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DNA charge neutralization by linear polymers: Irreversible binding
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We develop a deterministic mathematical model to describe the way in which polymers bind to DNA by
considering the dynamics of the gap distribution that forms when polymers bind to a DNA plasmid. In so
doing, we generalize existing theory to account for overlaps and binding cooperativity whereby the polymer
binding rate depends on the size of the overlap. The proposed mean-field models are then solved using a
combination of numerical and asymptotic methods. We find that overlaps lead to higher coverage and hence
higher charge neutralizations, results which are more in line with recent experimental observations. Our work
has applications to gene therapy where polymers are used to neutralize the negative charges of the DNA
phosphate backbone, allowing condensation prior to delivery into the nucleus of an abnormal cell.
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L. INTRODUCTION
A. Importance of DNA charge neutralization in gene therapy

One approach to gene therapy that is being used to treat a
range of inherited and acquired diseases involves the intro-
duction of DNA into the nucleus of abnormal cells to restore
their function to normal [1-4]. Delivery into such cells re-
quires the DNA to be compacted either by polymers [5,6] or
transferred within another organism, such as a virus [7,8].
Liposomes, cationic lipids [9,10], or cationic polymers such
as dendrimers [5,11], polyethylenimines [12], or polyami-
doamines [13,14] are all examples of nonviral vectors.

Repulsive forces from negatively charged phosphate
groups which prevent DNA from forming compact structures
have to be neutralized by the vector to achieve condensation.
The work presented in this paper focuses on modeling charge
neutralization of DNA in such nonviral gene delivery sys-
tems. It involves generalizing and solving models of random
sequential absorption [15,16] using deterministic mean-field
approaches, deriving expressions for the distribution of gap
sizes and the overall charge neutralization.

B. Experimental observations and the counterion
condensation theory

The main body of experimental work involves identifying
polymers and ions that cause DNA condensation. While all
studies agree that the charge of the polymers must exceed
one in order for condensation to occur, they are often focused
on different types of polymers. Most studies consider salt
solutions and polymers of relatively small valency but there
is some experimental work involving polymers with much
higher charges [5,17,18]. Experiments usually focus on the
charge neutralization required to condense the DNA and the
morphology of the condensate.
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Different polymers have been found to produce different
shapes of condensate; there may be rods, toroids, and
spheres. The ability to control the shape, size, and charge of
the DNA-polymer complexes is important in gene therapy
since these factors influence the complexes’ suitability for
transfection. Condensation studies performed by Roberts and
co-workers [19,20] using atomic force microscopy (AFM)
allow visualization of DNA movement and conformational
changes. Both toroidal and extended linear structures are ob-
served when the DNA-polymer complex condenses. In [20],
the authors conclude that rings are formed from the bending
of the linear structures; that the two structures exist in a
dynamic equilibrium, the balance of which can be influenced
by the type of polymer used.

Linear polyamines, spermidine, and spermine have been
reported to employ a common molecular mechanism of
DNA binding [21]. Phosphates were found to be the primary
binding sites of these polyamines. It was suggested that elec-
trostatic shielding of the phosphates causes closer helix-helix
surface contacts, facilitating the condensation of DNA. DNA
may also be condensed by polyamidoamine dendrimers [5].
When present in solution in excess, the dendrimers produced
complexes with sufficiently large net positive charge to en-
sure efficient cellular uptake. In [5] the authors conclude that
the most transfection-efficient complexes are not those that
are the most compact but those that have highest positive
charge.

Overall, the experimental evidence suggests that DNA
condenses when approximately 90% of its phosphate charges
are neutralized [22].

Mathematical modeling of DNA condensation has re-
sulted in two theories that admit a description of experimen-
tal results with varying levels of accuracy and parameter fit-
ting. The term “counterion condensation” refers to mobile
positive ions being attached to negative ions that are perma-
nently fixed to DNA [23]. Solving the Poisson-Boltzmann
equation confirms the results of counterion condensation
theory (see [24], for example). The equations for binding
isotherms derived from approximate analytical solution of
the Poisson-Boltzmann equation are given in [24]. Counter-
ion condensation theory can be used to calculate the amount
of negative DNA charge neutralized at equilibrium when
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nonspecific binding of small polymers to DNA backbone oc-
curs [22].

The second theory is the excluded-site binding model,
which can be used to estimate the time variation of the
charge as well as the equilibrium state and is suitable for
larger polymers [13,18]. It is the second theory that is gen-
eralized in this paper.

C. Random sequential absorption and the excluded site
binding model

The original model describing the binding of relatively
long polymers to a number of contiguous sites of DNA was
developed by McGhee and von Hippel [25]. Later, Epstein
extended this work on the excluded-site binding model: in
[26] an exact solution is derived for irreversible ligand bind-
ing to lattices of finite length and for studying the amount of
ligand bound to a DNA molecule as a function of time; in
[27] the results of Monte Carlo simulations of reversible
binding are reported; and in [28] a recurrence relation for the
binding capacity is derived, however, this cannot be solved
explicitly. More recently, Munro et al. [29] tabulated data on
the capacities for various lengths of polymer and DNA in the
case of irreversible binding.

Alongside this mathematical modeling of the biochemical
process of polymer adsorption, a similar problem has been
studied by sections of the theoretical physics community.
The continuous formulation of the problem of random se-
quential absorption (RSA) is equivalent to polymers of unit
length landing on a molecule of infinite length and is known
as the parking problem; it is studied in [16]. Its discrete
analogue is derived by Bonnier et al. [15], who calculate the
proportion of the infinite linear lattice covered by the landing
of polymers which cover a discrete number of sites. This
quantity is equivalent in our example system to the neutral-
ization of DNA charge, which we will denote by 6.

It is argued in [30] that the excluded-site binding model of
[25] has a number of deficiencies. One is that the number of
sites occupied by polymer and the binding rate do not vary
with salt concentration. However, in principle such effects
could be included by allowing the binding rate to depend on
pH and the concentration of the ionic species. Bossmann and
Schulman [31] discuss the difficulties of interpreting experi-
mental data on the distribution of gap sizes arising in DNA
adsorption studies, and point out the different effects which
may dominate in studies on small versus long strands of
DNA.

