlation of the energy derivatives
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remains fundamentally low in an ample range of values of k
which means that, in contrast with what happens with the
energy level, the consumption of energy is fundamentally
incoherent. Although the average dissipation of energy of the
neuron is in general small it does not mean that its instanta-
neous demand of energy is necessary small, as can be seen in
the inset of Fig. 8. Moreover, in a neural network, a coherent
instantaneous demand of energy by each individual neuron
might be energetically very demanding. Our results show
that a coherent demand of energy only happens at the thresh-
old of identical synchronization whereas coherence is
quickly lost if the need of complete synchrony is slightly
relieved. This fact suggests that a cooperative behavior near
synchrony could be energetically less demanding than in
complete synchrony.

IV. DISCUSSION AND CONCLUSIONS

We have deduced for a Hindmarsh-Rose model neuron a
function of the state space variables that can be used to
evaluate the electrical energy of the neuron throughout the
different states of its dynamics. This function permits calcu-
lation of the temporal derivative of the energy and thus, the
energy consumption of the neuron in different circumstances
can be estimated. Coding is the most specific activity of neu-
rons and its understanding remains as an important open
problem in neuroscience. It has been reported that energy
consumption by neurons in their normal signaling activity is
very high and seems to be a real constrain for neural coding
[3]. Codes maximizing the representational capacity seem to
be too energy demanding and it has been suggested that na-
ture might have developed a compromise between the energy
consumption and the representational capacity [5]. Energy
efficient codes would then be codes that maximize the ratio
of the representational capacity to the energy expended [5].
As a relevant application of our work on the investigation of
energy efficient neuronal coding, we have calculated the av-
erage consumption of energy of the Hindmarsh-Rose neuron
at different values of the external current / and found that the
energy consumption of the neuron during its signaling activ-
ity is very sensitive to the different firing regimes. Our result
for the energy consumption is in remarkable agreement with
the one obtained in Ref. [10] for time-averaged firing rates,
which supports the assumption that the energy consumption
increases linearly with the mean firing rate [5] and, conse-
quently, with the representational capacity of a possible neu-
ronal code. Understanding energy efficient codes is a prom-
ising area of research where models of the electrical energy
of the type described in this work can find a particular area of
application.

We have also studied the energy and the global balance of
energy of two bidirectionally coupled neurons at different
values of the coupling strength k. When the two neurons are
coupled they are forced to oscillate in regions of the state
space where the long run average of their energy derivative
is no longer zero. That means that an extra flow of energy is
required to maintain the synchronized regime. This fact is a
consequence of the different oscillatory regime of the neuron
when coupled, and remains true for whatever type of cou-
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pling is used for the synchronization. As it has been analyzed
in Ref. [12] the extra flow of energy required for the collec-
tive behavior must be provided by the coupling mechanism
itself. For the central nervous system it has been proposed
the existence of a specialized structural site, for glycolytic
generation of ATP, localized at the postsynaptic site [24].
According to Ref. [25] the temporal pattern of the presumed
glycolytic response would directly follow the presynaptic in-
put in order to meet the metabolic needs induced by
the processing of nerve signal transduction. Our results are
consistent with this proposal as they anticipate the need of a
source of energy linked to the coupling mechanism in order
to maintain synchronized kinetics between the two neurons.
They also make it clear that that requirement is only for a
cooperative behavior, not for an isolated activity of the
neurons.

For the Hindmarsh-Rose studied case, we have seen that
the average flow of energy required for the synchronized
regime is low in an ample range of values of the gain param-
eter k but that there is a region, 0.15<k<<0.25, where the
energy dissipation is higher. In this region the interrelation in
the dynamics of both neurons is very changeable and an-
tiphase synchronization is frequent. Cross correlation of in-
stantaneous values shows that the consumption of energy of
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both neurons is basically incoherent until very near the
threshold of identical synchronization, which indicates that a
behavior near synchrony is energetically less stringent than
in complete synchrony. Incoherence in the energy consump-
tion could facilitate a cooperative behavior especially in a
large net of assembled neurons. Nevertheless, as we have
shown, the specific cost of maintaining the cooperative re-
gime also has to be considered and might strongly depend on
the topological characteristics of the network couplings.

The Hindmarsh-Rose model of a neuron is useful for
studying neural behaviors as it properly reproduces qualita-
tively some of the temporal dynamics of a real neuron. It will
be of interest to experimentally ascertain whether the energy
pattern exhibited by this Hindmarsh-Rose model is in fact
reproducing energy characteristics of real neural synchroni-
zation. In Ref. [26] the synchronization between an elec-
tronic oscillatory circuit and a real neuron from the inferior
olivary nucleus of the rat brain has been reported. To accom-
modate the oscillation between the circuit and the neuron, an
electronic coupling consisting of adjustable gain amplifiers is
used. Experiments of this type seem to support that a flow of
energy must be provided by the coupling mechanism, and
could be used to obtain information of the energy required
for the synchronization of real neurons.
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