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Cascaded digital lattice Boltzmann automata for high Reynolds number flow
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Lattice Boltzmann methods are of limited applicability for direct numerical simulation of turbulent flow due
to instabilities in the zero viscosity limit. We observe that this is caused by an insufficient degree of Galilean
invariance of the relaxation-type Lattice Boltzmann collision operator. The cascaded digital lattice Boltzmann
automata described here, provides a method with which to achieve stable collision operators down to the limit

of zero viscosity.
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I. INTRODUCTION

Turbulent flow appears to be chaotic. It contains eddies of
a large spectrum of sizes and hence a lot of information that
is to be tracked when one tries to simulate turbulent flow on
a digital computer. The dimensionless measure of turbulence
is the Reynolds number Re=Lv v~!, with the characteristic
length of the system L, the velocity v, and the kinematic
viscosity v. The number of computational nodes necessary to
resolve three-dimensional turbulent flow scales as N
=0(Re”*)=0((Lv)”*v™"*) [1,2]. Obviously, the number of
nodes could be reduced by letting v— 0. This is, however,
not trivial since most numerical discretization schemes tend
to have a great amount of numerical dissipation. A notable
exception is the lattice Boltzmann automaton (LBA), which
has very little numerical dissipation. Its main drawback ap-
pears to be the property to become unstable for small vis-
cosities. We identified insufficient Galilean invariance of the
standard LBA as the source for this instabilities and present
an improved LBA allowing us to lower viscosity by many
orders of magnitude as compared to the original model.

II. LATTICE BOLTZMANN METHOD

A LBA [3-7] is a set of nodes arranged on a Cartesian
grid. The nodes are connected via links to a finite set of
neighbors. Links are occupied by particles moving from one
node to the next in the streaming step. (We shall restrict
ourself to digital LBA with an integer amount of particles on
every link. Digital LBA are free from roundoff errors [9].)
After the streaming step, a scattering step follows in which
all particles accumulated on a given node are rearranged,
usually in a mass and momentum conserving manner.

Deriving the scattering operator from the Navier-Stokes
equation does not provide enough constraints to fix all de-
grees of freedom. As a result, there is a range of scattering
operators, all compatible with the Navier-Stokes equation.
The most common ones are the single relaxation time (SRT)
[10,11] and the multiple relaxation time (MRT) [14] opera-
tors. Both are based on a second-order approximation of the
Maxwell-Boltzmann distribution to which the incoming state
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of the node is relaxed either in a single step or in multiple
steps. MRT is a refinement of the earliest LBA pioneered in
matrix form [12,13]. MRT operators exploit the fact that the
kinematic viscosity of LBA depends only on the relaxation
constant of second-order moments w,g:

(1), 0
3 waﬁ 2
where the viscosity 7 is given in units of A/>/At, with Al and
At denoting the grid spacing and the time step, respectively.
In order to increase Re we would like to choose w4 as close
to 2 as possible.

The MRT operators perform better when compared to
SRT because they allow for the choice of lower relaxation
constants for the remaining nonhydrodynamic moments.
However, neither the SRT nor the MRT is stable in the limit
of w,g approaching 2. A new class of scattering operators
based on transcendent entropic functionals has recently been
suggested. Entropic lattice Boltzmann automata [15-17] en-
force an H-theorem on the lattice and are hence uncondition-
ally stable. That is achieved by modulating the relaxation
time in dependence on local entropy, which effectively re-
moves high frequencies from the flux fields. The method we
propose does not remove any frequencies, but rather aims to
deal with the highest frequencies with sufficient accuracy so
that they do not compromise the overall stability.

III. CASCADED DIGITAL SCATTERING OPERATOR

Cascaded digital lattice Boltzmann automata (CDLBA)
aim at removing the kind of instabilities from the LBA that
can be traced back to the insufficient degree of Galilean in-
variance. We identified three major reasons for the violation
of Galilean invariance in the relaxation-type LBA:

(a) The equilibrium distribution is typically chosen to
be Galilean invariant only up to second order in Mach num-
ber.

(b) Many implementations use insufficient finite ve-
locity sets with 13, 15, or 19 speeds.

(c) The crosstalk among central moments during the
relaxation is typically not accounted for.

The choice of an equilibrium distribution of second order
in Mach number is linked to the large-wavelength assump-
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tion underlying the idea that LBA was a discretization of the
Navier-Stokes equation. The large-wavelength assumption is
invalid since instabilities typically arise from small wave-
length patterns. A given velocity set allows us to approxi-
mate the correct Maxwell-Boltzmann distribution up to a cer-
tain number of moments (the same number as the number of
speeds). Without choosing all supported moments as being
Galilean invariant, the equilibrium distributions are not
uniquely determined. The remaining degrees of freedom are
set to arbitrary values.

