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Theory of the intermediate tilted smectic phases and their helical rotation
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A molecular-statistical theory for the entire sequence of the chiral tilted smectic phases is derived. Uniaxial
and biaxial subphases were found to be stable in different temperature ranges depending on the molecular
parameters. The model of a chiral molecule possessing a strong transverse terminal dipole moment and a
quadrupole moment located in the molecular core was used. Direct dispersion and electrostatic interactions
(modulated by shape) between molecules located in the same or in the neighboring smectic layers are taken
into account. An effective long-range interaction arises after the minimization of the free energy with respect
to polarization vectors. If the molecular quadrupole moment is small, only uniaxial phases with different
periodicities arise. Their periodicity may be tens and hundreds of layers (Sm-C”), or approximately two layers
(Sm-C:), or several layers (Sm-C ;). In the presence of the nonpolar biaxial ordering (in addition to polariza-
tion) there is a cap-shaped border in the phase diagram that separates Sm-C:, Sm-C*, and Sm-CZ. If the
molecules are nonchiral, Sm-C4, Sm-C, and the de Vries’s phases arise instead of the three phases mentioned
above. If the molecular quadrupole moment is large, the left “arm” of the border breaks into two lines, and a
sequence of biaxial subphases arises in the area between these two lines. Among these biaxial subphases, the
one with periodicity of three smectic layers appears to be the broadest in the temperature range. In addition, the
subphases with different periodicities were found to be stable in narrow temperature ranges. The long helical
rotation in every biaxial subphase is calculated. It is found to change sign between the three-layer subphase and
Sm-C”, and may diverge in the four-layer subphase if it arises. All calculations are done with help of (A)FLC

Phase Diagram Plotter software developed by the first author and available at his web-page.
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I. INTRODUCTION

In our previous theoretical papers [1,2] we have shown
that a simple model based on the discrete flexoelectric polar-
ization [3—5] can describe the entire sequence of biaxial sub-
phases. Hereafter we shall use the definition Sm-C(¢;) for
the biaxial subphases introduced in our experimental papers
[6,7]. Parameter g; denoting the number of synclinic ferro-
electric orderings per one short period of particular phase
was introduced for the first time in [8,9]. It varies from zero
in Sm-C), to one in Sm-C". According to this classification
the three- and four-layer biaxial subphases (which are some-
times called FI1 and FI2) may be defined as Sm—C:(l /3) and
Sm—Cj;(l/ 2), respectively. Since the biaxial subphase struc-
ture was assumed to be commensurate, i.e., to repeat itself in
a period of several smectic layers, however, the previous
papers [1,2] could not deal with the macroscopic helical
structure of Sm-C,(g7). In this paper we are going to ad-
vance the previous theoretical treatment and to calculate the
macroscopic helical pitch in every phase using a perturbation
scheme.

Here we are also going to generalize our theory for the
case of uniaxial Sm-CZ subphase observed between Sm-C”
and Sm-A", and thus, the entire sequence of the chiral tilted
smectic phases (including the fundamental ones, Sm—C: and
Sm-C”, as well as the uniaxial and biaxial subphases) will be
described. Although several preliminary phase diagrams
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were already presented in our experimental papers [6,7], the-
oretical explanation for them will be given in this paper for
the first time. Several discrepancies in the previous diagrams
will be resolved by taking into account the new effects.
One of the discrepancies concerns an abrupt transition
between Sm-C* and Sm-CZ. Our preliminary diagrams [6]
always demonstrated a continuous modification from
Sm-C” to Sm—CZ, whereas experimentally both an abrupt
transition and a continuous modification are possible. An ef-
fect related to a presence of the nonpolar biaxial ordering of
molecules will be considered to describe the first-order phase
transition between Sm-C" and Sm-C.,. It will also be shown
that in the case of nonchiral molecules the same effect may
lead to the appearance of the de Vries’s phase [10].
Another discrepancy which is going to be resolved in this
paper is that experimentally the temperature range of
Sm—C:(I/Z) is usually smaller than that of Sm—C:(I/S),
whereas in our previous theory [1,2] the situation was just
the opposite, and generally the temperature range of the bi-
axial subphase was found to decrease with ¢, decreasing.
Here an effect related to the presence of the vertical (perpen-
dicular to the smectic layer plane) flexoelectric polarization
will be found responsible for the suppression of
Sm-C,(1/2). This polarization is proportional to the addi-
tional power of the tilt angle with respect to the considered
previously (parallel to the smectic layer plane) flexoelectric
polarization. It exists only in the biaxial subphases and is
equal to zero in the uniaxial phases (Sm-C:, Sm-C*, and
Sm-C’). The four-layer biaxial subphase [Sm-C),(1/2)] ap-
pears to be suppressed completely if the tilt angle and, con-
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sequently, the vertical flexoelectric polarization is large
(MHPOBC, MHDDOPTCOB) [11,12]. At the same time, the
temperature range of Sm-CZ(l/Z) in 100TBBB1M7 and
MHPBC is very broad, where the tilt angle is small.

Recently the materials were synthesized where neither
Sm-C,(1/2) nor Sm-C,(1/3) is observed, but the biaxial
subphase different from Sm—C;(l /2) and Sm—C;(l /3) arises
in between Sm-Cj;(O) and Sm—CZ [7]. The most important
molecular parameters that influence the phase diagram in our
theory are the terminal transverse dipole moment (associated
with an appropriate polar bond in the molecular tail) and the
central quadrupole moment (associated with the aromatic
rings in the molecular core). It will be shown in this paper
that the phase sequences without the presence of
Sm-Cj;(l/Z) and Sm-C),(1/3) and still exhibiting different
biaxial subphases are possible in the case of the large mo-
lecular dipole and quadrupole moments.

The main purpose of this paper is to obtain the phase
diagrams which can reproduce with minimal discrepancy the
phase sequences experimentally observed, to identify the
molecular parameters responsible for the various phase se-
quences, to clarify the macroscopic helical structure of the
biaxial subphases Sm—C:(qT), and to explain an abrupt tran-
sition between Sm-C" and Sm-C’. In Sec. II we will begin
with consideration of the free energy of the perfect smectic
state composed of biaxial molecules that have only freedom
of rotation around their long axes. In Sec. III we will derive
a perturbation theory describing the macroscopic helical ro-
tation in an arbitrary chiral tilted smectic phase. In Sec. IV
the biaxial nonpolar ordering of molecules will be consid-
ered and an abrupt transition from Sm-C” to Sm-C,, (or from
Sm-C to the de Vries’s phase) will be explained. In Sec. V
the general phase diagrams will be presented and discussed.
Finally, in Sec. VI our conclusions will be made.

II. FREE ENERGY OF THE TILTED SMECTIC STATE

A. Some basic points of the statistical theory

The free energy of the perfect smectic state composed of
biaxial molecules, that have only freedom of rotation around
their long axes, can be written in the following form:

N
F=pkgT>, filg)In fi(h)d iy
i=1

N
1
- —p*kT > Flb)f () g(r 1)

2 ij=1
U
X[“P(‘ —ZL>—1]d2rLd'ﬂ1d¢2, (1)

where N is the total number of smectic layers, p is the den-
sity of molecules inside layers, f;(i) is the distribution func-
tion for the orientation of the transverse dipole moment p of
a molecule located in layer i specified by the angle i, Uj; is
the total interaction potential for a molecule in layer i and a
molecule in layer j, function g;;(r ) describes positional cor-
relations between molecules 1 and 2 located in layers i and j,

PHYSICAL REVIEW E 74, 011705 (2006)

respectively, and vector r | is a projection of the intermolecu-
lar vector r on the smectic layer plane. The first term in Eq.
(1) is the orientational entropy and the second term is the
internal energy. Minimization of the free energy (1) yields
the following expression for the orientational distribution
function:

1 .
fil) = Z exp{- PﬁUXI)F(%)}s (2)
where B=1/(kzT),
2 )
Zi=f exp{- PBUﬁF(‘ﬂl)}d%, (3)
0
and where Uif[)F( ) is the “mean field” for a molecule in layer

1.

N
U%I)F(wl) =- kBTE fj(lﬂz)gzj(l'l)
j=1

U;;
X {exp(— —L) - l:|d21‘ldlllz. 4)
Substituting the distribution function (2) back into Eq. (1),
one obtains the following expression for the free energy of
layer i depending on the orientation of the short molecular
axes:

1, (> ‘
Fi=—PkBT1nZi—5P2j fi((/ll)USlil)F(l/ll)dwl- (5)
0

Now let us expand In Z; in Taylor series with respect to

UxI)F( ) up to the square term using Eq. (3) and neglecting

the constant term:

p2 2m i P .
F;= ;Tfo {Uﬁ’)F(lﬂ]) - 2kBT[U§é1F(¢1)]2}d¢1
3
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0 0

_r
’ 8772kBT|:
X(¢)di. (6)

B. Molecular model

The potentials U, (¢, 4,,r) participating in the mean
field (4) may consist of the electrostatic and the dispersion
parts. In the case of electrostatic interaction, let us expand
the exponent function in Eq. (4) in Taylor series again up to
the second term. In paper [1] only the linear part of the
expression for the electrostatic dipole-dipole and dipole-
quadrupole mean field in Eq. (4) was derived on the assump-
tion of a strong positional correlation between the nearest
molecular dipoles located in neighboring layers. The square
electrostatic term was taken directly from the model consid-
ered in [13]. Here we are going to derive both linear and
square electrostatic terms in the framework of a similar mo-
lecular model. By contrast to paper [1], let us assume that the
transverse dipole moment u; is located in the one molecular
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FIG. 1. (Color online) A snapshot of positionally correlated mol-
ecules in neighboring layers. Dipole moments are located in the
molecular tails (one per molecule, see red circles), and quadrupole
moments are located in the centers of molecules (blue squares).
Orientations of the dipole and quadrupole moments are not shown
to avoid the misleading conclusions.

tail (see Fig. 1), the uniaxial quadrupole moment [i.e., sym-
metrical with respect to the rotation of a molecule around its
long axis: q%z Q(ng)n(ﬁ')—l/35aﬁ), where n(ci) and ng) are
the projections of the nematic director n; in layer i on some
coordinate axes « and 8] is still located in the center of the
molecule, and orientations of molecules looking “up” and
“down” have equal probabilities. In the following two sec-
tions C and D we are going to derive the expressions for the
linear electrostatic mean field and for the dispersion mean
field both modulated by the steric effect represented by the
positional correlation function g;(r ).

