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We study the distributions of channel openings, local fluxes, and velocities in a two-dimensional random
medium of nonoverlapping disks. We present theoretical arguments supported by numerical data of high
precision and find scaling laws as functions of the porosity. For the channel openings we observe a crossover
to a highly correlated regime at small porosities. The distribution of velocities through these channels scales
with the square of the porosity. The fluxes turn out to be the convolution of velocity and channel width
corrected by a geometrical factor. Furthermore, while the distribution of velocities follows a Gaussian form, the
fluxes are distributed according to a stretched exponential with exponent 1 /2. Finally, our scaling analysis
allows us to express the tortuosity and pore shape factors from the Kozeny-Carman equation as direct average
properties from microscopic quantities related to the geometry as well as the flow through the disordered
porous medium.
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Fluid flow through a porous medium is of importance in
many practical situations ranging from oil recovery to
chemical reactors and has been studied experimentally and
theoretically for a long time �1,2�. Due to disorder, porous
media display many interesting properties that are, however,
difficult to handle even numerically. One important feature is
the presence of heterogeneities in the flux intensities due the
varying channel widths. They are crucial to understanding
stagnation, filtering, dispersion, and tracer diffusion. These
are subjects of much practical interest in medicine, chemical
engineering, and geology, and on which a vast literature is
available �3�.

Many stochastic models for disordered porous media have
been proposed and used to describe the above mentioned
effects. One of the most successful is the so-called q model
for force distributions in random packings �4� in which a
scalar fluid is transferred downward from layer to layer. Al-
though the distribution of local flux intensities should be the
basis for any quantitative evolution of these stochastic mod-
els, detailed studies of them at the pore level are still lacking.

The traditional approach for the investigation of single-
phase fluid flow at low Reynolds number in disordered po-
rous media is to characterize the system in terms of Darcy’s
law �1,3�, which assumes that a macroscopic index, the per-
meability K, relates the average fluid velocity V through the
pores with the pressure drop �P measured across the system,

V = −
K

�

�P

L
, �1�

where L is the length of the sample in the flow direction and
� is the viscosity of the fluid. In fact, the permeability re-
flects the complex interplay between porous structure and
fluid flow, where local aspects of the pore space morphology
and the relevant mechanisms of momentum transfer should
be adequately considered. In previous studies �5–11�, com-

putational simulations based on detailed models of pore ge-
ometry and fluid flow have been used to predict permeability
coefficients as well as to validate semiempirical correlations
obtained from real porous materials.

In this paper we present numerical calculations for a fluid
flowing through a two-dimensional channel of width Ly and
length Lx filled with randomly positioned circular obstacles.
For instance, this type of model has been frequently used to
study flow through fibrous filters �12�. Here the fluid flows in
the x direction at low but nonzero Reynolds number, and in
the y direction we impose periodic boundary conditions. We
consider a particular type of random sequential adsorption
�RSA� model �13� in two dimensions to describe the geom-
etry of the diluted porous medium. As shown in Fig. 1, disks
of diameter D are placed randomly by first choosing from a
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FIG. 1. �Color online� Contour plot of the velocity magnitude
for a typical realization of a pore space with porosity �=0.7 sub-
jected to a low Reynolds number and periodic boundary conditions
applied in the y direction. The fluid is pushed from left to right. The
colors ranging from blue �dark� to red �light� correspond to low and
high velocity magnitudes, respectively. The close-up shows a typi-
cal pore opening of length l across which the fluid flows with a line
average velocity v� . The local flux at the pore opening is given by
q=vl cos �, where � is the angle between v� and the vector normal to
the line connecting the two disks.
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homogeneous distribution between D /2 and Lx−D /2
�Ly −D /2� the random x �y� coordinates of their centers. If
the disk allocated at this position is separated by a distance
smaller than D /10 or overlaps with an already existing disk,
this attempt at placing a disk is rejected and a new attempt is
made. Each successful placing constitutes a decrease in the
porosity �void fraction� � by �D2 /4LxLy. One can associate
this filling procedure with a temporal evolution and identify
a successful placing of a disk as one time step. By stopping
this procedure when a certain value of � is achieved, we can
produce in this way systems of well-controlled porosity. We
study in particular configurations with �=0.6, 0.7, 0.8, and
0.9.

