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We study front propagation in the reversible reaction-diffusion system A+A↔A on a one-dimensional
lattice. Extending the idea of leading particle in studying the motion of the front we write a master equation in
the stochastically moving frame attached to this particle. This approach provides a systematic way to improve
on estimates of front speed obtained earlier. We also find that the leading particle performs a correlated random
walk and this correlation needs to be taken into account to get the correct the value of the front diffusion
coefficient.
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I. INTRODUCTION

Propagation of fronts into unstable states in reaction-
diffusion systems has been an actively studied topic for a
long time �1�. The dynamics of propagating fronts is of in-
terest in diverse physical situations—for example, on a bi-
nary search tree in computer science �2�, the front between
zipped and unzipped phases on DNA �3�, solidification front
�4�, flame front in air-fuel mixture �5�, etc. Recently, there
has been renewed activity concerning the connection be-
tween fronts in microscopic discrete stochastic models and
macroscopic deterministic equations which are believed to
be their mean-field limits �6�. In this paper we study front
propagation in a system of reacting and diffusing particles on
an infinite one-dimensional �1D� lattice. Initially, the left half
of the lattice is filled with a certain density of particles with
the right half being completely empty, resulting in a sharp
boundary between the two halves. As the system evolves, the
particles move to the right, resulting in a propagating front.
After an initial transient, the front moves with an asymptotic
speed v. Further, due to the inherent stochastic nature of the
dynamics, the ensemble-averaged front profile in the lattice
frame undergoes diffusive broadening �Fig. 1�a�� with an as-
sociated diffusion coefficient Df. However, if the ensemble
average is taken in a frame moving with the rightmost par-
ticle �the leading particle� in each realization, the density
profile does not change in time �Fig. 1�b�� and is microscopi-
cally sharp �i.e., a few lattice spacing wide�. Thus, the diffu-
sive spreading of the profile in the fixed frame is entirely due
to the random motion of the leading particle. This indicates
that the dynamics of the front is reduced, in an approximate
way, to the dynamics of the leading particle �7–9�. Treating
the motion of this particle as a biased random walk, simple
approximate expressions for the speed v and diffusion coef-
ficient Df have been derived �8,9�. However, in these ap-
proaches it is hard to find a systematic way to improve esti-
mates for v and Df. In the present paper we show that by
writing the front dynamics in the frame moving with the
leading particle one can get numerically better estimates of
the front speed. We also show that the motion of the leading
particle is correlated in time and thus the front diffusion co-
efficient differs from that obtained from a simple random-
walk approximation.

II. MODEL AND RESULTS FOR v AND Df

We consider a 1D lattice �−� � i� � � in which each site
can hold at most one particle �hard-core exclusion�. The par-
ticles �denoted by A� undergo three basic microscopic pro-
cesses: �i� Birth or creation: a particle can generate a new
one on a neighboring empty site with rate �. �ii� Death or
annihilation: one of the two neighboring particles gets anni-
hilated with rate W �iii� Diffusion: a particle diffuses to a
neighboring empty site with rate D �see Fig. 2�. Initially, at
t=0, the left half of the lattice �i�0� is filled with particles at
a density �= �̄, where �̄=� / ��+W� is the density of the equi-
librium phase eventually obtained if the process were al-
lowed to occur in a finite system. There are only two inde-
pendent parameters in the system as one of the three rates �,
D, and W can be scaled away by choosing the time scale
appropriately.

In a mean-field approach, which is expected to be valid in
the limit D→�, the evolution of the front is described by the
Fisher-Kolmogorov-Petrovsky-Piskunov �FKPP� equation
�10� �t�=D�x

2�+k1�−k2�2, with k1=2�, k2=2��+W�, and �
is the coarse-grained density of A particles. The asymptotic
front speed is then given by v0=2�2�D.

For the case W=0, which arises naturally in the context
of turbulent flame-front propagation �7�, the existence
and uniqueness of an asymptotic front solution were estab-
lished rigorously in �11� and it was shown that the
mean-field limit is obtained as D→�. For finite values of D,
a two-particle representation was used in �8� to get an
approximate value of the front speed which works quite well
for D /��O�1�.

In �12�, using the inter particle distribution functions,
an exact solution was obtained for the special case W=D.
In this case, it was shown that in each realization of the
front evolution, the leading particle performs a biased
random walk and the spatial distribution of particles behind
is the same as in equilibrium with density �= �̄. The speed
and diffusion coefficient in this case are v=� and Df =�+D,
respectively.