C. Linear electrostatic interactions

The dipole-dipole, dipole-quadrupole, and quadrupole-
quadrupole interactions are determined by the following ex-
pressions [1]:

UZ,,, = M(C?Taﬁ(rlj)l-tg),
UZq = Mg)Taﬁv(rij)qg)y’

Ut = QapT aprolTi) 0505 ™
where T,5(r;)), Top)(r;), and Top,s(r;;) are the following
coupling tensors:

1
Taﬁ(rij) =- Vavﬁ:,
ij
1
Taﬁy(rij) = Vavﬁvyf,

Tij

1
Topys(ri) == VaVﬁV7V6:7 (8)
ij
and where r;; is the vector connecting a multipole (dipole or
quadrupole) of a molecule in layer i with a multipole of a

molecule in layer j. Then, in the framework of the present
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molecular model, the linear electrostatic term in the mean
field (4) will be slightly different from that presented in [1]:

2. 2
PR el

kT MF (P) = — w8oP; + m& (P +P;y)
B

+ ,U«Cf(PlLi +P)An,,,, )

where n; is the nematic director in layer i, An,,=n;,
—-n,_y, ¢, is a flexoelectric constant:

__3

PAgi i)
cp= —
2

: (10)
kyThy

Q

g, and g, are the following second rank tensors (see the
Appendix):

N P(&'i)l’«z ( 3 ) 3 0 G
= PSR o [ 2 ) 20,08 |
80 SkBTd3{ wp\ 1T )Ty e
N p<gi,i1 >M2
§) = —— (5,5 3k,kp), (11)

4kgTh; cos® 6

and where d is the breadth of a molecule, 6 is the tilt angle
(which is assumed to be small), w; is the unit vector perpen-
dicular to the tilt plane in layer i, /; cos 6 and h,={/2 are
the distances between the two nearest dipole moments and
between the nearest dipole and quadrupole moments in the
neighboring layers, respectively (see Fig. 1), the averages
(g,v,j) are defined as follows:

(8ij) = f gijr)dr ., (12)
and P; is polarization of layer i:
2
P;= pf mifi(p)di. (13)
0

For simplicity in paper [1] we considered both molecular
dipole and quadrupole moments located in the centers of
molecules. It is well—known, however, that intermediate
phases and even Sm-C), are usually observed in the systems
of molecules with terminal dipoles. This seems to be reason-
able because otherwise molecules in neighboring layers have
weak positional correlation, and it may be shown that with-
out this correlation the average dipole-dipole and dipole-
quadrupole interaction of molecules in neighboring layers is
equal to zero. Thus it is important to consider terminal di-
poles in the molecular model. At the same time, quadrupole
moments are usually associated with rigid molecular cores,
and thus it is reasonable to place quadrupole moment in the
center of a molecule. In this case the vector connecting quad-
rupole moment of the first molecule and dipole moment of
the second one is not parallel to vector k anymore, but al-
most parallel to the nematic director of the first molecule,
and thus the multiplier (n-K) in the third term of Eq. (9) is
removed by contrast to paper [1].

D. Dispersion interactions

The polar terms in the mean field may also arise from
nonpolar interactions (for example, dispersion attraction
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FIG. 2. An example of molecule polar in two directions.

modulated by polar molecular shape). In general, any inter-
actions may be approximated by spherical invariants
TNx;,r,y;), where x and y may be either along the long
molecular axes a; and a;, or one of them may be along the
short molecular axis (b; or ¢; instead of a;, or b; or ¢; instead
of a;), or both may be along the short molecular axes instead
of the corresponding long axes. The basic nonpolar spherical
invariants are presented, for example, in [14]. Suppose that
in addition molecules have polar shape in two directions
(i.e., for example, vector a cannot be replaced with —a, and
vector b cannot be replaced with —b) (see Fig. 2). By defin-
ing vector ¢=[a X b] for every molecule, one notes that the
following simplest polar term will arise in the dispersion

interaction between two molecules located in layers i and j:

T'(n,r,¢c) + T**'(n;,r,¢;) = (n; - 1)(c; - [m; X r])
+(n;-r)(c;-[n; Xr]).
(14)

Suppose that interaction of kind (14) within the same layer
only is essentially present. Here we are not interested in the
nonpolar ordering of the short molecular axes and polar or-
dering of the long molecular axes, and thus will assume that
the corresponding terms proportional to the even powers of
¢; and ¢; and odd powers of n; and n; are already averaged
with respect to the orientations of these vectors. Then the
nonpolar spherical invariants may be written in the manner
of paper [13], and one obtains the following expression for
the dispersion mean field in the case of positionally corre-
lated molecules in neighboring layers:

U%g(i) =vg+v[Py(n;-n_ ) + Pr(n;-myyy) |+ 0y cos” 6
+v;5cos” O[(n;-m,_;) + (n; - n;,, )] + vy cos* @
+vs{(n;-m_)(k-[n; X n._;])

+ (- m ) (K- [y X )} +vele; +(e)) &,
(15)

where we assume that the tilt angle 6 is the same in every
layer, and thus (m;_;-k)=(n;,-K)=(n;-K)=cos 6. Zeroth,
second, and fourth terms in Eq. (15) contain both nonpolar
dispersion interactions of molecules within the same layer
and in the neighboring layers, whereas the first, third, and
fifth terms are determined by the interactions of molecules in
the neighboring layers only, and the additional sixth term
corresponds to polar spherical invariant (14), where §;
= (n;-K)[n; X k]=|&|w,.
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E. Polarization-dependent free energy

The electrostatic contribution (9) and the dispersion con-
tribution (15) to the mean field must be now substituted into
the free energy (6). The fifth term in Eq. (15) arises if mol-
ecules are chiral. At the same time, molecules must not be
chiral to produce the nonzero sixth term in Eq. (15), because
vectors ¢ for every molecule were defined artificially, and
nothing special corresponds to these directions so far. Nev-
ertheless, the sixth term itself will vanish after the averaging
procedure in Eq. (6), because

2

fpdp=1, (16)
0

and thus, the first and the last terms in Eq. (6) corresponding
to the sixth term in Eq. (15) will compensate each other. At
the same time, if the transverse dipole moment u has a non-
zero projection on vector ¢, the second term in Eq. (6) will
produce the coupling between polar electrostatic and polar
dispersion interactions, and an additional chiral term in the
free energy depending on polarization will arise. For simplic-
ity, let us assume that u is parallel to ¢. Collecting the cor-
responding terms, one obtains the following expression for
the polarization dependent free energy of layer i:

2
P i A oA R
k TF:’) = pzlu“ZIVIi2 + PigO(I - g())Pi - Pigl(I - 2g0)
B

XPy+Piyy) = (P + Pi+1)g%(Pi—l +Pyy)
+2puM[8)P; - &,(P._; + Py y) — puM;], (17)

where 1= 64p and vector M; plays a role of the complex
order parameter:

M; = c¢,[n; X k] +c/[n; X [An,; X n/]], (18)

where ¢, is determined by Eq. (10), and c,, (designated as ¢,
in [1]) is determined by the following expression:

- = P<gi,i>ve cos 6

19
P kT (19)

The first term in Eq. (18) is known as the “piezoelectric”
term. In our model (that looks complete) it arises because of
the coupling between the polar in two directions dispersion
interaction [the sixth term in Eq. (15)] and the dipole-dipole
interaction [the first two terms in Eq. (9)]. One notes that a
molecule with polar shape in two directions a and b (see Fig.
2) and having dipole moment with nonzero projection on
vector ¢=[a X b] is polar already in three directions not ly-
ing in the same plane. Since these directions in addition can-
not be replaced with each other, this molecule is chiral. This
chirality, however, emerges only as a combination of the dis-
persion and the dipole-dipole interactions, so let us call it
“combined” chirality in contrast to the “conventional” chiral-
ity arising solely from the dispersion interaction modulated
by the chiral molecular shape [the fifth term in Eq. (15)].