Extensions of standard RSA models include cooperative
sequential adsorption (CSA) where polymers preferentially
attach adjacent to existing adsorbed polymers, as described
by Evans [32]. While CSA leads to the higher charge neu-
tralizations required for DNA condensation, it is hard to see
the mechanism leading to cooperativity and associated pref-
erential attachment. There are connections between models
of island nucleation and growth and CSA, as noted by Evans
[32] and Barma [33]. Barma [33] analyzes the dynamics of
deposition and evaporation in terms of spin-chain models;
these effectively allow diffusion of adsorbed particles along
the substrate. Bartelt and Privman [34] and Nielaba [35] con-
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sider multilayer adsorption initially of unit length polymers,
later generalizing further to consider longer polymers, mix-
tures, and surface diffusion following adsorption; connec-
tions with models of surface roughening and KPZ theory are
noted. Such generalizations will be analyzed using our meth-
ods in forthcoming papers [36,37]. The topic of large-time
asymptotics of RSA is studied by Ben-Naim and Krapivsky
[38] who find exact solutions for some special cases. Krapiv-
sky and Ben-Naim [39] consider reversible adsorption, a
problem which we will analyze in a future work [36].

A variation of the model that approximates large ligands
attached to polynucleotide as a one-dimensional fluid of hard
rods [40] is used in [41]. However, this extension to coun-
terion condensation theory still fails to accurately model the
experimental data. It is suggested that the charge spacing
decreases as more polymers are bound to polynucleotides.
Only if binding rates different from the calculated ones are
used can the experimental data be made to fit the theoretical
binding isotherms.

DNA condensation into multi-molecular rod- or toroid-
like complexes is consistent with the idea that there are at-
tractive forces between parts of a DNA molecule (or DNA
molecules) which dominate when their charge is neutralized.
In some systems, the fraction of neutralized charge on the
DNA has exceeded one, the DNA having attracted so much
positively charged polymer that the DNA-polymer complex
acquires a net positive charge. This situation is known as
charge inversion. The physics of charge inversion in chemi-
cal and biological systems is reviewed in [42].

The attractive forces between circular polyions of the
same charge are studied in [43,44]. Overcharging occurs be-
cause of the highly favorable gain in electrostatic free energy
due to strong positional correlations between condensed
counterions. The result is the appearance of purely electro-
static attraction between the like-charged macromolecules.

DNA condensation has been shown to occur when a large
proportion of its negative charge is neutralized by positively
charged polymers [13,20,6,22]. Since many sites become un-
available for binding, describing the interactions of a con-
densing polymer with the DNA from knowledge of the rate
of binding of the polymer to unoccupied DNA is compli-
cated. In particular, the overall rate of polymer binding to
DNA is much larger at the start of the process, when the
DNA is empty, than at later stages, when the DNA is almost
fully occupied. Our irreversible binding model, based on
[45], describes these features. We are not claiming to de-
scribe fully all the processes occurring as polymers adsorb to
DNA, there are many effects which we ignore: for example
the curvature of the DNA due to its helical form, the relative
spacing of charges on the polymer may not be the same as
that on the DNA, that polymers may bind at each end but not
in the middle. However, our model is an extension to exist-
ing RSA-based models in that we allow partial adherence of
polymers, so that overlapped binding is permitted. One of the
aims of this paper is to investigate if the effects of this extra
model generality are sufficient to explain the higher charge
neutralizations and charge inversion that are observed in ex-
periments and not realizable in the standard (non-
overlapped-binding) RSA model.
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FIG. 1. Hlustration of a poly-
mer of length x attempting to land
in a gap of length p on a DNA
plasmid which has some sites al-

D. Gap distribution model

In this work, we model the DNA as a one-dimensional
strand, with uniformly spaced binding sites. The model is
used to analyze how the distribution of gap sizes evolves
when polymers attach to the DNA. The distribution of gap
sizes allows us to calculate the fraction of DNA sites that are
occupied by charged polymers and the resulting charge neu-
tralization. We derive the governing equations by consider-
ing the general evolution of N,(f) the number of gaps of
length p at time ¢. This may be stated as follows:

rate at which gaps of
N, _ _

P length p disappear due

to polymer binding
rate at which gaps of
+| length p are created due |. (1)
to polymer binding

The initial irreversible binding model is derived and
solved using numerical and asymptotic techniques in Sec. II.
The model is then extended to allow for partially overlapped
polymers (Sec. III), including the case when the binding rate
depends on the gap size (Sec. IV). Following [28] recursive
relations are constructed for the steady-state gap distributions
that are realized in the large-time limit (Sec. II D). Using
these the equilibrium charge neutralization and final distribu-
tion of gap lengths can also be calculated. The paper ends in
Sec. V, with a discussion of our results and possible direc-
tions for future research.

II. BINDING WITHOUT OVERLAPS
A. Kinetics

We denote by x the length of the polymer and by p the
length of the gap in which the incoming polymer will bind.
Both x and p are positive integers (the unit being one base-
pair). When such a polymer lands in such a gap on the DNA
two smaller gaps are produced, one of length y, the second of
length p—x—y, where 0 <y =< p—x. Thus the possibilities are
as follows:

P)—=+p-x-y), 0sy<p-ux, (2

where the terms in brackets represent gaps of the correspond-
ing size, as illustrated in Fig. 1. There are p—x+1 ways in
which a polymer of length x can position itself in a gap of
length p, provided that p=x. We assume that each case oc-
curs with equal probability.

We denote the total number of gaps between polymers on
the DNA by M, so that

ready occupied.

Py
M()(t) = 2 Np(t)' (3)
p=0

The number of polymers bound to the DNA is My—1, and
the concentration of bound polymers is B(t)=Aq[M(1)—1],
where A is the molar concentration of the DNA. Hence the
molar concentration of free polymers L(¢) can be expressed
as

L(t)= Lo~ B(t) = Ly — Ao[M(1) — 1], (4)

where Lo=L(t=0) is the molar concentration of polymers in
the solution before any binding occurs.
Using (2) in (1) we have the differential equations

dn,
—L:—Kf(p—x+1)Np (Po—x+l$p$P0), (Sa)

dr
dN il
=Ko -x+ DN+ > 2KN, (x<p<Py-x),
g=p+x
(5b)
Py
dN
—L= > 2KN, (0<p<x-1), (5¢)
dr g=p+x

where P is the length of the DNA plasmid, and K,=k/L(t)
denotes the rate at which the polymer lands, k; being a rate
constant.

The sink term on the rhs of Egs. (5a) and (5b) describes
the loss of gaps of length p which are filled by incoming
polymer. The source term that appears in Egs. (5b) and (5¢)
describes the formation of gaps of length p when polymer
lands in a gap of length g>p. The factor of 2 is due to the
fact that two gaps are formed when a landing event occurs.
Since gaps of length p for which Py—x+1<p= P, can only
be destroyed, Egs. (5a) contains just a sink term. By contrast,
since gaps of length p <x are too small to admit a polymer,
no sink term is included in Eq. (5¢).