First we analyze the geometry of our random configura-
tions making a Voronoi construction of the point set given by
the centers of the disks �14,15�. We define two disks to be
neighbors of each other if they are connected by a bond of
the Voronoi tessellation. These bonds constitute therefore the
openings or pore channels through which a fluid can flow
when it is pushed through our porous medium, as can be
seen in the close-up of Fig. 1. We measure the channel
widths l as the length of these bonds minus the diameter D
and plot in Fig. 2 the �normalized� distributions of the nor-
malized channel widths l*= l /D for the four different porosi-
ties. Clearly one notices two distinct regimes: �i� for large
widths l* the distribution decays seemingly exponentially
with l*, and �ii� for small l* it has a strong dependence on the
porosity, increasing dramatically at the origin with decreas-
ing porosity. A closer investigation shows that in Fig. 2 the
large-l* tail decays like a Gaussian for large porosities while
it is a simple exponential when the porosity is around or
below 0.7. The crossover between the two regimes is visible
as a peak which shifts between �=0.9 and 0.8 and then stays
for smaller porosities at about l*=1, i.e., l=D. These distri-

bution functions can be qualitatively understood in the fol-
lowing way. For very large porosities, i.e., very dilute sys-
tems, the distance between the particles is essentially
uncorrelated due to excluded volume and is therefore Gauss-
ian distributed around a mean value �l�. If for simplicity one
imagines particles being on a regular triangular lattice as an
idealized configuration in two dimensions, the following ex-
pression is obtained:

�l� = D�� �

2�3�1 − ��
− 1	 . �2�

The filling process will be strongly affected by the clogging
due to excluded volume when one disk just fits into
the hole between three disks. This situation occurs when
�l�=D��3−1�. Inserting this into Eq. �2� gives a crossover
porosity of �=1−� /6�3
0.7, which agrees with our simu-
lation �see Fig. 2�. Interestingly, a related property, namely
the correlation function, does not seem to show such a cross-
over �16,17�. The inset of Fig. 2 shows that, for sufficiently
large values of l, all distributions P�l� collapse to a single
curve when rescaled by the corresponding value of �l� calcu-
lated from Eq. �2�. As shown in the inset of Fig. 3, the
variation of the average value �l*� with porosity follows very
closely Eq. �2�. Only the prefactor is different from unity
�
1.2� due to the presence of disorder. This result indicates
that our simple description based on a diluted system of par-
ticles placed on a regular lattice provides a good approxima-
tion for the geometry of the disordered porous medium.

The fluid mechanics in the porous space is based on the
assumption that a Newtonian and incompressible fluid flows
under steady-state conditions. The Navier-Stokes and conti-
nuity equations for this case reduce to

FIG. 2. Distributions of the normalized channel widths l*= l /D
for different values of porosity �. From left to right, the two vertical
dashed lines indicate the values of the minimum distance between
disks, l*=0.1, and the size of the disks, l*=1. The inset shows the
data collapse obtained by rescaling the distributions with �l� using
Eq. �2�.

FIG. 3. Plot of the distributions of the local normalized velocity
magnitudes v*, i.e., v /V, multiplied by �2 as explained in the text.
The solid line is a Gaussian fit. The inset shows the dependence of
�l*� and �v*� on the porosity �. The solid lines are the best fits to the
data, corresponding to �l*�=a�b /��1−��−1�, with a=1.22 and
b=� /2�3 �see Eq. �2�� and �v*�=0.71�−2.

ARAÚJO et al. PHYSICAL REVIEW E 74, 010401�R� �2006�

RAPID COMMUNICATIONS

010401-2



�u� · �� u� = − �� p + ��2u� , �3�

�� · u� = 0, �4�

where u� and p are the local velocity and pressure fields,
respectively, and � is the density of the fluid. No-slip bound-
ary conditions are applied along the entire solid-fluid inter-
face, whereas a uniform velocity profile, ux�0,y�=V and
uy�0,y�=0, is imposed at the inlet of the channel. For sim-
plicity, we restrict our study to the case where the Reynolds
number, defined here as Re��VLy /�, is sufficiently low
�Re	1� to ensure a laminar viscous regime for fluid flow.
We use FLUENT �18�, a computational fluid dynamic solver,
to obtain the numerical solution of Eqs. �3� and �4� on a
triangulated grid of up to 105 points adapted to the geometry
of the porous medium.

Simulations have been performed by averaging over ten
different pore space realizations generated for each value of
porosity. The contour plot in Fig. 1 of the local velocity
magnitude for a typical realization of the porous medium
with porosity �=0.7 clearly reveals that the transport of mo-
mentum through the complex geometry generates preferen-
tial channels �11�. Once the numerical solution for the veloc-
ity and pressure fields in each cell of the numerical grid is
obtained, we compute the fluid velocity magnitudes v asso-
ciated to each channel. This value is the magnitude of the
line average velocity vector v� calculated as the average over
the local velocity vectors u� along the corresponding channel
width l.