The second term in Eq. (18) is actually a “flexoelectric”
term. Indeed, double vector product [n; X [An,; X n;]] may
be expanded as a sum of the two scalar products multiplied
by a vector, and one obtains the same two flexoelectric terms
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An,,, and -n,(n;-An,,,) as in [1]. Presentation (18), how-
ever, is more convenient, because it is easily seen from this
presentation that the flexoelectric term is always perpendicu-
lar to n;, but (by contrast to the piezoelectric term) may have
a contribution parallel to the local tilt plane if An;,, is not
perpendicular to n;. One can easily check that in the case of
the biaxial subphases these two vectors are indeed not per-
pendicular to each other, and thus, the flexoelectric term
must not be parallel to the piezoelectric one. Moreover, from
the second part —n;(n;-An,,,) it is seen that the whole flexo-
electric term must have a vertical contribution (perpendicular
to the smectic layer plane), since the first part An,,; does not
have a vertical contribution in the case of the same tilt angle
in every layer. The vertical flexoelectric contribution is pro-
portional to the additional power of the small tilt angle in
comparison with the horizontal one. In paper [1] we ne-
glected this term for simplicity, only noting that it produces
relatively weak polarization perpendicular to the layer plane.
Now we are going to take the temperature dependence of the
tilt angle into account and, thus, we keep the vertical contri-
bution in Eq. (18). In our model the whole flexoelectric con-
tribution arises because of the coupling between the dipole-
dipole and the dipole-quadrupole interactions. One can see
that in our model the symmetries of the piezoelectric and the
flexoelectric terms are intimately related with their origins.
Finally, the coupling between the two dipole-dipole inter-
actions within the same smectic layer and in the neighboring
layers, as well as the first powers of the dipole-dipole inter-
actions, produce the other terms (independent of M,) in the
free energy (17). The first power of the dipole-quadrupole
interaction disappears from the free energy (on average) due
to the symmetry, and the first powers of the dispersion and
quadrupole-quadrupole interactions contribute to the
polarization-independent free energy, which is considered in
the next section F. Minimizing the total free energy F), [that
is a sum of F(')] with respect to polarization vectors one
obtains the following set of equations for polarizations P;:

go(1- 80P - 8,(1-280)(P._, + P, ) - 1P, + P, + P,,))
+ppgoM; — pug (M + M, ) =0. (20)

Looking at Eq. (20) one may think that there is some corre-
lation between polarization vectors in the next-neighboring
layers. Nevertheless, the number of correlating layers re-
duces to only neighboring ones. Indeed, substituting equation

(i_gO)Pi+gl(Pi—l +Pyy) =—puM; (21)

into Eq. (20), one obtains again Eq. (21). Thus, Egs. (20) and
(21) are equivalent. Substituting Egs. (20) and (21) into Eq.
(17), one can essentially simplify the expression for the po-
larization dependent free energy of layer i:

L0 M, P+ puM2, 22
TP pu (22)
where the order parameters M; are given by Eq. (18), and a
set of polarization vectors P; is still determined by Eq. (21).
In contrast to paper [1], a direct coupling between the order
parameters within the same smectic layer [the second term in
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Eq. (22)] arises after a consideration of the total free energy.
One notes from Egs. (11) and (21) that anisotropy of tensors
& and g, produces additional polarization along vectors w
and k, respectively. Using index o;=_L, w; or m; for enu-
meration of the projections of different vectors on axes k, w;,
or m;=[k X w,], respectively, one can rewrite Egs. (21) in
the following form:

P 4 g [P + P = — puy M\, (23)

where in correspondence with Eq. (11)

Xw = (l - 80)_ls
3
Xn=X1 = Xu| 1 - Exwgoﬂz : (24)
Ew=81Xw Em=& Xm &1 =-281X1> (25)
and where
_ plgian’ p(gi i) 14
80 = 3 > 1= 3 3, (26)
8kpTd 4kgThy cos’ 0

One notes from Eqgs. (24) that anisotropy of the dielectric
susceptibility is proportional to the second power of the
small tilt angle 6. Set of equations (23) may be solved with
respect to polarizations in any particular case of the smectic
structure with periodicity of ¢ layers. Polarization vectors
may be subsequently eliminated from the free energy (22)
that may be rewritten in terms of the effective coupling be-
tween the order parameters M;:

I—l -1

—L———EEE [xaft”

pkgT i=0 k=0 a;=1
where coefficients f@‘ f<_,\— ffj“) are the elements of the

inverse matrix that is presented in the left part of Eq. (23). In

- QMM (27)

i+k >

other words, if we have the matrix with elements a(a =1,
af‘;‘il a(()a)_ —a(a) = ga and the remaining elements equal to
zero, then |[f{ |—|| “||-1. One can check that coefficients

. decay as ( 2.~ for k=0.. .x([t/2]+1), where g,<1 and
[t/ 2] is the integer part of #/2, although the exact expressions
for this decay depend on the period t.

F. Polarization-independent free energy

Finally let us derive the expression for that part of the free
energy, which is independent of polarization. The dispersion
part of this expression is produced by the first six terms
(from zeroth to fifth) in the dispersion mean field (15),
whereas the electrostatic part derives from the quadrupole-
quadrupole interaction and from the second term in the ex-
pansion of the exponent in Eq. (4) where the electrostatic
interactions (7) must be substituted. Here we are going to
take also into account the quadrupole-quadrupole interaction
between the molecules located in the next-neighboring lay-
ers, because the molecular quadrupole moment may be large.
Both nonpolar interactions (the dispersion and the electro-
static ones) contribute only to the first term of Eq. (6). For
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simplicity let us assume that positional correlation of mol-
ecules in the neighboring layers is strong, and thus,
p{gix1)=1. Then collecting the corresponding terms and
adding the polarization-dependent contribution (27), one ob-
tains the following expression for the free energy of the in-
termediate phase with periodicity of 7 layers:

1[F - Fy(6)] _< 3v,
pNkgT — \2kzT

t-1

g% + 4C§>2 (n;-n;,y)?
i=0

-1
+ (ﬁ + 6g%>cosz 6> (n;-n;,,)
kgT i=0

-1
+ ﬂE (m;-n,)(k-[n; Xn,])

kgT'iZo

10(m\*(h) & o
+—<—2) (—2) . E(Hi'ni+2)

3 hl h3 81 COS 0[=0

=1 t-1 3

- 2 E E [Xaﬁca) - 5ko]M§ai)Ml(‘f1i)v (28)

i=0 k=0 a;=1

where the first three terms represent the interaction between
molecules in neighboring layers [where the terms propor-
tional to v, and v; represent the nonchiral dispersion inter-
action, the term proportional to vs represents the chiral dis-
persion interaction, the terms proportional to g% represent the
square dipole-dipole interaction, and the term proportional to
cjzc represents the square dipole-quadrupole interaction (only
transverse molecular dipoles participate in both cases)], the
fourth term represents the quadrupole-quadrupole interaction
in the next-neighboring layers [where h;=2(€+d) is the dis-
tance between the correlated quadrupoles in the next-
neighboring layers], and the fifth term is the effective long-
range coupling arising from the polarization-dependent free
energy. For simplicity, the electrostatic interactions produced
by molecular longitudinal dipoles, as well as quadrupole-
quadrupole and higher multipole interactions between mol-
ecules located in the neighboring layers, are incorporated
into the dispersion interaction (into the terms with coeffi-
cients v and v, which are known as quadrupolar and dipo-
lar terms, respectively).

G. Some notes about the biaxial nonpolar ordering

In expression (28) for the free energy the biaxial nonpolar
ordering was neglected. One notes that in the general case
the following average procedure is valid for the product of
two projections of the transverse dipole moment u;:

1 2
ZJ w? wPf(pdp= PP PP P?
0

1
20— )8 ),
2( (T)/‘l’[ af3 nl nz ]

(29)

where indexes a and B denote the projections of the corre-
sponding vectors on the axes of the coordinate system, and
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where o= {(cos 2¢) is the biaxial (nonpolar) order parameter.
In Eq. (28) it was assumed to be small, and all terms propor-
tional to o were neglected. This supposition seems to be
quite reasonable far from the Sm-C"-Sm-A" transition point,
where the polar order parameter P=pu(cos ¢) (called “po-
larization”) is known to play the more important role. At the
same time, in the vicinity of the Sm-C"-Sm-A" transition
point, the polarization becomes very small (and disappears
completely in the transition point), whereas the nonpolar bi-
axial order parameter o remains almost the same (similarly
to the nematic order parameter S). In this case it appears to
be the only parameter determining the helical rotation, and
thus it must be taken into account. This will be done in Sec.
Iv.

III. PERTURBATION THEORY FOR THE INTERMEDIATE
PHASES EXHIBITING HELICAL ROTATION

A. Formulation neglecting the nonpolar biaxial ordering

First let us simplify Eq. (27) for the polarization-
dependent part of the free energy taking into account only
terms proportional to the power of the small parameter sin 6
not higher than four. In Sec. II it was noticed [see Eq. (18)
and discussion thereafter] that order parameter M; consists of
the main horizontal (parallel to the smectic layer plane) con-
tribution (let us call it M‘i‘) which is proportional to the pow-
ers of sin # not higher than one, and of the small addition (let
us call it AM,) which is proportional to the higher powers of
sin @ and has both horizontal and vertical projections:

M‘l‘ = C[,[lll- X k] + CfAniil .