At t=0, we assume that no polymer has been bound and
so simulations are performed with the initial condition
N,(0)=6, P, (using the Kronecker & notation).

B. Charge neutralization

As polymers adhere, they neutralize the negative charge
of the DNA. Two physical quantities derived from the gap
size distribution can be used to calculate the extent of charge
neutralization. They are the total number of gaps, M, as
defined by (3) and the total length of gaps, M/, defined by
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FIG. 2. Evolution of charge neutralization 6 calculated from Eq.
(5) and compared to Monte Carlo simulation results. Parameter val-
ues: Lo=8, A=1, Py=20 sites, x=5 sites, and k=10 s,

Py

M (1) = 2 pN,(2). (6)
p=1

The charge neutralization 6 is defined to be the proportion of
charges on the DNA neutralized by the polymer. This can be
calculated in two ways:

9(t)=x(Mo(t)— 1) _ PO_Ml(t)’

Py Py

)

since My—1 is the number of polymer molecules attached to
the DNA plasmid and Py—M, is the total number of sites
occupied by the polymers. We thus have the identity

XM()(I)+M1(I):P0+X, (8)

which is valid for all ¢.

C. Numerical solution

Equations (5) were solved using a semi-implicit extrapo-
lation method [46] with adaptive step-size control written
and compiled using Fortran 90. The charge neutralization 6
was then calculated using Eq. (7).

The evolution of the charge neutralization for a typical
simulation is plotted in Fig. 2. The accuracy of the numerical
solution is confirmed by comparing it to results from a
Monte Carlo simulation with the same parameters [47]. From
Fig. 2 we note in both cases a rapid approach to an equilib-
rium charge neutralization.

D. Irreversible equilibrium asymptotics

A recursive relation, developed in [28], allows us to cal-
culate the equilibrium binding capacity, R(x, Py). This is the
average number of polymers of length x that irreversibly
bind to DNA of length P,. R(x,P,) corresponds to an equi-
librium value of My(r)—1 from Sec. II [Eq. (3)]. Clearly if
the DNA is shorter than the polymer (Py<x), then no poly-
mers can land and so R(x,Py)=0. If x<Py<2x, then only
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one polymer can be accommodated so that R(x,P,)=1. For
longer DNA chains (Py=2x) the number of polymers land-
ing will depend upon precisely where earlier polymers
landed. When a polymer lands on a lattice of length P, two
shorter sublattices are generated. The total capacity of the
long lattice is one more than the sum of the capacities of the
two shorter lattices. By conditioning on the landing site, the
recursive relation

Py—x
2 2 R(x,q)
R(x,Po) =1+ ;‘x—x” (2x<Py), (9a)
0—
R(x,Pp)=1 (x=<Py<2x), (9b)
R(x,Py) =0 (Py<x), (9¢)

for the expected capacity can be derived. In Egs. (9) we view
Py as the recurrence parameter. We now derive a recurrence
relation for R(x,P). From (9a) we have that

Py—x
—R(x,Pg=x) + 2 R(x.p)
R(,Py—1)=1+2 = ., (10)
Py—x
which, upon rearranging, yields
Py—x
2 > R(x,p) = (Py—x)[R(x,Py— 1) = 1]+ 2R(x, Py — x).
p=x

(1)

By substituting from (11) into (9) and noting that R(x, P)
can be calculated explicitly for Py<3x—1, we deduce

(Py—x)(R(x,Py—1) = 1)+ 2R(x,Py— x)

R(x,Py) =1+
(x O) Po—x+l

(Bx=Py), (12a)

Py—2x+1
R(x,Py)=1+ z(ﬁ) (2x < Py < 3x),

PO—X+1

(12b)

R(x,Pp)=1 (x=<Py<2x), (12¢)

R(X,P0)=O (P0<X) (lZd)

Equation (12a) is an xth-order recurrence relation in P, with
Py-dependent coefficients, for which an explicit solution is
not available.

We are interested in the behavior of solutions when the
polymers occupy many base pairs and the DNA is many
times longer than the polymer, that is, 1 <x<P,. There are
many such scalings, and so for the purposes of giving illus-
trative calculations we choose one particular limit, namely
that of Py=0(x?)> 1. Accordingly we define a small param-
eter, €, by e=1/x<1. We assume that Py~ O(€ %) and write
y=€P,, where y~ O(1). This scaling is typical of those used
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in experiments on DNA condensation by cationic polymers
where the DNA plasmid is typically of length 10* base pairs
and polymers are of length 107 units.

If 6~ O(1), then, using Eq. (7), R=Py0/x~ O(1/¢€), that
is, a plasmid of length O(1/€?) can accept O(1/€) polymers
of length O(1/€). We therefore rescale the irreversible bind-
ing capacity as R(x, Py)=r(y)/ € with r~O(1). We substitute
x, Py, and R in Eq. (12a) to yield

<%—16+ 1>r(y) =e+ (é - lé)r(y— €)+2r(y—e).
(13)

We construct an asymptotic expansion for r(y) approximat-
ing r(y—e€) by r(y)—eﬁr(y) since y~ O(1). Making this ap-
proximation and retaining only terms of leading order and

first order yields the following ordinary differential equation
(ODE) for r(y):

(y+ 6 d;(y ) )re, (14)
y
with solution
) =ely+ -6 (15)

for some constant ¢. Rewriting (15) in terms of the original
variables yields

B(x, Po) = 6(x,) - Pi[l — Bx, )], (16)
0

where the constant 6(x,%) is determined by matching Egq.
(16) to the largest solution of Eq. (12) that is easily obtained
analytically.

From Eq. (12b), the largest value of P, for which we can
determine R(x,P,) without using the recurrence relation oc-
curs when Py=3x—1. Substituting R(x,3x—1)=2 in Eq. (16)
gives

by 2x

0(x,3x = 1) = 0(x,%°) = ——[1 = 0(x,») | = )

(x,3x = 1) = 00x,00) - = [1 = O, ) | = 77—
(17)

which, on rearrangement, yields
3x

O(x,) = . 18
() = (18)

Substitution of #(x,%) in Eq. (16) yields the following ex-
pression for the charge neutralisation of DNA molecules hav-

ing at least 3x sites
3 -1
al (1 -t ) (19)
4x -1 3P0

6(.x, Po) =

In Fig. 3 the asymptotic solution (19) is shown to be in
very close agreement with the exact recurrence relations over
a range of values for DNA length P,,.