In Fig. 3 we show the data collapse of all distributions of
normalized velocity magnitudes P�v*�, where v*=v /V, ob-
tained by rescaling the variable v* with the corresponding
value of �−2. It is also interesting to note that these rescaled
distributions follow a typical Gaussian behavior except for
very small v*�2, as indicated by the solid line in Fig. 3. In the
inset of Fig. 3 we also show that the average interstitial ve-
locity indeed scales with the porosity as �v���−2, confirming
the rescaling procedure adopted to obtain the collapse of the
distributions P�v*� in the main plot of Fig. 3. These results
are valid for high porosity values or low solid fractions, i.e.,
�1−��. Plotting for each channel v against l gives a cloud of
points which for all considered values of � result in a rather
unexpected least-square fit relation of the type v��l.

In order to quantify the effect of preferential channeling
on the flow, we calculate the spatial correlation g of the local
velocity magnitude u�  as a function of distance for several
realizations of the porous medium generated at different val-
ues of porosity. Our results show a typical exponential decay
of the correlation function for short distances, followed by
long-range oscillations around g=0 that clearly reflect the
disordered aspect of the pore geometry. As expected, the
characteristic length of this exponential decay increases sig-
nificantly with porosity.

We now analyze the distribution of fluxes throughout the
porous medium. Each local flux q crossing its corresponding
pore opening l is given by q=vl cos �, where � is the angle
between v� and the vector normal to the cross section of the
channel �see Fig. 1�. In Fig. 4 we show that the distributions

of normalized fluxes 
=q /qt, where qt=VLy is the total flux,
have a stretched exponential form,

P�
� � exp�− �
/
0� , �5�

with 
0
0.005 being a characteristic value. This simple
form of Eq. �5� is quite unexpected considering the rather
complex dependence of P�l� on �. Moreover, all flux distri-
butions P�
� collapse on top of each other when rescaled by
the corresponding value of �l*�−1�2. This collapse for distinct
porous media results from the fact that mass conservation is
imposed at the microscopic level of the geometrical model
adopted here, which is microscopically disordered, but at a
larger scale is macroscopically homogeneous �3�. As also
shown in Fig. 4, it is possible to reconstruct the distribution
of fluxes using a convolution of the distribution of velocities
v and the distribution of oriented channel widths, namely
l cos �. Indeed, if we calculate the integral

P�
� =� � P�v�P�l cos ����
 − vl cos ��dv d�l cos �� ,

�6�

we find that the original distribution P�
� is approximately
retrieved, as can also be seen in Fig. 4 �solid line�. We there-
fore confirm that the stretched exponential is the result of the
convolution Eq. �6�.

Finally, the inset of Fig. 4 shows that the permeability of
the two-dimensional porous media closely follows the semi-
empirical Kozeny-Carman equation �1�

FIG. 4. �Color online� Log-log plot of the distributions of the
normalized local fluxes 
=q /qt for different porosities �. The �red�
dashed line is a fit of the form exp�−�
 /
0�, where 
0
0.005. The
full line stems from the convolution as discussed in the text. In the
inset we see a double-logarithmic plot of the global flux, and the
straight line verifies the Kozeny-Carman equation.
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K

K0
= �

�3

�1 − ��2 , �7�

where K0�h2 /12 is a reference value taken as the perme-
ability of an empty channel between two walls separated by
a distance h. The proportionality constant � is given by the
following expression:

� � � D

2h
	2 1

�
, �8�

where ��Le /L�2 is the hydraulic tortuosity of the porous
medium, � corresponds to the pore shape factor, and Le is an
effective flow length �1�. If we now make use of the Dupuit-
Forchheimer assumption �1�

�v� =
V

�
�Le

L
	 , �9�

we are led to the conclusion that the tortuosity of our porous
medium should also scale as ��−2. Considering the validity
of the Kozeny-Carman equation �7� and the definition of the
constant � from Eq. �8�, we obtain as a consequence that the
shape factor should behave as ���2.

Summarizing we have found that although the distribution
of channel widths in a diluted porous medium made by a

two-dimensional RSA process is rather complex and exhibits
a crossover at l�D, the distribution of fluxes through these
channels shows an astonishingly simple behavior, namely, a
square-root stretched exponential distribution that scales in a
simple way with the porosity. The velocity magnitudes fol-
low a Gaussian distribution truncated at small velocities that
scales with the square of the porosity. The distribution of
fluxes can be reconstructed as a convolution of the velocity
with the channel widths distributions corrected by the veloc-
ity orientation factor cos �. We propose simple scaling laws
for the local fluxes that deepen the understanding of the in-
trinsic connection between geometrical and flow properties
of the random porous medium. Furthermore, we show that
our results can be macroscopically described in terms of the
Kozeny-Carman relation. Future tasks consist in generalizing
these studies to higher Reynolds numbers, three-dimensional
models of diluted porous media, and other types of disorder.
Other important challenges are to investigate transient flow
and tracer dynamics.
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