AM;=- Cf[ni(ni “Ang,)]. (30)

In our approximation the anisotropy of the dielectric suscep-
tibility [which is proportional to € itself, see Egs. (24) and
(25)] may be taken into account only for the coupling of the
main horizontal contributions, and one obtains:

-1 1-1

tF
—L =~ E E [Xmﬁcm) - 5k0]M‘z!M‘i‘+k
pNkgT i=0 k=0

-1 t-1
- 2 2 [Xw kW) - megcm)]Mt(Wl)Mf-‘:}/é)
i=0 k=0
-1 1-1
- 2 2 [Xwﬁw) - 5ko](M!AMi+k + AMiMlil+k)
i=0 k=0
-1 t-1

-2 2 XLfi — SlAMAM,,,. (31)

i=0 k=0

In contrast to paper [1] let us assume that the structure does
not repeat itself completely in a period 7, but exhibits a small
additional rotation A¢ per layer. At first glance, in the gen-
eral case (including biaxial phase) we must write different
additional rotation angles Ag; ;. (i=0,...,r—1) for various
layers. Let us show that only one of these angles is indepen-
dent. If we suppose that the angles A¢;;,, are different, the
total angles of the azimuthal rotation from layer to layer will
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be ¢; ;1 1+A@; ;. (i=0,...,r—1). We remind that angles ¢, ;,
were chosen to satisfy the constraint Eﬁ;(l)cp,»’m =2m, i.e., they
correspond to the phase with periodicity of ¢ layers without
additional helical rotation, and the angles A¢; ;,| describe the
additional helical rotation. Now let us transfer from ¢, ;,; to
@iy according to the following rule: @5} = ;i1 +A@; 4
—A¢@, where Ap=1/ Z‘EE;(I)A(,DLH_]. One notes that the previ-

ous constraint is still valid: S{Z)¢}5} =2, but the total set of

i
the azimuthal rotation angles from layer to layer may now be
written with the help of only one helical rotation angle:
cpﬁfﬁAgo (i=0,...,t=1). Since there is no difference,
which angles to choose for minimization, let us choose the
angles ¢} (index “new” will be omitted for the following
consideration).

At first glance we now need to express the nematic direc-
tor n; and the difference An,,, participating in Eq. (30) in
terms of the tilt angle # and the azimuthal angles ¢;+iA¢,
and then simply to substitute Eq. (30) into Eq. (31). We
cannot do this, however, because parameter M; presented in
this form is not periodical anymore, and Eq. (31), obtained
itself in supposition that parameter M; has a period of ¢
smectic layers, is not valid in this case. At the same time, we
can use a perturbation scheme which assumes the helical
rotation A to be small. For example, we can fix the nematic
director n; in every layer as it was in the absence of helical

rotation, and modify only the difference An,,;:

n; =sin O(x cos ¢; +y sin ¢;) + k cos 6,

An,,/sin §=x[cos(¢;,; + Ag) —cos(¢;_ — Ag)]

+ y[sin(@;y; + Ag) —sin(¢;_; — A)],
(32)

where x and y are some orthogonal unit vectors in the layer
plane, and ¢;,,=¢;. In this case the order parameters M, ex-
hibit a small variation similar to the helical rotation, but still
remain periodical with period 7, and we can still use Eq. (31)
for the polarization-dependent free energy together with the
coefficients ffc“) obtained on the assumption of the absence of
helical rotation. Let us express the scalar products of the
order parameters participating in Eq. (31) in terms of the tilt
and the azimuthal angles using Egs. (30) and (32):

Il _ o 2 2
MM; = sin’ #c, cos @+ c7[cos @y iy + 008 @iy
—cos(@;_1 j+1 +2A¢) = cos(@iy1 j-1 = 2A¢)]
- CpCf[Sin(QDi,jH +Ap) - Sin(QDi,j—l -Ag)
+sin(g;_; j+ Ap) —sin(@y ;- A) ]},

AMM | = — ¢ sin* 6[cos(; 4 + Ag) — cos(@p_; i+ Ag)]
X{Cp sin (Pl] + Cf[COS((Pi’j_H + Al)

—cos(@; ;-1 — A ]},
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AMAM; = cjzc sin* 0 cos? O[cos(¢; 141 + Ag) — cos(¢;_y ;

+Ag@)][cos(¢; 1 +Ap) —cos(p;_y ;+Ag)],

(33)
where ¢;; are the azimuthal differences between the director
orientations in layers i and j. In the expression for AM;AM;
we have again neglected the terms proportional to the powers
of sin @ higher than four. Defining, for example, x=m; and
y=-w,;, where w,= &/|&] is the unit vector perpendicular to
the tilt plane, and m;=[k X w;] (see Sec. II), one can also
write:

Mgwi)MJ(.Wf) =sin® &c,— cdsin(@; 41 + Ag) +sin(@_y ;
+ A()D)]}{Cp COS @;; — Cf[Sin(<Pi,j+1 +Ap)
—sin(¢; ;- — Ag)]}. (34)

Then substituting Eqgs. (33) and (34) into Eq. (31) and adding
the other terms from Eq. (28), one obtains the following
expression for the free energy in terms of the angles 6, ¢ij,
and Ag:

1F - Fy(0)]

NK,T =f+fp+Afp<1)+Afp(2), (35)
B

where the first term F arises from the nonpolar interaction
between molecules [the first four terms in Eq. (28)]:

t—1

F=sin? 6, {b sin® 0 cos*(@; ;.1 + Ag) + cos® fa cos(¢; ;4
i=0

+A@) +a; cos(@; 10+ 2A¢) + ¢y sin(@; 141 + Ap)]
1
+ e sin® 6 sin(2¢; ;11 + ZA(p)]} , (36)

where

_ 3U1 + U3
kT

10(h2>3(h2>5 czf-
a=—\— — s
! 3 h] h3 81 COS3 0

+ 4g% + SC]%,

Us
kT’

301
2kyT

b=

- g% + 46120, cl=cy = (37)
It was discussed, for example, in [13] that both v, and 3v,
+v; are negative. At the same time, g% and CJ% are positive.
One notes from Egs. (10) and (26) that ¢, and especially g;
grow with the increasing dipole moment u, and thus, in the
absence of polarization effects and chirality, the synclinic
Sm-C phase is more favorable when w is small, whereas the
anticlinic Sm-C, phase is more favorable when w is large.
Since g% is also proportional to cos™ 6, a phase transition
from Sm-C4 to Sm-C, may happen with the increasing tilt
angle 6. At the same time, if the dipole moment w is very
large, a direct transition from Sm-C4 to Sm-C, may happen.

Terms Fp, Af(l), and Aff) in Eq. (35) arise after the
minimization of tﬁe free energy with respect to polarization
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vectors in every layer. Term F p does not include higher than

quadratic powers of the small parameter sin 6 [the first term
in Eq. 31)]:

=1 t-1

fp == Sinz 02 2 {Xm[c

i=0 j=0
Xcos(2Ago)) 2¢ cfQ‘j'"l) 1+ﬁj ™ )sin Ag]cos @i

+Xm[Cf i , - I”’Hz)sm(ZAcp) 2¢ cf()& Y 1

t-1

— £ Deos Aglsin @y} = 2¢;sin® 02 {c;cos(@p_ i1
i=0

+ cf(2f<’") Ly +fj l+2)

+ ZAQD) + 2Cp Sin((p,-’,}] + A(P)} (38)
The last two terms in Eq. (38) arose because of the direct
coupling between the order parameters within the same

smectic layer [the second term in Eq. (22)]. Without them F, »
becomes equal to the corresponding expression obtained in
[1] in the absence of the helical rotation (Ap=0). At the
same time, terms AF;]) and AF F? in Eq. (35) are completely

new. Term AF'" reflects the amsotropy of the dielectric sus-
ceptibility [the second term in Eq. (31)]:

=1 t-1
Aﬁp(l) =—sin? 6, >, {c, = cdsin(e; 141 + Ap)
i=0 j=0
+sin(e,_1 ; + Ag) JHeos e, (xuft - mef’”))

m)

—CfSIH A@(Xw(fjuz 1+ Jj- l+1) Xm j i— 1+ Jj= l+l))]

w)

- Cfsm <Pz; cos A (x,, , z 1 f(—i+1
m N (39)
where waj l)— me< " is proportional to the additional second

power of the tilt angle [see Eq. (24)], and thus, AF, F~ g,

Finally, AF F? is the additional flexoelectric term that con-
tains vertical contribution [the last two terms in Eq. (31)]:

~ Xm jll

=1 -1

Aﬁp(z) =— c]% sin® 62, >, 2xulcos(@i_y i+ Ag)
i=0 j=0

_COS((PZ i+1 T A(P)] ] z 1~ H.])COS p;j €OS AQD

1) 1)

+ X cos® 9(2,' j=i-1 7 J j-ix1

Xcos(@; 141+ A@)cos(@; i1 + Ag)}
-1

- 20? sin* 02 {COSZ(QDLHI +Ap)
i=0

—cos(@;_1; + Ag)cos(@; 41 + A@)}, (40)

Where for simplicity we neglected all the terms proportional
to sin* @ sin ¢;; ; which is extremely small in any biaxial sub-
phase, and in any uniaxial phase (including chiral Sm-C* and

Sm—CA) the whole term AF® is exactly equal to zero, be-
cause AM;=0 [see Eq. (30)f

In paper [1] it was discussed that polarization dependent
terms may produce intermediate phases which are different
from Sm-C and Sm-C,. One notes that both chiral dispersion
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interaction c;=c, and coupling between polar electrostatic
and polar dispersion interactions c,c, produce sine functions
of the azimuthal angles in the free energy, and therefore may
be responsible for the helical rotation.