Equation (19) implies that when polymers bind irrevers-
ibly without overlaps the highest charge neutralization oc-
curs when x=2 and 6(2,%)=0.86. Such neutralization is in-
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FIG. 3. Exact charge neutralization # when nonoverlapped poly-
mers that occupy 4 and 100 sites bind irreversibly to DNA of vari-
ous lengths P, There is excellent agreement between the
asymptotic results and those obtained from the recurrence relation.

sufficient to condense DNA. Applying Eq. (19) to the
continuous parking problem results in lim,_ . Py 0(x, Py)
=0.750, which is close to the solution obtained in [16],
where 6=0.748.

From [48], the kinetics of the neutralization of charge for
a lattice of infinite length are

x[1-exp(=k)] “1-(1- U/x)x_l
o[ sl [0,
0

0 v

(20)

where k; is the binding rate.

In Fig. 4 the asymptotic solution (19) is plotted and
shown to be in good agreement with exact solutions com-
piled in [48] of the equilibrium charge neutralization that
were obtained by evaluating Eq. (20) in the limit t=o0.

1
09r
08fr
0.7+
0.6f

@ 05}
041
0.3f
0.2t
01t

0
10

—— exact solution
+ approximation

0 2 3

10 10

X

FIG. 4. Diagram showing how the charge neutralization changes
as the length of the polymer varies when the polymer binds irre-
versibly and with no overlaps to a strip of DNA of infinite length.
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E. Equilibrium gap length distribution

By generalizing the argument presented in the previous
section it is possible to derive recurrence relations for the
equilibrium distribution of gaps, that is lim,_.. N,(¢), which
we shall now denote by N;%(x, Py), explicitly stating the de-
pendence of N on x and Py. Irreversible binding without
overlaps results in all gaps larger than x—1 being filled by
polymers so that Ny¥(x,Pg)=0 for p=ux. As stated in Sec.

Possibility of gap

generation on

Number of gaps

the first landing

PHYSICAL REVIEW E 74, 011904 (2006)

IID, an empty DNA molecule of length P, has Py—x+1
landing positions for a polymer of length x. Each point of
initial attachment results in two sublattices, a sublattice and a
gap, or two gaps. Here, by “gap” we mean a gap of size p
<x and by “sublattice” we mean a gap of size p=x which
will be further subdivided by the binding of more polymers.

The total number of gaps is calculated recursively by con-
sidering the distribution of gap sizes on smaller sublattices:

Sum of all gaps of size p
+ [ from sub-lattices of DNA
formed by the landing

of length p on =2
plasmid of length P,

The resulting recursive relation for the distribution of gaps of
length (0<p<x-1)is

Py—x
2
q - q

NG (Po_x+1)(1+q§+p1v;(x,q>),
(p+2x<P,y), (22a)

Neq(xP0)=# (p+x<Py<p+2x)

P ’ PO—X+1 ’
(22b)
N;q(x,PO)zo (Py<p+x). (22¢)

Using an argument similar to that used to derive Eq. (12),
Eq. (22) can be rewritten as an xth-order recurrence relation:

(Py—x)N(x,Py— 1) + 2N, (x, Py — x)

q _
NZ(X’PO)_ Py—x+1
(p+x<Py), (23a)
NEY( P)—; (Py=p+x) (23b)
O
N;q(x,P0)=0 (Py<p+x). (23¢)

A typical case is presented in Fig. 5, where the equilib-
rium gap distribution N:;q(x,PO) is plotted for fixed values of
x and P,. The log-scale plot in Fig. 5(b) suggests that the
distribution is approximately of the form N,=a-blogp
(where a and b are constants).

III. OVERLAPPED BINDING

Experimental results suggest that at equilibrium a net re-
sultant positive charge can arise when positively charged

(21)
(Total number of )

landing positions

polymers land on negatively charged DNA [49]. One expla-
nation of this phenomenon is that some polymers are only
partially bound to the DNA surface. This could occur when
polymers attach to gaps on the DNA which are shorter in
length than the polymers (see Fig. 6).

In this section we consider polymer-binding with over-
laps, assuming as before that the binding rate is independent
of the length of the binding region.

A. Kinetics

As before, when a polymer of length x lands in a gap of
width p, two smaller gaps are produced, one of length y and
the other of length p—x—y. The possibilities are as follows

()= () +(p-x-y),

Negative values of y and p—x—y correspond to regions
where there is an overlap of length —y or —(p—x—y). Poly-
mers cannot land in “negative” gaps: they are only formed
when polymers land.

As illustrated in Fig. 6, a polymer can bind in a gap of
length p>0 in p+x—1 ways. If the polymers land on the
DNA plasmid at the rate K/, then gaps of size p are removed
at a rate —K/(p+x—1)N,,, which is proportional to the num-
ber of possible landing positions and the number of such
gaps, N,,. As in Sec. II, the assumption that the polymer lands
on the DNA plasmid at the rate K, means that the rate at
which gaps of size p are created is given by 2Kf2§=0p 1V
The resulting equations are

l-xsy<p-1. (24

dN
EE=—Kf(p+x—1)Np (p="Py), (25a)
dN ol
—L=— K p+x-DN,+ > 2KN, (1<p<Py-1),
dr . g=p+1 )
(25b)
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FIG. 5. Series of plots showing the equilibrium gap distribution
when binding is irreversible, with no overlaps. Parameter values:
Py=10000 and x=100 (6=0.7473).

P

dN 9

EEZEszNg (1-x<p=<0). (25¢)
g=1

Although Egs. (25) appear to be identical to (5), their do-
mains of applicability in p space differ, and the factors of
p—x+1 have been replaced by p+x—1. In both cases gaps of
length P, cannot be created as binding leads only to the
formation of smaller gaps. Gaps of size 1 <p =< Py—1 may be
created and destroyed. Once a gap of zero, or negative size,
is created, no further binding event can remove it; therefore
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such gaps can only be created. Since we allow overlaps to
occur, the lower limit of the sum appearing in Eqgs. (25) is
g=1 rather than g=p+1. This is because the smallest gap
into which a polymer may land has size 1.
As in the case of nonoverlapped binding (8), we have
Ml(t) +XMO(I)=P0+)C, and
M,

My—1
0:m:1__. (26)
Py Py

However, M and M, are now defined slightly differently: in
place of (3) and (6) we have

Po Py
MO(I): 2 Np(t)’ Ml(t): E pr(t)’ (27)
p=l-x p=l-x

thus M (¢) =0, but M (1) <0 is allowable, leading to the pos-
sibility that > 1 in (26).