If W�D, the method used in �12� does not work and
an exact solution is no longer possible. Also, the two-particle
representation of �8� does not close if particle annihilation
is introduced—i.e., W�0. In �9�, an approach based
explicitly on the motion of the leading particle as a biased
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random walker was introduced and the following approxi-
mate expressions for speed and diffusion coefficient were
obtained:

v = � − �1�W − D�, 2Df = 2D + � − �1�W − D� , �1�

where �1 is the probability of occupation of the site just
behind the leading particle. Expression �1� may be written
down by noting that the front particle moves right with
rate �+D �i.e., whenever a particle is created to the right
of the leading particle or the later makes a diffusive move
to the right�. The leading particle takes a negative step
when it gets annihilated by the particle on the left �with rate
W�1� or if it makes a diffusive move to an empty left site
�with rate D�1−�1��, where �1 is the occupation probability
of the site immediately to the left of the leading particle.
For W=D, these results reduce to those obtained exactly in
�12�. In order to get more accurate values of v and Df
one needs to find better estimates of �1 �the bulk value �1
= �̄ was used in �9��. While Eq. �1� works quite well �with
�1= �̄� for W close to D, there are significant deviations
as one moves away from this special point �W=D�. This can
be seen from Fig. 1�b� where �1 is significantly different
from �̄ for �W−D � �0. Here we present the results of
simulations for two different sets of parameters ��=0.25,W
=0.125� and ��=0.05,W=0.0� while varying D in each
set. The second set allows for the largest possible deviation
from the D=W special point.

In order to get successively better estimates for �1, we
look at the invariant profile of the front as observed from the
leading particle. Starting from an ensemble of N realizations
this invariant profile is obtained, after an initial transient
time, by aligning the leading particle of each member of the
ensemble �Fig. 1�b��. From the definition of �1 it then fol-
lows that out of the N realizations, �1N have a particle in the
site to the left of the leading particle and the rest �1−�1�N
have an empty site next to it. In the steady state, it thus
follows that there is a kinetic balance between the two types
of realizations: those with 11 or 01 as the occupancy of the
rightmost pair of sites �where the second 1 denotes the lead-
ing particle�. Thus, the two states 01 and 11 may be thought
of as a truncated representation of the full lattice. Due to
microscopic moves, there are transitions between these two
“states.” In this representation the state may not always
change although the configuration of the lattice as a whole

changes. E.g., in the 11 state if a new particle is created to
the right of the leading particle, the state remains as 11. For
example, in the transition shown in Fig. 2�b�, the configura-
tion 01 changes to 11 with rate �. In Fig. 2�a�, diffusion of
the leading particle to its left changes the state 01→11 pro-
vided the site F-2 is occupied and leaves it unchanged if F-2
is empty. If the probability of occupancy of F-2 is denoted by
�b, then the transition 01→11 occurs with the rate D�b. 1

Similarly, in Fig. 2�c�, when the leading particle in state 11
gets annihilated, the state changes to 01 if F-2 is empty and
this occurs with rate W�1−�b�. Considering all such transi-
tions involving the leading particle and two sites behind it,
one can write a master equation for the probabilities p11 and
p01 of the two states in this truncated state space as

ṗ01 = �2D − D�b + 2W�p11 − �2D�b + 2� + ��b�p01,

ṗ11 = �2D�b + 2� + ��b�p01 − �2D − D�b + 2W�p11. �2�

In the steady state ṗ01=0= ṗ11 and one obtains �p11=�1 in
steady state�

�1 =
3�2 + 2��W + D�

3�2 + 2W2 + 4�W + 3D� + 2DW
, �3�

where we have used �b= �̄, an approximation which becomes
better as one includes more sites in the truncated representa-
tion. E.g., we have also computed �1 by keeping l=3 sites
�i.e., four states 111, 011, 101, 001�, l=4 sites �eight states�,
and the relative errors in the values obtained for �1 are plot-
ted in Fig. 3 and the corresponding front speed �using Eq.
�1�� in Fig. 4. It is to be noted that expression �3� above
reduces to �1= �̄ for W=D as it should. In fact our approxi-
mation �b= �̄ becomes exact for W−D=0; however, for in-
creasing values of �W−D�, �b differs significantly form �̄

1Here we assume the third site is occupied with probability �b,
independent of whether the second site is occupied or not. This
approximation is expected to become better as one includes a larger
number of sites in the representation: the correlation between the
last site of the truncated state and the site behind that vanishes as
one approaches the bulk.