B. Two types of solutions

The free energy (35)—(40) should be minimized with re-
spect to all azimuthal angles ¢;; and Ag. For simplicity we
assume that the tilt angle 6 is the same in every smectic layer
and does not depend on ¢;; and A¢. Experimental observa-
tions confirm this assumption. In contrast to the procedure
presented in paper [1], let us examine the two different so-
lutions. One of them would still correspond the biaxial sub-
phases with nonplanar structures which, at the same time, do
not deviate strongly from their planar prototypes:

k=1 k-1

(pnkzza?+2Aa,~, (41)

where the angles a?E (,ogi ., may be equal to 0 or 77 only (i.e.,
they specify the corresponding planar structure), while the
angles Aa;=A¢;;,; are assumed to be small (i.e., sin Ag,
=~ Aq;, cos Aa;~ 1). Additional rotation A is also assumed
to be small (i.e., sin Ap= A, cos Ap=1). In the case of the
biaxial phase, angles Aq; and A¢ describe the deviation from
the prototype flat structure. Since minimization of the addi-

tional terms AF'" and AF( [see Egs. (39) and (40)] with
respect to these parameters is complicated, and, at the same
time, we are examining the linear solution, it is reasonable to
ignore these terms (proportional to the additional second

power of the small tilt angle in comparison with Fand F, p) in
the minimization procedure. Finally, minimization of the free
energy (35) under the constraints

k-1 -2
Pk = E Giivl, P1,=27— E Pii+1> (42)
i=n i=0

which follow directly from periodicity, yields for the biaxial
phase:

=2

2 CiJ'Aaj + Ci,t—lASD =q; i=0,...
=0

=1, (43)

where
i -1
— 0
q9;=— 2chpcfz 2 [ﬁcﬁl—l _ﬁcﬁ)ﬁl]cos Prk

n=0 k=i+1

c
- {El cos”® 6 - 2cpcf] (cos a) —cos a? ),
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-1 -1
= 0
9-1=~ 2chpcf2 2 LA+ A ]eos e

n=0 k=n+1

c
- 2chpcfﬂm)t - Ezt sin® 6

-1
c
- {—1 cos? 0 — Zcpcf] E cos ag, (44)
B :
n=0
_ c2, G 0 0
cjj=—"bsin" 6— — cos” fcos a,_,
2
min(i,j) -1

+ X 2

n=0 k=max(i,j)+1

{21 + S2A — (),

) 2 4
i) lleos g+ (Cf - E)(@oé}o cos @7 |

+ 5[’,[—2@,[—2 Cos (P?—Z,t) + Ac[ja la.] = 0’ N 27
Acy=0, j#i, j#ixl,

a a
Ac;; = — b sin® - — cos® 0 cos a?+ (cjzc— —1>
2 2

0 0
X (89 €08 @iy i1+ 042 COS @; 119) s

a
_[ 2 4 0, 0
Acjje1=Aciy i = (Cf - E)COS(“,' + @),

a
Ciy1 =Croy i =— > cos? é(cos a? - Cos a(,)_l)

i =1

- ZXmCJ%E E

n=0 k=i+1

0 2
rfl)’l—z _ﬂrfI)1+2]COS @t (2¢5—ay)

0 0
X (8 €OS @iy i1 + Gj1-2 COS @; 1),

i=0,...,t=2,
t—1
= _ btsi 2 0 f 2 02 0
Cin1-1 = = bt sin” 6= — cos cos a,,
n=0

-1 -1
2 0
- 4)(me2 2 [f<yfn—2 +f§crfl)1+2]cos Pk
n=0 k=n+1
-1
- 4chjzc 2'")t + 2(20; - 01)2 cos (P?—l,i+l'
n=0

(45)

In addition to the analogous equations presented in [1], the
set of Egs. (43) contains one more variable A¢ and one more
equation i=f—1. The corresponding coefficients c;,_=c,_;;
and g, differ from the other coefficients ¢;; and g;. Equa-
tions (43) must be solved for any particular sequence of a?,
and results must be substituted back into the free energy
(35). The latter must then be minimized with respect to a? to
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determine the optimal prototype structure with a fixed period
of ¢ layers. .

One notes that Sm-C,, (as well as Sm-C”") must also arise
formally as a solution of Eq. (43) for r=1. However, the
helical rotation A in this phase (by contrast to Sm-C”) is
expected to be very large. In this case an error in the linear
scheme (43) is expected to increase. At the same time, it is
easy to study Sm-CZ not as a solution of type (41), but as an
additional solution:

k—n
¢nk=277777’ A(P:O’ (46)

where 7 is some value between —#/2 and ¢/2. Substituting
Eq. (46) into Eq. (35) one finds # corresponding to the mini-
mum free energy for any particular period . Comparing this
free energy with the one corresponding to the solution of
Eqgs. (43) one finds whether the uniaxial or the biaxial phase
is more stable.

Finally, the free energies of phases with different periods
t are compared with each other to select the one that corre-
sponds to a global minimum for a particular choice of the
model parameters. We have performed the corresponding nu-
merical calculations for several integer numbers ¢ and 7. The
results will be presented in Sec. V.

Concluding this section we should note that without ne-
glecting the biaxial ordering o in Eq. (29) we could not
obtain the linear set of equations for polarizations (23). At
the same time, all the terms taken into account in the free
energy (35) essentially depend on the molecular tilt and dis-
appear without tilt. On the contrary, the neglected terms
(which are proportional to the small biaxial ordering param-
eter o) remain nonzero in the absence of tilt and, as it will be
shown in Sec. IV, may produce different regime of rotation
(classified as Sm—CZ) in the case of a very small tilt.

IV. “FINE TUNING” OF THE FREE ENERGY NEAR THE
TRANSITION BETWEEN SMECTICS C AND A:
ALPHA AND DE VRIES’ PHASES

Now let us investigate the behavior of the liquid crystal in
the vicinity of the Sm-C"—Sm-A" transition point. It is diffi-
cult to take into account the biaxial ordering o in an arbitrary
intermediate phase because an additional coupling of the
four different projections of polarizations on the coordinate
axes will arise in the free energy, and thus, equations for
polarizations will become nonlinear. At the same time, the
biaxial ordering o is expected to be essential only in the case
of the small tilt angles, where the arising phase is known to
be uniaxial and the polarization vector is known to be per-
pendicular to the tilt plane in every layer. In this particular
case Egs. (23) for polarizations do not change, and one ob-
tains only the following changes in the coefficients b and ¢,
[see Egs. (37)]:

b— b=b(1-d?) + Aba? cos? Olsin* 6,

¢y — G =cy(1 — %) + Acyo? cos? /sin 6, (47)
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FIG. 3. Helical rotation angle in Sm-C:;, Sm-C*, and Sm-C, as
a function of temperature in the case By/B,=-0.1, a/B=-0.5, o
=0.2, €/d=4,0,=-0.622, 03=1.72, A0, =0, Av5=0, u=0.77, and
the following set of parameters Us, g, and Q. (see definitions of all
parameters in Sec. V): (1) §5=—1.5X 1072, §5=-0.15, Q¢=1.04;
(2) 05==7.5X1073, §3==0.11, Q;=0.736; and (3) 05=0=Q.=0.
In the last case direction of the rotation is undetermined, and
Sm-CZ becomes the de Vries’ phase.

where Ab=A7, +4g% generally consists of the dispersion (de-
fined here as A7) and electrostatic (equal to 4g%) contribu-
tions, and Ac,=A7s consists only of the dispersion contribu-
tion (defined here as A%s). It was discussed in Sec. III that
coefficient b is negative that causes the synclinic or anticlinic
state in the absence of chirality- and polarization-dependent
terms. At the same time, one notes that the electrostatic part
of Ab is positive, and thus, in the case of the small angles 6

the total coefficient b may become positive if >0, and the
phase with the helical rotation angle A essentially different
from 0 and 7 may arise even in the case of nonchiral non-
polar molecules (c;=¢,=c,=c;=0). In Fig. 3 the helical ro-
tation angle is presented as a function of the temperature for
different values of the conventional chirality (determined by
parameter Us=c,=¢,) and of the combined chirality [deter-
mined by a combination of the flexoelectric (¢,~ Q) and
piezoelectric (c,~s=ve/(kgT")) effects]. Taking into ac-
count that the helical rotation may, in principle, be large, and,
consequently, the perturbation scheme (43) may work badly,
we also made a direct calculation of the periodicity accord-
ing to the scheme (46) using integer numbers up to 100 for ¢
and integer numbers between —¢/2 and ¢/2 for 7. Perturba-
tion scheme (43) (see solid lines in Fig. 3) works better in the
case of the small helical rotation angles, whereas direct
scheme (46) (see triangles and squares) works better for the
large helical rotation angles. But one notes that both schemes
give approximately the same helical rotation angles at a large
scale. We note the fact that a direct calculation of the peri-
odicity is quite a long computer procedure, and the perturba-
tion scheme appears to be very helpful and accurate enough.
If 05 #0 and c,c;#0 [see curves (1) and (2) in Fig. 3], the
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helical rotation angle is slightly different from 0 in Sm-C”
and from 7 in Sm-CZ. One notes, however, that in the vicin-
ity of the transition into Sm-A* [T=(T—T")/T* <0] the he-
lical rotation angle rapidly increases with the temperature
increasing, and finally becomes equal to 77/2 in Sm-A". This
phase with large helical rotation angle arising near the tran-
sition point may be interpreted as Sm-CZ (by contrast to
conventional Sm-C” that is observed for lower tempera-
tures). The same effect was achieved in the phenomenologi-
cal model [15] where a significantly large term in the free
energy proportional to cos’> A was introduced artificially. In
our model the analogous term (proportional to the coefficient
b) remains nonzero in the vicinity of =0 because of the
biaxial nonpolar ordering. In contrast to the other terms in
the free energy, it is not proportional to various positive pow-
ers of sin 6, and thus, must not be large initially to produce
Sm-C Z The direction of the rotation (in other words, the sign
of the helical rotation angle) is determined by the signs of the
chiral terms 05 and cper At the same time, for the case with-
out any chiral terms [see curve (3) in Fig. 3] the nonzero
helical rotation angle is still favorable if the tilt is very small.
However, the direction of this rotation is undetermined. In
other words, a system prefers to rotate just in any direction
more than remain without rotation. This situation may be
interpreted as the de Vries’s phase [10] where the rotation
does not have regular direction. The appearance of this phase
seems to have no easy explanation at first glance. At the
same time, we can explain the origin of this phase coming
back to the initial expressions for the free energy (1), (5), and
(6) One notes that positive Ab (which is responsible for the
de Vries’s phase) arises from the last term in Eq. (6), which
is positive since UE\iI)F is negative. Indeed, a new polarization
dependent term [see the first term in Eq. (29)] arise only if
the distribution function f;(¢) under the integral is different
from 1, and thus the remaining terms in Eq. (6) do not par-
ticipate in Ab, although they dominate b. Now the only ques-
tion arises as why the last term in Eq. (6) [or in Eq. (5)] is
positive? This term consists both of the energy and the en-
tropy contributions, but its positive sign is determined only
by the entropy contribution that dominates in this term,
whereas the energy participates mostly in the first term of
Eq. (5) which does not contribute into Ab Thus, at least in
our theory, the de Vries’s phase is a pure product of the
entropy effects in the presence of the biaxial nonpolar order-
ing, that seems to be consistent with the “chaotic” character
of this phase. It arises when the energy contribution is ex-
tremely small due to a small tilt angle.