B. Numerical solution

As in Sec. IIC, Egs. (25) were solved using a semi-
implicit extrapolation method with adaptive step-size con-
trol. The charge neutralization corresponding to a numerical
solution of Egs. (25) is plotted in Fig. 7 for the binding of a
five-site polymer to a strip of DNA of length 200. We ob-
serve much greater charge neutralization when overlapping
occurs.

The equilibrium gap distributions corresponding to the
simulations presented in Fig. 7 are plotted in Fig. 8 and show
that overlapped irreversible binding results in a uniform dis-
tribution of overlaps. This surprising result is due to the un-
realistic assumption that the adherence rate of polymers does
not depend on the number of bonds that form (that is, the
size of the gap in which the polymer lands). A more realistic
scenario in which the rate of adherence depends on gap size
is analyzed in the next section.

C. Equilibrium plasmid capacity

It is possible to construct a recursive relation for the equi-
librium binding capacity of a strip of DNA when polymers
bind irreversibly with overlaps (i.e., the equilibrium solution
of the model presented in Sec. IIl A). The derivation is simi-
lar to that presented in Sec. II D, except that binding can now

L]
.
[ S S S S o ) +
=
FIG. 6. There are p+x—1 pos-
oo o 00080 0000080 oo 000000 oo 000000 sible landing positions (shown in
—— upper panel, in gray) for a poly-
P mer of length x binding to DNA in
a gap of width p<x.
66989000 0830000 -8-0-3-9-0- 00 6650600
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FIG. 7. Plot showing how for irreversible binding the charge
neutralization changes when binding with overlaps occurs. Param-
eter values: Ly= 10°M, A=5X 1072 M, Py=200 sites, x=5 sites,
kp=10% M~! 71,

occur in any gap on the DNA of length greater than zero. It
follows that there are Py+x—1 landing positions for polymer
of length x landing on a stretch of DNA of length P. There-
fore the average number of polymers of length x that bind
irreversibly (with overlaps) to a DNA of length Py, is

Py-1
2> R(x.p)
p=1
Rx,Py))=1+—""". 28
(P =14 o (28)

We remark that the minimum gap length that can accommo-
date another polymer has decreased from x in Eq. (9) (lower
limit of the sum) to 1. The largest gap created by the landing
polymers has also increased from Py—x to Py—1 (upper limit
of the sum). Since DNA of length Py=1 always accepts just
one polymer, we impose the boundary condition

20 " T T T
1g} —— no overlap
— overlap

16}

14}

12t A
=10} \
st \

6
4t T~
2

0 1 I 1 I 1 I I 1 1
-5 4 3 2 -1 0 1 2 8 4 5
p
FIG. 8. Plot showing how for irreversible binding the equilib-
rium gap distribution changes when binding with overlaps occurs.
Parameter values: as per Fig. 7.
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R(x,1)=1, (29)
and we may use (29) to simplify Eq. (28) to obtain

2(Py-1
R(x,Py) =1+ 2By= 1) (30)
x+1
It follows from (30) that the fraction of neutralized charge
is

2(Py—1 - D(Py+
0(x,P0)=i<1+ 2 )>:1+(x NPy +)

PO x+1 Po(x+l)

(31
so that charge inversion occurs for all x> 1 and
X

0~2+—, 32
P (32)

0

as Py— o0 and x— o, with x/ P, fixed. For x=0(1) and P,
— o0, we have

f~2———. (33)

It is possible to combine Eqgs. (32) and (33) by considering
the asymptotic limit Py> 1 with x~ VP, since then Eq. (31)
yields

2 x
0~2——+—. (34)

X PO
The scaling Py=0(x?)>1 was chosen in Sec. IID as an
example of Py>x>1 due to its applicability to polymer ad-
sorption onto a DNA substrate. We see from (34) that the
scaling Py~x?>>1 is a useful example in that it simulta-
neously illustrates both the effects (32), which occurs for
Py~x>1, and (33), which holds when Py>x~1.

Figure 9 shows how @ varies with x for DNA of length
10* sites. As expected from (31), charge inversion is evident
for all values of x>1 and 6 increases with x.

Figure 10 displays a series of curves showing how, for a
given polymer of fixed length, the equilibrium charge neu-
tralization varies when the length of the DNA is altered. We
note that §— 1+(x—1)/(1+x) as Py— o, with x=0(1), as
expected from Eq. (33).

D. Equilibrium gap length distribution

To find the equilibrium gap distribution when overlaps
occur we use a similar technique to that described above for
6. A polymer of length x can land on an empty DNA plasmid
of length P, in Py—x+1 ways, as in the case of nonover-
lapped binding. In addition, there are x—1 landing positions
on each side of the DNA plasmid which result in an overlap-
ping. Thus, following arguments similar to those preceding
Eq. (22), we obtain the recursive relation
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FIG. 9. Equilibrium charge neutralization 6, as defined by Eq.
(31), when polymers of length x bind irreversibly to DNA of length
Py=10* 1In (a) the charge neutralization 6 is plotted for the range of
polymer lengths 1<x=<1000, showing a region of rapid variation
for smaller x. In (b) we focus on the range 1 <x=< 10, showing that
the two cases coincide at x=1.

Py-1

1+ N;q(x,q>> (1< Py),

2
N -
p(x’PO)_(P0+x—1)< o

(35)

for the gap distribution (1-x<p=<0), with N;q(x,l)=2/x,
since only one polymer binds to DNA of length Py=1 and it
can do so in x different ways, leading to gaps of size p and
1-p-x(1-x<p=<0), each of which are equally likely. The
recurrence relation and the initial condition are independent
of p. Therefore, when overlapped binding occurs at a con-
stant rate, the equilibrium gap distribution is uniform.
Equation (35) can be simplified by noting that

2
Ned )=
L e Ty

Py-1
X (1 + 2 NS (x.q) — NS3(x, Py - 1));
g=1

(36)

combining (35) and (36) it follows that
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x=4

x=2

FIG. 10. Series of curves showing how, for polymers of fixed
length x, the equilibrium charge neutralisation 6 varies with P, the
length of the DNA plasmid.

PO + X
N(x, Py) = (m)NZ‘*(%Po -1 (1 <Py,
(37a)
2
N, 1) =~ (37b)
x
Equation (37) can be solved to give
P0+x 2(P0+x)
q = 4 =—
N[ey(x’PO) ( 1+_X )N; (x’l) x(x+1) ) (38)

which we note is independent of gap size p. It is also pos-
sible to calculate the charge neutralization. Suppose that the
average gap length is L. Then M;=LM, (note L<0, M,
>0, M, <0). The fraction of neutralized charge is then

(Po-L) x 1-LIP,
Py (x+L) 1+L/x’

0= (39)
Now we recall that xMy+M,=Py+x [see Eq. (8)]. Since
there is an equal number of gaps of every length, the average
gap length L satisfies

1-x
j=——, 40
i=— (40)

as expected for a uniform distribution on 1—x<p=<0. Sub-
stitution of L in Eq. (39) confirms Eq. (31).