FIG. 1. Spatial density profile of the front �a� Schematic picture
of the average profile �in the fixed frame� moving and spreading
diffusively. �b� Numerically obtained average profiles as seen from
the frame of the rightmost particle for three different sets of param-
eters defined in the text. The right edge of the graph �i=−1� corre-
sponds to the site just behind the leading particle.

FIG. 2. Basic microscopic moves of �a� diffusion, �b� birth, and
�c� death. When the right particle happens to be the leading particle
�denoted by F� the processes can result in transitions between the
two states 01 and 11 as described later in the text.
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�Fig. 1�b�� and thus we need to study the states correspond-
ing to larger values of l �as obvious from Figs. 3 and 4�.
Further, in this approach, it is also possible to obtain
the spatial density correlation between site occupancies
�12= �	n1n2
−�1�2� / �̄2 of the two sites behind the leading
particle �Fig. 5�.

A. Reduced three-particle representation

The drawback of the above approach is that it is not easy
to write the transition matrix as the number of sites l is
increased �number of states increases as 2l−1�. In the follow-
ing we try to find an analytically tractable estimate for �1
using an alternative reduced representation similar to Ker-
stein’s approach �8�, which yields better results for W�0.
Instead of keeping a fixed number of sites to denote a state,
Kerstein chose the following infinite set of two particle
states: �11,101,1001,10001, ¯ � where the k th state has k
empty sites between the leading particle �denoted by the 1 on

the right� and the next particle �denoted by the 1 on the left�.
If there is no annihilation process—i.e., W=0—then these set
of states is closed with respect to transitions between the
states. However, as was pointed out in �9�, this breaks down
as soon as W�0. To see this let us consider the 11 state and
the microscopic process in which one of the two particles
gets annihilated. The resulting state depends upon the loca-
tion of the third particle in the initial configuration of the
lattice. I.e., one needs to go to a three-particle representation.
However, the same problem occurs while considering anni-
hilation in the 111 state. Thus, to take care of this problem
which arises due to the effective non locality in transition

ṗk = �2D − D� + W��pk−1 + �2D + ��pk+1 + �qk−1 + qk�W

− �4D − D� + 3� + W��pk, k 	 2,

ṗ1 = �2D − D��p0 + �2D + ��p2 + �2q0 + q1�W

− �4D − D� + 3� + W��p1,

ṗ0 = �2D + ��p1 + 2��1 − p0� − �2D − D� − 2W�p0, �4�

where we made the approximation that � is the probability
that the site next to the last particle in the two–or three-
particle states is occupied independent of its distance

FIG. 3. Deviation of �1 computed via various approximations
from that obtained from direct simulation as a function of D for
W=0.125 and W=0 �inset�. Solid squares correspond to the three-
particle representation discussed in Sec. II A.

FIG. 4. Difference between front speed computed using �1

from various approximations and that obtained from direct simula-
tion as a function of D for W=0.125 and W=0 �inset�. Solid squares
correspond to the three-particle representation discussed in
Sec. II A.

FIG. 5. The correlation �12 between occupancies of the pair of
sites immediately following the leading particle as a function of D
�W=0.125�. We see that the correlation is negative for D�W and
positive for D�W. Inset: �12 as a function of D for W=0.
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from the leading particle. We do not write the equations
for qk’s as it can be shown that they can be eliminated in the
steady state. To obtain the steady-state solution ṗk=0, fol-
lowing Kerstein, we make the ansatz pk= p0�1− p0�k and
write �=Ap0−Bp0

2 to take care of the ignored correlations
in the ansatz in a phenomenological way. The parameters
A and B are estimated as follows. We first note that for
D=W, both the quantities � and p0 equal the bulk density—
namely, �= p0= �̄=� / ��+W�—implying A=1+�B / ��+W�
and thus

� = �1 +
�B

� + W

p0 − Bp0

2. �5�

This form also ensures that W=0 and p0
1 imply �
1. Us-
ing � from Eq. �5� in Eqs. �4� �in steady state ṗk=0� we get
the following cubic equation for p0:

DB�� + W�p0
3 + ��2 + �W + �D + WD − DB��p0

2

+ ��2 + 3�W + 2W2�p0 − 2�2 − 2�W = 0. �6�

In order to fix B we note that for large D we expect the front
to approach the mean-field limit with the speed given by
v0=2�2�D. Since in terms of p0 the velocity is given by
�from Eq. �1�� v=�− �W−D�p0�Dp0 for D�W ,�, this im-
plies, in this limit, p0=2�2� /D. Substituting this expression
for p0 in Eq. �6� we obtain B=3��+W� /4�. Using this ex-
pression for B in Eq. �6� one obtains p0=�1 implicitly
through

D =
4��2� − �p0

2 − �p0 − 2p0W�
�� + 3�p0 + 3Wp0�p0

2 . �7�

The result is shown in Fig. 3 �solid square symbols
marked as 3P�. We note that, although several ad hoc as-
sumptions were made in arriving at Eq. �7�, including using
results that are strictly valid in the mean-field limit D→�,
the agreement with direct numerical results is remarkable
even for the finite values of D considered. It may be noted
that the three-particle representation gives best result for
W�0 �Fig. 3, inset�.

B. Front diffusion coefficient Df

In Fig. 6, we plot the front diffusion coefficient Df as a
function of D �W=0, �=0.05�. The lower curve is from di-
rect simulation and the upper one is that obtained from Eq.
�1� by using the most accurate estimate of �1. We see marked
deviation of the values obtained from the analytic expression
which implies that the simple �uncorrelated� random-walk
picture of the leading particle in not quite correct. The cor-
related motion of the leading particle may be described as
x�t+1�−x�t�=v+��t�, where the noise term � is temporally
correlated: 	��t�
=0 and 	��t���t��
�C�t− t���0. The
mean speed of the walker is v and the asymptotic diffusion
coefficient is given by

Df = D0 + �
t=1

�

C�t� , �8�

where, D0= 	�2�0�
 is the diffusion coefficient given in
Eq. �1� if one neglects temporal velocity correlation—i.e.,
C�t�=0 for t�0. Indeed, for the front under study we find
that there is a quasi-long-range correlation between the suc-
cessive steps of the leading particle �Fig. 6, inset�. This cor-
relation is nonpositive for all parameters �both D�W as well
as D�W� and vanishes for the special case of D=W.
Once this correlation is taken into account the diffusion co-
efficient matches reasonably well with that obtained from
direct simulations for the range of D studied. Preliminary fits
indicate that the correlation function has the functional form
C�t�=At−�exp�−t /
�.

III. CONCLUSION

We have illustrated the usefulness of the leading particle
picture in describing the propagation of fronts in the
A+A↔A reaction-diffusion process in the diffusion-
controlled limit in one dimension. By writing the master
equation in the moving frame attached to the leading particle
we are able to obtain better numerical estimates for the den-
sity of the site behind the leading particle and thus the front
speed v.

We have discussed two approximation schemes: the
first one, which we may call as a fixed site representation
�since it includes states corresponding to occupancy at fixed
number of sites behind the front�, is exact for W=D and
works well for �W−D � �1. Here, one can systematically im-
prove the results by including more states �i.e., increasing
value of l�, especially for larger �W−D�. In addition, this
approach, in principle, allows one to compute the spatial
density profile and density-density correlations away from
the special point D=W. In the second approximation, the
master equation is written in a truncated space of states with

FIG. 6. Diffusion coefficient of the front for W=0 as a function
of D. The bottom data �crosses� are the direct simulation values.
The top �open circles� are the values obtained from Eq. �1� while
the middle one �solid circles� represent the correlation corrected
Df. Inset: log-log plot for the correlation function C�t� versus t for
D=0.45,0.35,0.05 �from top to bottom�.
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up to a fixed number of particles behind the leading particle.
Together with a product measure ansatz for site occupancy,
the equations are solved self-consistently to obtain the den-
sity of site preceding the leading particle �p0=�1�. This ap-
proach works best for W→0 for any value of D. An ap-
proach which is valid for all parameter regime is yet to be
found.

Our numerical results show that the motion of the leading
particle is correlated in time and this needs to be taken into
account in order to get the correct diffusion coefficient. It is
seen that this correction increases with increasing D �the
microscopic particle diffusion constant�, and thus it might
play an important role in determining how the mean-field
limit is achieved as D→�.
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