The Sm—C*a phase has exactly the same origin and actually
differs from the de Vries’s phase only by the small chiral
terms in the free energy that select between the two direc-
tions of the rotation, and thus produce the regular rotation
from layer to layer. The direction of the rotation in the de
Vries’s phase may be irregular, or may be determined by
rather small effects that are not considered here. The behav-
ior of the rotation in Sm-CZ may be different depending on
the chirality and polarization constants. Although the real
signs of the constants ¢;=c,, Ac,, and c,c; may be deter-
mined only from the more accurate molecular model, it is
quite natural to suppose that if molecules are regularly
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FIG. 4. (Color online) Helical period in Sm-C"* and Sm—CZ as a
function of temperature in the case By/B;=-0.1, a/B=-0.5, o
=02, €/d=4, 7,=-0.622, A5,=0, 05=1.62, T5=—1.5%X1072,
06=-0.15, ue;=0.77, Qs=1.04 and different values of parameter
AT (see definitions of all parameters in Sec. V): (1) Afs=107%; (2)
ADs=1.25X107%; (3) ADs=1.38 X 107%; and (4) Aj5=2X 107,

twisted, then both coefficients of the chiral dispersion inter-
action ¢;=c, and of the combined chiral interaction c,c; in-
duced by polarization have the same sign. At the same time,
the sign of the addition Ac, appears to be opposite if one
takes all chiral spherical invariants with the same sign, be-
cause the terms P'”P® and n(a) ('8 ) in Eq. (29) have oppo-
site signs. Thus let us suppose cl—c2=175<0, cpCr~U6Q%f
<0, and Ac,=A05>0. Then if the absolute value of AUs is
small with respect to that of the remaining chirality coeffi-
cients (both conventional and combined), a continuous (al-
though very sharp) transition from Sm-C" to Sm- CZ happens
[see curve (1) in Fig. 4]. With the increasing |Aos/0s| the
helical period may begin to diverge in the Sm-C*—Sm-CZ
transition point [see curve (2) in Fig. 4] or (for larger
|AD's/s|) before this transition point [i.e., within Sm-C”, see
05/0s| [see curve
(4) in Fig. 4] the direction of the rotation may remain nega-
tive in both Sm-C* and Sm-CZ. Thus, in the cases presented
in curves (1) and (4) a continuous transition from Sm-C”* to
Sm- C must be observed. The divergence of the helical pe-
riod w1th1n the Sm-C*—Sm- C range is observed experimen-
tally, for example, in [16], whereas the continuous modifica-
tion is observed, for example in [17,18]. Finally one notes
that there may not exist Sm- C or its temperature range may
be narrow or hardly notlceable if the biaxial ordering o is
equal to zero or very small. Generally, the behavior of the
helical period in Sm-C” is very similar to that presented in
[19] and is described well by perturbation scheme (43). In
the case of Sm-C” it yields the following simple expression
for the helical rotation angle:
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2( Xm _ 1>cpcf+ a cos” 0+ 7] sin” @
. 1+2g, 2 2
AQD = s
—~ a 'm
b sin? 0+(—+2a1>cos2 0+4( X —1)0?
2 1+2g,, -
(48)

where index “1” denotes g7=1. The expression for the heli-
cal rotation angle is also very simple in Sm-Cj; (¢gT=0):

2( Xﬂ‘l
1-2g,

T2 a 2
b sin” 0— E—Zal cos” 0+4

¢ 2 EZ )
-1 + — cos” §— — sin” 6
)CpCf 5 )

Xm 2'
1-2g, 1>Cf
(49)

But Sm—CZ does not obey the scheme (43) and Eq. (48). If
>0 the helical rotation remains even in Sm-A”. The ques-
tion arises, what rotates in this phase? Indeed, polarization
disappears in the untilted phase, since it is proportional to
sin 6. Nevertheless, the biaxial nonpolar ordering still re-
mains, and the director of this ordering is parallel to polar-
ization that arose previously in the tilted uniaxial phase. Pa-
rameter o may, in principle, be obtained by minimization of
the extended free energy that also contains the higher powers
of polarization vectors. This task, however, seems to be very
difficult, and what is more important, takes even more pa-
rameters that are undetermined. At the same time, it is clear
that parameter o does not change very much within the in-
vestigated temperature interval, since the terms containing it
are almost independent of the molecular tilt. Therefore we
simply considered o as an additional parameter in our theory.

A(p0=—

V. PHASE DIAGRAMS AND DISCUSSION

It is well-known that the temperature range covering all
the intermediate smectic phases is usually less than 10 K. At
the same time, the tilt angle 6 is known to change dramati-
cally within this temperature range. In contrast to paper [1],
let us assume at zeroth approximation that the only param-
eter depending on the temperature is the tilt angle. In this
case the phase diagrams may be plotted in terms of the vari-
able tilt angle 0 even without introducing the temperature. At
the same time, it is not difficult to introduce a model expres-
sion for the temperature variation of the tilt angle. Let us
assume in addition that the tilt angle is determined mostly by
the interaction of molecules located within the same smectic
layers and expand the corresponding free energy Fy(6) in
Taylor series first with respect to sin 6 at point sin §=0 and

then with respect to the dimensionless declination T=(T
—~T)/T" from the Sm-A"—Sm-C" transition temperature T"

at point T=0:

Fy(6) = aT sin 6+ (B, + B,T)sin* 6, (50)

where the coefficients a, B, and B; depend on the molecular
model. The behavior of the tilt angle is quite standard
though: it arises at some temperature 7", then increases rap-
idly with temperature decreasing, and finally saturates some
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degrees below T". Minimizing Eq. (50) with respect to sin
one obtains:

T
sin f= — ———— (51)
2(By+B,T)

The desired behavior is easily achieved when «>0, By>0,
and B <0. Indeed, the ratio —B,/B regulates the “speed” of
saturation. Saturation of the tilt angle is very fast if the ratio
—-B,/By is large. The ratio —a/(2B,;) corresponds to the
square of the sine function of the saturated tilt angle.

Now let us define the remaining independent parameters
in the case of the strong positional correlation of molecules
in the same and in the neighboring layers (p(g; ;)= 1). The
most important parameters are the dimensionless dipole and
quadrupole moments:

/1 1
Mef = M m9 Qef =0 W’ (52)

that participate in go=uZ/8, g,=[d/(h,cos §)uZ/4 and
cy==3(d/ 15)*Qepiter/ 2 [see Egs. (26) and (10)]. In addition
one needs the dispersion coefficients ;=v,/(kzT") (i=1, 3,
5, and 6) and A7, = Av,;/(kzT") (i=1 and 5) that participate in
a, b, c;=c, [see Egs. (37) and (47)] and in ¢, [see Eq. (19)].