IV. IRREVERSIBLE BINDING WITH
OVERLAP-DEPENDENT RATES

A. Kinetics

It is reasonable to assume that a polymer is less likely to
bind to the DNA if the location where it binds is partially
occupied by other polymers. We account for this effect by
allowing the binding rate K, to vary with p, the number of
bonds formed, in the following way:
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FIG. 11. Overlap-length cooperativity of overlapped landing
(x=3, p=5).

K==L (p=n. @

In (41) \ is the binding cooperativity constant. If the polymer
is positioned so that all x bonds form, then K(?‘):Kf. The
binding rate is reduced if the gap between polymers already
attached to the DNA is not large enough to accept the full
length of the landing polymer: every time the gap size is
reduced by one site, it is decreased by a factor of N. Hence
the lowest nonzero adhesion rate corresponds to a polymer
landing and binding to the DNA in a gap of unit length,
which occurs at a rate Kj(f)/ A*1. Varying N\ from unity to
infinity interpolates between the previously described models
of overlapped binding (A\=1) and binding without overlaps
(A=o0). Typically we expect \ to be close to unity. This is
because the probability of forming each individual bond is
high, but sufficiently far away from unity that the probability
of forming all x bonds is distinct from unity. Treating each
bond-formation event as independent, which we acknowl-
edge is an approximation, the probability of forming p bonds
is A?. Other choices for K}p ) could be made, for example
K}”:Kf(p/x)v with v>0.

1. Destruction of gaps by polymer binding

We now assume that the rate of binding depends on the
number of sites at which the polymer binds. Figures 11 and
12 illustrate all the contributions to the sink terms of the
binding kinetics equations. When the gap is longer than the
polymer (i.e., p>x) there are p+x—1 sites at which a poly-
mer can bind partially if we allow overlaps. This contrasts
with p—x+1 sites at which the polymer may bind when over-
laps are not allowed. The binding rate depends on the num-
ber of sites to which the polymer attaches. Individual binding
rates corresponding to each position and expressions com-
bining them are displayed on the rhs of Fig. 11. The rate at
which gaps of length p are removed is obtained by summing
all the possible binding rates and in this case it results in

PHYSICAL REVIEW E 74, 011904 (2006)
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FIG. 12. Overlap-length cooperativity of overlapped landing
(x=5, p=3).

(rate at which gaps of )

x=1

1
=K/ p-x+1+22, = |N
length p are removed ! (p * z 7\’) P
2(1 =\
=Ky p—x+l+ﬁ N,.

(42)

When the gap is smaller than the polymer p<x (Fig. 12)
then any polymer that attaches will bind partially. As a result,
the rate at which gaps of length p<x form depends on the
number of bound sites; there are still p+x—1 binding con-
figurations.

When the polymer fully covers the gap, the number of
overlapped sites is x—p and hence the binding rate is

K(P) - _LK
f NP .

Since there are x—p+ 1 such positions, the contribution to the
rate of destruction of gaps from polymers that fully cover the

gap is
KN (x=p+1)N,. (43)

Polymers that partially cover the gap contribute as follows to
gap destruction:

S 20— 1)
o e T

Combining (43) and (44) we deduce that the rate at which
gaps of length 1 <p=<x are destroyed is given by

A -1
Kf( ( )

N + M (x-p+ 1)>Np' (45)

2. Creation of gaps and overlaps by polymer-binding

A gap of length 1-x<p=<0 is created when a polymer
binds partially to a gap of length 1 <g<p+x (illustrated in
Fig. 13) by g sites only. It follows from (41) that the binding
rate is K;x)/ A8 and the contribution to the creation of gaps
is
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FIG. 13. An overlap of the length p created inside of the short
gap of the length g.

p+x

2192 NET (46)

When larger gaps of length p+x+1=<g=< P, are destroyed,
and the only sites where the polymer does not bind are due to
the overlaps, then the binding rate is K}x)/ N (see Fig. 14)
and the contribution to the creation of gaps is

Py N
2K, > . (47)
g=p+x+1 A7

If a gap of length 1 <p =< Py—x—1 is created when a poly-
mer binds to a gap of length p+1=<g=<p+x, then the poly-
mer is attached by g—p sites only (see Fig. 15). It follows
from (41) that the binding rate is Kj(f)/ AP**=8 and the contri-

bution to the creation of gaps is

ptx

2K, >, Ne_ (48)

o NP

When larger gaps of length p+x+1<g<P, are de-
stroyed, leaving a gap of 51ze p, with no overlaps being
formed, the binding rate is K (see Fig. 16) and the contri-
bution to the creation of gaps is

Py

2K, X N,. (49)

g=p+x+1

Larger gaps of length Po—x<p=<Py—1 can only be cre-
ated by partially bound polymers which attach with g—p
sites. It follows from (41) that the binding rate is K( [ NP8
and the contribution to the creation of gaps is the same as
(48) with the upper limit of the sum set to P as the length of
the DNA limits the size of the gap being destroyed:

2K, S e (50)

FIG. 14. An overlap of length p is created when a polymer
partially binds inside a gap of length g.
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FIG. 15. A gap of length p is created when a polymer partially
binds inside a gap of the length g.

Using the above results we deduce that when Egs. (5) and
(25) are adjusted to allow for overlap-dependent binding
rates, the following system of differential equations is ob-
tained:

dN 2(1 =\
EE=—Kpr<P—X+1+T (p="Py),
(51a)
dN 2(1 ="
—E=—KN( —x+ly—
dr Ap\P A—1
Py N
+2K; X — = (Py—x<p<P;-1),
Cgmpet NS
(51b)
P
dN 2(1 =N 9
—E=—Kpr<p—x+l+¥>+2Kf > N,
dr A-1 g=p+x+l
[7+X
+2Kf2 )\p+xg (x+1$p$P0—x—1),
g=p+l
(51c)
dN AT - ) )
—L K| T——— 4N x-p+ )N
dr f( A—1 (x=p+1D N,
Py ptx N
+2K; > Ng+2K; > —A— S (sp=y),
g=p+x+1 gp+l)\
(51d)
dN N, =
—L 22K, 2 J~+21(f2 L (l-x=p=0).
d —p+x+l)\ )\

(51e)

A semi-implicit extrapolation method was used to solve
the system of equations (51). Figure 17 shows how the
charge neutralization evolves for different values of the bind-

FIG. 16. A gap of length p is created when a polymer lands
inside a gap of length g.
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FIG. 17. Series of curves showing how the dynamics of the
charge neutralization change for irreversible binding with different
binding cooperativity constants \. Binding with no overlaps (A
=) corresponds to the lowest curve and N\=1 where overlapped
binding is not penalized in any way corresponds to the top curve.
Parameter values: L= 107" M, A=5%X 1072 M, x=5 sites, Py=200
sites, k=108 M~! 71,

ing cooperativity constant, A, when a polymer of length x
=5 binds to a DNA plasmid of length P,=200. The upper-
most curve in Fig. 17 corresponds to overlapped binding at a
rate that is independent of the size of the landing site (\
=1) as in Sec. III and has a shape similar to the plot of
binding without overlaps (A — ). The main differences be-
tween the two curves are that when A — o the equilibrium
value of € is smaller. Plots for intermediate values of N\ ap-
pear to have steps. These may be explained by gradual filling
of the smaller gaps by binding with increasingly large over-
laps. The clearest example is for the case A=100 in Fig. 17
where five steps are clearly visible. The first step corresponds
to nonoverlapped binding equilibrium (at t=0.1 s), the sec-
ond when gaps of length x—1=4 sites are filled. Since the
binding rate decreases by a factor of A as the gap size de-
creases by one site, the second plateau occurs when =1 s,
the third when =100 s, and so on.

The only difference between the parameters used to con-
struct Figs. 17 and 18 is polymer length (x=5 in Fig. 17 and
x=10 in Fig. 18). We note that convergence to equilibrium is
slower when x increases (this is particularly evident when
A=2).

B. Irreversible binding capacity

When the binding rate varies with the gap size p accord-
ing to (41), the binding capacity, that is the total number of
polymers of length x which can be expected to adhere to a
plasmid of length Py, is

Py—x P()—l
2> Rx,p)+2 2>, NO0PR(x,p)
R(x,Py) =1+ el i
Po—x+1+22\7
i=1
()C = Po) N (523)
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FIG. 18. Irreversible binding with different binding cooperativ-
ity constants. Parameter values: as per Fig. 17, except x=10 sites.

Py-1
2 2 N PR(x,p)
R(x,Py) =1+ - — 2<=Py<x),
(x=Py— DN0 42 D N7
i=x—P
(52b)
R(x,1)=1. (52¢)

We recall that nonoverlapped binding is equivalent to size-
dependent overlapped binding with A= and note that Eq.
(52a) reduces to Eq. (9a) in this case. Similarly Eq. (52a)
reduces to Eq. (28) when \=1. Equations (52) may be de-
rived by considering all possible landing configurations of
the polymers on the DNA plasmid. Figure 19 illustrates what
cases may arise when the polymer is shorter than the DNA.
The factor by which kj(f‘) should be multiplied to determine
the effective binding rate is given on the rhs.

There are Py+x—1 landing positions (as in the case of
constant-rate binding with overlaps), but these configurations
occur with different probabilities because polymers are less

{1}p=-3 0-0-0-0—0-0N5%(4, 5) 5
2p=-2 **T3 o000V &
Blp=-1 T TEZo0o0aNT(4,3) L
(4} p=0 383 oavei(4,2) 1
(5} NS94, 1)0-0 000 oN%(4,1) 1
(6} NS4, 2)0-00000 p=0 1
(17 N(43po0o0080 T p=-11%
{8  NS(4,400000808 T T p=—2%
{9} N4, 5)o—o—o—o—o—o.+H p=—3%

FIG. 19. Gap-length cooperativity of overlapped landing (x=4,
P(): 6)
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FIG. 20. Charge neutralization for the case of overlapped bind-
ing. Parameter values: Py=10 000, x=100.

likely to bind when they cannot adhere with all of their
charges.

Figure 20 shows how the charge neutralization varies with
N when Py=10 000 and x=100. In the limit A\ —oc @ hardly
changes from its value of 1.46 (which it attains at A=1.5).

Note that there is no connection between the result de-
rived in Sec. II D where #<<1 and A= and the asymptotic
limit A — - which gives #=1.5. Even for very large values
of N\ gaps of size p<x are filled over very long time scales,
the plasmid will eventually be completely covered in the
limit #— and have 6= 1. However, if A=, gaps of size
p<x are never filled and so <1V1r.

Figure 21 shows the equilibrium charge neutralization 6
as a function of the polymer length x and cooperativity con-
stant \. As expected, increasing A\ and/or x leads to an in-
crease in 6.

C. Equilibrium gap distribution for variable-rate overlapped
binding

Recursive relations for the equilibrium gap distribution
[N,)(x, Py)] when there is variable-rate binding with overlaps
are derived in this section. Figure 19 illustrates the derivation
of the steady-state gap distribution when polymers of length
x=4 land on a stretch of DNA of length P,=6.

Let N°4(4,6) be the number of gaps of length —3 when
polymers of length 4 land on a stretch of DNA which is six
sites long. The relative rate at which each possible landing

PHYSICAL REVIEW E 74, 011904 (2006)

FIG. 21. Surface plot showing how, for a fixed value of P,
(Pyp=2000), the equilibrium charge neutralization 6 changes as the
polymer length x and binding cooperativity N\ vary.

event occurs is shown on the right-hand side of Fig. 19. In
this case the sum of the weights of all outcomes is

o=1/N+ 1IN+ 1UN+3+ 1N+ 1N+ 10\,

which generalizes to (Py—x+1+23/\™) for polymers of
length x landing on gaps of length P,

The probability of a polymer landing in configuration {1}
(see Fig. 19) is the rate at which this happens (1/\?) normal-
ized by the sum of all possible weights (), giving

probability of
polymer landing in
configuration {1}
1/\° /A3
T o INHINZHINA3 NI N

This landing position creates one gap of length —3 but there
is also the possibility of gaps of this size being created when
polymers land on the remaining five-site gap. Therefore the
total contribution to overlaps of length 3 from configuration

{1} is

N1+ N%(4,5)]

1 1 1 ; 11 1
St S T3+ T+ S5+
'SR T NN N

Similar formulas hold for configurations {2}, {3}, {4}. Con-
figuration {5} is a special case since two gaps are created.
Hence the total contribution from {5} is