In papers [6,13] it was discussed that in the absence of
polarization and chirality effects the molecular transverse ter-
minal dipole moment u.; favors the anticlinic state, whereas
a combination of the dispersion coefficients 307 +03 favors
the synclinic state. In paper [1] it was noticed that the inter-
play between various intermediate smectic phases is man-
aged by the flexoelectric effect (proportional to molecular
quadrupole moment Q.¢) and the piezoelectric effect (propor-
tional here to polar dispersion coefficient Ug). Let us there-
fore introduce the reduced dipole moment u:/|4(35,+73)]
and the reduced quadrupole moment |Q.;/(147,)|, and con-
sider the reduced dipole-temperature and the reduced
quadrupole-temperature phase diagrams. Taking into account
that in numerous smectic materials the transverse dipole mo-
ment is associated with the same polar atomic group (for
example, CH3), let us fix parameter u. in our reduced
dipole-temperature phase diagram and consider the disper-
sion contribution 37,403 as the variable. The corresponding
phase diagram in the case of molecules with small reduced
quadrupole moment is presented in Fig. 5(a), where the
uniaxial phases fill all the “space” of the diagram. In this
figure the uniaxial phases are marked by numbers of layers
per one turn py=t/7, and the red thick line detaches
Sm—C:, Sm-C”, and Sm—CZ (let us call this line the phase
transition border). In the presence of the nonpolar biaxial
ordering (see Sec. IV) the phase transition border becomes
cap-shaped. Below and above the phase transition border the
periodicity of uniaxial phase modifies continuously (only pe-
riodicities equal to the ratios of some integer numbers are
shown in Fig. 5). It is equal to several smectic layers in
Sm-CZ, to several hundreds of layers in Sm-C*, and to ap-
proximately two layers in Sm-C:. For different values of
parameter ui/|30,+05 the value of parameter p, in
Sm-CZ may decrease or increase with the increasing tem-
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FIG. 5. (Color online) (a) Theoretical reduced dipole-
temperature phase diagram in the case By/B;=-0.1, a/B;=-0.5,
0=0.2, €/d=4, 7,=-0.622, AD;=0, §5=—1.5X1072, Aj5=1.75
X 1072, 53==0.15, p=0.77, and Q=1.04; and (b) Experimental
electric-field-induced birefringence diagram for MHPOCBC repro-
duced from [6]. Blue arrows in both figures seem to correspond to
the same transitions.

perature. There is an interesting correlation between the
value of parameter p; in Sm-C), and its derivative with re-
spect to the temperature: it increases with the temperature
increasing if it is small (py;=<4), and decreases if it is large
(py=4). This correlation is in complete correspondence with
the experiment [20,21]. The blue arrows in Fig. 5(a) show
the first order phase transitions between Sm-C, and Sm-C",
and between Sm-C°, and Sm-C,, although a continuous
modification from Sm-C* to Sm-C,, is also possible (see
Sect. IV), which is similar to the liquid-gas coexistence
above critical point. One notes from Fig. 5(a) that near the
peak of the phase transition border Sm-C* may be very nar-
row and its periodicity may be quite small, so that sometimes
Sm-C”, and Sm-CZ, may be interpreted as “two kinds of
Sm—CZ,” (see [6], where, however, these two kinds were as-
sociated with crossing the left “arm” of the phase transition
border, because we could not yet predict the existence of the
right “arm”). The experimental electric-field-induced bire-
fringence diagram for MHPOCBC reproduced from [6] is
presented in Fig. 5(b), where the blue arrows (now correctly)
represent the transitions between Sm-C,, Sm-C*, and
Sm-C.,.

When the molecular quadrupole moment |Q. is large the
left “arm” of the phase transition border breaks into two
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FIG. 6. (Color online) (a) Theoretical reduced dipole-
temperature phase diagram in the case By/B;=-0.1, a/B;=-0.5,
=02, €/d=4, 7,=-0.622, AD;=0, 05=—1.5X1072, Aj5=2.5
X 1072, g=—4.74 X 1072, pe=0.77, and Q=3.29; and (b) Experi-
mental phase diagram reproduced from [9]. Molecules of two com-
pounds MHPOCBC and MHPOOCBC seem to have different val-
ues of parameter 30 +03.

lines, and a sequence of biaxial subphases arises in the area
between these two lines [see Fig. 6(a), where the red thick
lines detach the biaxial phases from the uniaxial ones and
Sm-C* from Sm—CZ, the blue arrows show the increasing
with temperature pitch in Sm-C_, if p,;<4 and the decreasing
pitch if p, =4, the uniaxial phases are still marked by py,
and the biaxial phases are marked by g, denoting the number
of synclinic pairs per one period 7]. The well-known
Sm—C:(1/3) [FI1] and Sm—CZ(l/Z) [FI2] appear to be the
broadest phases in the temperature range, though different
biaxial subphases with g;<<1/3 and even with 1/3<gy
<1/2 and g;>1/2 [22] arise within the small temperature
ranges. One notes that in the case of large ug/|37,+53] (let
us call it case 1) Sm- CA(1/3) and Sm- CA(I/Z) arise in ap-
proximately equal temperature ranges, and simultaneously
the higher temperature Sm-C" arises in relatively small tem-
perature range, and in addition a continuous modification
from Sm-C” to Sm-CZ similar to that presented in curve (1)
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in Fig. 4 (that may be interpreted as the absence of Sm-C”) is
rather possible in this case because of the relatively small
periodicity in Sm-C". This situation tentatively corresponds
to experimental data for I0OTBBBI1M7 presented in [12]
and for MHPBC presented in [11]. At the same time, in the
case of small ,u,ef/|3v1+v3| (case 2) Sm-C,(1/2) is essen-
tially narrower than Sm-C A(l/ 3) (and sometimes is absent)
Sm-C” is very broad, and the helical pitch in Sm-C” is es-
sentially long. This corresponds to experimental data for
MHPOBC and MHDDOPTCOB presented in the same pa-
pers. In our theory these three output parameters [relative
range of Sm- CZ(]/ 2), relative range of Sm-C”~ (both with
respect to Sm- CA(I/ 3)), and the value of helical pitch in
Sm-C"] appear to depend on the value ul;/ |301+v3| which is
an input molecular parameter. Unfortunately it is difficult to
estimate this value experimentally. Nevertheless, the simul-
taneous change of our output parameters with the change of
value pg/|30,+3| exactly corresponds to the simultaneous
change of the same experimental parameters with the choice
of different materials. We believe that this simultaneous
change, as well as correlation between pg; in Sm—CZ and its
derivative with respect to the temperature discussed above, is
not just a coincidence, but a regular confirmation of our
theory. Moreover, the phase diagram presented in Fig. 6(a) as
a whole resembles the experimental result presented in Fig.
6(b), where molecules of two compounds MHPOCBC and
MHPOOCBC have the same terminal transverse dipole mo-
ment associated with polar group CH;, but seem to have
different values of the dispersion parameter 30+ 05 favoring
the synclinic state.

Let us outline the theoretical mechanism of the change of
the mentioned output parameters. The Sm-C" phase extends
over a smaller temperature interval in case 1 and over a
larger temperature interval in case 2, because the phase tran-
sition border is regulated by the value gi/|37,+0s]
=ul/ (|30, +05|cos® 6) [see Egs. (36) and (37)], and thus, its
left “arm” moves to the smaller tilt angles 6 (in other words,
to the higher temperatures) with the increasing ,uif/ 137,
+05|. The helical pitch is short in case 1 and long in case 2,
because the flexoelectric constant ¢, is proportional to ..
Finally, let us understand why Sm-C,(1/2) is broad in case 1
and narrow in case 2. One notes that the additional flexoelec-
tric term —n,(n;-An,,,) in the free energy [see discussion

after Eq. (18)] produces the last term Afp(2) in the free en-
ergy (35). Among subterms with different i and j participat-
ing in this term [see Eq. (40)], let us collect the ones propor-
tional to the coefficients f<lw) and f ) (and thus, giving the
largest contribution to the free energy). One easily obtains
the function proportlonal t0 —COS @;_ ; COS @; ;4 which does
not distinguish Sm-C" from Sm-C,, but at the same time it
does not favor Sm-C A(l/ 2), which is neither synclinic-nor
anticlinic-like. This subphase appears to be suppressed by
the neighboring phases [Sm-C),(1/3) and Sm-C”]. Before
consideration of the vertical (perpendicular to the smectic
layer plane) flexoelectric polarization Sm-C);(1/2) was the
broadest subphase for any dipole moment [1,6], therefore the
new effect in the most cases could not “kill” it completely.
Since the vertical polarization is proportional to the addi-
tional power of sin 6, its destructive effect is large only if the
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FIG. 7. (Color online) Reduced quadrupole-temperature phase
diagram in the case By/B;=-0.1, a/B;=-0.5, 0=0.1, {/d=4, 0,
=-0.622, A5,=0, 73=1.71, 05s=—1.5X1072, Ags=5X1072, o,
X Qe=—0.156X 1072, and pe=0.77.

tilt angle is large, and this corresponds to case 2 when almost
no Sm-C,(1/2) is observed.

The reduced quadrupole-temperature phase diagram (see
Fig. 7) generally looks similar to the reduced dipole-
temperature phase diagram. From both diagrams one notes
another interesting effect: for the large values of the effective
reduced dipole and quadrupole moments a situation is pos-
sible when subphase(s) with g7<<1/3 are stable in a quite
large temperature range, and neither Sm-C A(l /2) nor
Sm- CA(1/3) is observed (see long blue arrow in Fig. 7). This
reminds one of the recent experimental findings [7]. By defi-
nition, the biaxial subphases with g;<<1/3 look already very
similar to each other, and according to our theory each one
exists within the small temperature range, and thus, in the
normal case [i.e., when Sm—C:(I/Z) and Sm-CZ(1/3) are
observed] they may already be interpreted as pretransitional
effects into Sm-C:(O).

The helical pitch in various tilted smectic phases is pre-
sented in Fig. 8(a). One notes no big changes of this param-
eter between various subphases with g;<<1/3. At the same
time, the difference between these subphases and
Sm-C:(ll 3) is rather noticeable. In [7] it was discussed that
in pure 12BIMF10 only the new subphase with g;<<1/3 is
observed. When mixing 12BIMF10 with a small percent of
MHPBC first Sm-C,(1/3) and then Sm-C),(1/2) arise at
higher temperatures. Generally, the phase sequence in
12BIMF10 seems to correspond the one represented by the
long blue arrow in Fig. 7, and mixing with MHPBC seems to
diminish the effective reduced quadrupole moment gradu-
ally. Another hypothetical possibility of existence of the bi-
axial subphases with g;<\1/3 and absence of Sm-C,(1/3)
and C),(1/2) is represented by the short blue arrow in Fig. 7.
This, however, does not seem to be the case reported in [7],
because no Sm-C” was observed there.