2N%(4,1)
11 131 11
Sttt T3+ -+ S5+
'SR T AN N

Arrangements {6}, {7}, {8}, {9} are identical to {4}, {3}, {2},
{1}. Combining the above results we deduce that
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2
NZ(4,6) =

1
= +=+3+-+ =5+
>\3 AN AR

X (%[1 +N%(4,5)]

N4(4.4)
+

.\ N4(4,3)
)\2

+N%(4,2) +N‘i%(4,1)).
(53)

Similar reasoning results in recursive relations for steady-
state gap distributions for any polymer and DNA length. The
number of gaps N,(x,Py) of size p is determined by con-
structing a recurrence relation in which the length of the
DNA molecule varies. We do this by first considering a DNA
molecule of unit length (Py=1) and increasing P, until P,
=P,. It is then possible to show that

iy A v N(x, P 0)
N+ 2 Nil(x,Po) + E L
Py=1 Py=Py—x+1 NPoPoes
N;q(x’PO) =2 x—1
1
Po=x+1422 —
Py=t N°
(x =< Py), (54a)
OE N(x, P o)
P . )\PO—PO-FX
N(x,Pg) =2 i - (p+x<Py<x),
x=Py+1 ) 2 1
ANFo )\PO—PO+X
(54b)
Py-1
)\PO_X 2 q(-x PO)
Py—Pytx
Py=1 ATOTTO
N;q(x,Po)=2 Pl 2=sPy<p+x),
X = PO +1 E
x—P,
A\ 0 PO_ )\PO Py+x
(54c¢)
2
N(x, 1) =—. (54d)
X

Equations (54) allow us to investigate how gap distributions
vary with \. Plots of the gap distribution N;%(x, P) for DNA
of length P,=2000, and polymer of length x=50 are shown
in Fig. 22 for different values of A. We note that when A
=1 a uniform distribution of gap lengths is observed; higher
values of A result in a greater proportion of smaller gaps, and
increasing N\ above 2 has little additional effect on the gap
distribution.

PHYSICAL REVIEW E 74, 011904 (2006)

5
4+t
3 L
€a
Z
oL
A=1.000001
=1.01
1 r l=
A=
o A=1000009Q .
-50 -40 -30 -20 -10 0

p

FIG. 22. Series of curves showing how the equilibrium gap
distribution changes as the binding cooperativity \ varies. Param-
eter values: Py=2000, x=50.

V. CONCLUSIONS

We have adapted an existing model of binding without
overlaps [45] to construct new models of overlapped binding
with constant and variable binding rates. We have shown that
the simpler mechanism of overlapped binding gives rise to
higher coverage in RSA than that allowed by standard RSA
models. We believe that in systems such as polymer adsorp-
tion onto DNA, overlapped binding is a more likely mecha-
nism than cooperative sequential adsorption (CSA), which is
the other mechanism for acheiving the high charge neutral-
izations required for DNA condensation. In particular we
point to charge inversion as the clinching argument, which is
easily explained by overlapped binding but impossible both
with standard RSA and even with CSA. Overlapped binding
has some similarity with multilayer binding models analyzed
by, for example, Bartelt and Privman [34] and Nielaba [35].
Ideally, of course, a mean field model encompassing both
overlapped binding and multilayer adsorption would be use-
ful.

Neither overlapped nor nonoverlapped irreversible bind-
ing scenarios lead to an “equilibrium” configuration, rather
the dynamics simply leads to a final jammed state, which is
degenerate. However, we have characterized the most likely
final state using a mean-field approach. The method used in
[28] to derive recurrence relations for the equilibrium charge
neutralization has been generalized to determine equilibrium
gap length distributions for nonoverlapped binding. Similar
methods were used to study overlapped binding and to de-
termine the associated charge neutralization and equilibrium
gap length distribution. New exact expressions for DNA
charge neutralization were derived for binding with overlaps
and new asymptotic approximations for the case without
overlaps were also obtained.

The numerical simulations of irreversible binding without
overlaps presented here agree with previous work [26,27] in
that they yield charge neutralizations that are insufficient to
condense DNA. Our asymptotic formula for charge neutral-
ization indicates that it is impossible to achieve the 90%
charge neutralization required to condense the DNA [50] for
any polymers when binding is irreversible and there are no
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overlaps. It is possible to achieve 100% coverage with
monomers but the counterion condensation model and ex-
perimental studies [23] suggest that such a combination
would not condense. This is due to the fact that monomers
being polymers of unit length would behave in a similar
manner to monovalent ions, which are known not to cause
DNA condensation. One hundred percent coverage with
monomers is unlikely to be observed in realistic nonoverlap-
ping systems due to monomers having nonzero unbinding
and motion rates (giving rise to higher transational entropy).

Since DNA condensation by polymers is observed, there
is something lacking in the traditional excluded site binding
model: we believe that this is the phenomenon of overlapped
binding. We have developed a model that describes the dy-
namics of the gap distributions that occur when polymers
overlap and have shown that this allows higher charge neu-
tralizations to occur than a model which forbids overlapped
binding.

Furthermore, overlapped binding can explain charge in-
version, where adhered polymers more than neutralize the
DNA’s negative phosphate charges, and form a complex with
net positive charge. This phenomenon, where the charge neu-
tralization ratio exceeds unity, which has been experimen-
tally observed [42] and cannot be explained by nonover-
lapped binding, is entirely consistent with our overlapped
binding models.

Simulations involving irreversible binding with overlaps
and a binding rate that is independent of the number of
bound sites lead to much higher coverage of the DNA mol-
ecule than the nonoverlapping binding case.

PHYSICAL REVIEW E 74, 011904 (2006)

In Sec. III C we constructed recurrence relations for the
distribution of gaps and the charge neutralization for the case
of irreversible binding with overlaps. We found that at equi-
librium the gap sizes for overlapped binding were uniformly
distributed. The binding rate was then modified to account
for the number of sites to which the polymer binds. As a
result, the steady-state charge neutralization reduced to more
plausible levels.

In future work, the model of overlapped binding should
be calibrated further by comparing experimental results with
the solutions from our models to estimate the cooperativity
parameter \. Alternatively the model could be generalized
further by imposing a limit on the smallest gap size in which
a polymer can land. A more refined model would determine
the rate’s dependence on electrostatic DNA-polymer interac-
tions and so be consistent with electrostatic/thermodynamic
models of [51]. In forthcoming papers we explain how to
generalize the theory and results outlined in this paper to the
case of reversible polymer-binding and polymer motion
along the DNA plasmid [36] and generalize all these results
to the case of polymer mixtures in which the polymer lengths
are nonuniform [37].
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