The helical pitch and the angle of 3D distortion from the
Ising model in every tilted phase presented in Figs. 8(a) and
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FIG. 8. (Color online) Helical period (a) and 3D distortion angle
from Ising model (b) in different phases as functions of temperature
in the case By/B1=-0.1, @/B;=-0.5, 0=0.2, {/d=4, ©,=-0.622,
AT =0, 73=1.67, 5=—1.5X 1072, Aj5=0, 0g=—4.74 X 1072,
=0.77, and Q=3.29.

8(b), respectively, as functions of temperature are estimated
using the perturbation scheme (43). We have chosen negative
conventional chirality ¢;=c, and negative parameter c,cy
corresponding to the coupling between polar electrostatic
and polar dispersion interactions and responsible for the
combined chiral interaction. One notes that the helical rota-
tion angle A¢ and all the distortion angles Aa; simply
change their signs with the simultaneous change of signs of
parameter c,c, and of parameters ¢, and c,. Usually the he-
lical period in Sm-C” and Sm-C), ', has opposne signs, in every
b1ax1a1 subphase with gr=<1/3 the sign is the same as in
Sm-C, ",» but the absolute value is larger. The helical rotation
in Sm-C A(l/ 2) is very weak (the helical period is very large
and may diverge). Indeed, substituting =4 into Egs.
(43)—(45) one obtains the following expressions for the dis-
tortion angle Ac’? and for the helical rotation angle A¢''? in
Sm-C,(1/2):
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Agl2 o B2Gi=BiG
Y T ByA -AB)

A(Pl/Q:AlCZ_AZCI (53)
ByA| —AsB,

where

A;=2bsin* 0, B,=(a-a,)cos’ 6+2c,
C; =4(x,, — Deycp+ ¢y cos® 6,
Ay=2acos’ 6, C,=2c,sin’ 6,

B, =4bsin” 0—8a; cos” 0—16(x,,— l)c;.  (54)

One can check that parameter a changes its sign from posi-
tive to negative somewhere in Sm-C,(1/3) [very close to
Sm—CZ(l /2)] with the increasing temperature, so that in
Sm-Cj;(l /2) it remains very small and negative. Thus in the
absence of conventional chirality (c;=c,=0) the rotation
angle Ag!"? appears to be very small and to have the same
sign as c,c; (negative in our case). Here we need to stress
that additional terms proportional to c,c, and independent of
the small parameter a disappeared from the expression for
the rotation angle A¢'? due to the very special symmetry of
Sm—CZ(l /2), and only a similar term proportional to c, sur-
vived. It can be checked [by substituting different ¢ into Egs.
(43)—(45)] that in the other biaxial subphases an additional
c,cy term independent of a is also present in the expression
for Ag, and therefore the helical rotation appears to be stron-
ger. It is reasonable to suppose, however, that the conven-
tional chirality is also nonzero and has the same sign as c,c,
(i.e., ¢;=¢,<0). In this case a competition between two
terms in the numerator of Eq. (53) for A¢!"? arises, and the
helical pitch diverges at some point within Sm-C/,(1/2) [see
Fig. 8(a), where the helical period is very similar to the ex-
perimental one presented in [12] for I0OTBBB1M7]. Thus,
experimentally, both conventional and combined chirality
coefficients must be nonzero and of the same sign, that looks
quite natural.

VI. CONCLUSIONS

In this paper the general phase diagrams containing the
entire set of the known fundamental and intermediate tilted
smectic phases (including both biaxial and uniaxial ones) are
presented in terms of the molecular parameters (in particular,
the dipole and the quadrupole moments) and temperature.
These diagrams demonstrate a surprising coincidence with
the experimental results. They essentially contain the biaxial
subphases with periodicity of more than four smectic layers
which are extremely important for the further development
of science and technology. Both increasing and decreasing
with temperature periodicities of the uniaxial subphase are
explained. An important role played by the vertical (perpen-
dicular to the smectic layer plane) flexoelectric polarization
is investigated for the first time. In particular, this polariza-
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tion destroys the four-layer biaxial subphase, so that in some
cases this phase does not arise at all, and in most of the cases
the three-layer biaxial subphase appears to dominate the
other biaxial subphases. A perturbation scheme for the deter-
mination of the helical rotation in a strongly biaxial tilted
smectic phase is suggested. The corresponding rotation
angles are written analytically. A sharp transition from
Sm-C" to Sm-C,, is explained in terms of the nonpolar biax-
ial ordering of molecules. The de Vries’s phase is explained
in terms of the entropy effects in the presence of the biaxial
nonpolar ordering. The arguments are based on the
molecular-statistical theory.
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APPENDIX: CALCULATION OF THE AVERAGE DIPOLE-
DIPOLE INTERACTION BETWEEN THE NEAREST
MOLECULES LOCATED WITHIN THE SAME AND IN
THE NEIGHBORING TILTED SMECTIC LAYERS

The dipole-dipole interaction is determined by Egs.(7)
and (8), and in this section we are going to average it with
respect to the positions of the interacting molecules. The
most simple task is to average the dipole-dipole interaction
between molecules located in the neighboring layers, be-
cause positionally correlated molecules in this case are situ-
ated just above each other, when the vector connecting di-
pole moments is parallel to the smectic layer normal k, the
minimal distance between them is equal to &, cos 6 (see Fig.
1), and the average dipole-dipole interaction is simply equal
to

<U;:,fl> = <gi,itl>/u‘g)Taﬁ(hlk cos 0),”«%11)7 (A1)
where (g; ;.) is determined by Eq. (12), and
1
T, 5hik cos 0) = —=———(5,5— 3kkp). A2
plh, ) i cos’ 6( ¥ p (A2)

To average the dipole-dipole interaction between mol-
ecules located in the same smectic layer is a more difficult
task, since the minimal distance between molecules (let us
call it r) in this case depends on the orientation of the inter-
molecular vector r (which at the same time is the vector
connecting the dipole moments):

(UL = (@1 T (A3)

where
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FIG. 9. Contacting molecules within the same smectic layer.

(A4)

7

) 3r,r
(T o)) = <—@ - —5/-3>

Vector r describes an ellipse with semiaxes d and d/cos 6,
and thus, its projections on axes w; and m; (see definitions in
Sec. II and Fig. 9) obey the following equation:

rfv+ r,Zn cos® =d>. (A5)
Let us introduce polar angle ¢ for vector r:
r,=rcos ¢, r,=rsin ¢. (A6)
Substituting Eq. (A6) into Eq. ((A5)), one obtains
r* = d*/(cos® ¢ + cos> 0sin® ). (A7)

Using Egs. (A6) and (A7), one can rewrite Eq. (A4) in the
following form:
21

11
(Top(r)) = i (cos® ¢+ cos® @sin” ¢)** X [ 5,5
0

a

N (s ; ; Js
— 3w cos? b= 3mPm' sin® pl—ddo,
B ¢ a'''B ¢] (9¢ ¢

(A8)

where we assumed that probability of contact for the two
molecules is the same along the whole elliptic line, s is the
total length of this line, and ds/d¢ is the Jackobian of trans-
formation from variable position along the elliptic line to
variable ¢. One notes that integral ((A8)) cannot be calcu-
lated exactly. Thus, let us estimate it by expanding all ex-
pressions in Taylor series and neglecting all the terms higher
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than quadratic in the small parameter 6. Then the following
approximation for the distance r between molecules can be
made [see Eq. ((A7))]:

r 1

— =~ 1+ =@ sin’ ¢. A9
=l Psin ¢ (49)
An infinitely small distance along the elliptic line can be
expressed as

-
ds =\(dr,)? + (dr,,). (A10)

Substituting Eq. (A9) into Eq. (A6), differentiating r,, and r,,
with respect to ¢, and substituting the result into Eq. (A10),
one obtains

1o lpca, 3p.0, o

YY) 1+ 26‘251n 1) 2t9zsm ¢cos” ¢, (All)
and the total length of the elliptic line s=2md in the same
approximation (it differs from 27d only in higher than qua-
dratic terms in 6). Substituting Eq. (A11) into Eq. (A8) and
expanding the remaining terms in Eq. (A8) in Taylor series,
one obtains

1 3 3 0 1
(Taﬁ(r)) =~ E|:5a‘8<1 - ZHZ) - Ewg)wg)(l - 502)

3

- —mg)mg)(l - 02)] .

> (A12)

Introducing a new vector €,=[n; X w;] (see Fig. 9), taking
into account that m;=¢€;+n, tan ¢, and using the following
constraint for the three orthogonal unit vectors n;, w;, and €;:

nOnD 4 wOld 4 €000 = 5, (A13)

one obtains
1 3 3 . . N
(Taﬁ(r» ~ - ﬁ[é‘l (l - 56‘2> + Ewg)w%)ﬁz - 3n([;)n'(31)(1

- 202)} . (A14)
Substituting Eq. (A14) into Eq. (A3) one notes that the last
term in Eq. (A14) plays no role, because (u;-n;)=0. Finally,
substituting Eqs. (A1)—(A3) and (A14) into Eq. (4) one ob-
tains Eq. (9) with tensors g, and g, defined by Eq. (11).
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