Popular velocity sets, such as 19 velocities in three di-
mensions, are insufficient to adjust different moments inde-
pendently. The set of 19 velocities allows the particles to
move along the coordinate axis and in the xy, xz, and yz
directions but not in the xyz directions. Hence, the trilinear
moment u,,. with respect to velocity cannot be chosen inde-
pendently from other moments. This particular moment is
not considered to be important in the long wavelength as-
sumption. It becomes, however, very important when we
consider short wavelength structures in the flow field. We
might interpret the moment u,,. as the advection of the mo-
ment u,, in the z direction or the advection of w,, in the x
direction and so on. The moment w,, is associated with the
shear rate and is certainly important. Neglecting the moment
My, means that the advection of shear rate is neglected. This
is invalid for flows with short wavelength features.

Transport parameters are associated with the relaxation
rate of specific moments of the single-node particle distribu-
tion function. Since we consider the flow as being Galilean
invariant it is understood that the relaxation rates correspond
to central moments (moments displaced by the velocity).
However, due to the fixed lattice, we are always relaxing raw
moments (moments with respect to velocity zero). Central
moments can be expressed as polynomials of all raw mo-
ments up to the same order as the central moment. Thus,
central moments do not depend on raw moments of higher
order. A central moment can always be relaxed by relaxing
the corresponding raw moment. However, relaxing a raw
moment implies a change in all higher central moments. This
crosstalk is certainly a source of instability.

CDLBA solves all three problems. For athermal fluids, we
choose the complete velocity set of unit speed particles [32
=9 in two (2D) and 33=27 in three dimensions (3D)]. These
models have only 9 and 27 independent raw moments in two
and three dimensions, respectively. We match the same num-
ber of central moments and achieve the corresponding order
of Galilean invariance. In order to do this, we choose an
orthogonal decomposition of the momentum distribution in
terms of raw moments, as known from the multiple relax-
ation time LBA. Our aim is to relax central moments, but the
decomposition allows us only to relax raw moments. We
know that central moments of a certain order are polynomi-
als of raw moments up to the same order. Starting with the
lowest moment we can adjust the corresponding central mo-
ment by relaxing the raw moment toward its equilibrium
(chosen from the Maxwell-Boltzmann distribution). This ef-
fects all subsequent (higher-order) central moments. How-
ever, this error is known analytically and can be compen-
sated for by subtracting it from all higher-order moments
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before relaxing them. There is no crosstalk from the relax-
ation of high-order raw moments to the lower-order central
moments. The key is that we are able to process the scatter-
ing cascade in a single pass going from the lowest order
moments towards the highest-order moments. This means
that Galilean invariance is generalized for the CDLBA and
extended to higher moments. It is not sufficient to only make
the equilibria of nonconserved moments independent of con-
served moments. All equilibria must also be independent of
the state of all other moments. Knowing the exact value of
the overall equilibrium is of little help since over-relaxation
results in off-equilibrium state vectors. Because lower-order
moments interfere with higher-order moments and since the
lower-order moments are not in equilibrium after the colli-
sion, it is not possible to know the equilibria of all moments
prior to collision. However, relaxing the moments order by
order, beginning with the lowest and ending with the highest,
and taking the post-collision values of all processed mo-
ments into account, resolves this issue.

IV. CDLB IN 2D

Here we derive the CDLBA in two dimensions. The nodal
state vector of the D2Q9 (two dimensions, nine speeds) lat-
tice is given as

s=(r,nw,w,sw,s,se,e,ne,n)’, (2)

where r corresponds to the occupation number of the resting
link while the other links are indicated by the cardinal direc-
tion they are pointing at, counterclockwise from northwest to
north. In order to impose Galilean invariance constraints on
the moments we have to find a mapping from configuration
space to equivalent moment space. For the D2Q9 lattice this
can be obtained with the following orthogonal transforma-
tion matrix:

1 0 0 -4 0 0 0 0 4
1 -1 1 2 0 -1 1 1
1 -1 0 -1 1 0 0o -2 =2
1 -1 -1 2 0o -1 1 1 1
K=|1 0 -1 -1 =1 0 -2 0 =21/, (3
1 1 -1 2 0 1 1 -1 1
1 1 0 -1 1 0 0 2 =2
1 1 1 2 0O -1 -1 -1 1
_1 0 1 -1 -1 0 2 0 —2_
K=[Ky, ... Kg]. (4)

The vectors K; are chosen so that there is one for each mo-
ment.

The lowest moments correspond to the conserved quanti-
ties mass and momentum:
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p=s-Ko, (5)
vxz*;'i()lp_l’ (6)
v, =5 Ky (7)

The relaxation time approximation assumes central moments
to relax to fix points given by the equilibrium distribution
function which is the Maxwell-Boltzmann distribution in the
case of an ideal gas. We define central moments in 2D as

Komyn = 2 5i(civ=0.)"(€y = ,)", ®)

with ¢;, being the vector component of link i in direction a.
The central moments for the equilibrium distribution are
constant. Odd moments vanish. Even moments are chosen
from the Maxwell-Boltzmann distribution for an isothermal
ideal gas:

K= (= —

aE K= )

K= 2p. (10)
29

Transport coefficients such as viscosity are determined by
the relaxation rate of specific central moments. Our aim is to
adjust each central moment independently. A feasible solu-
tion is to solve a set of linear equations at each node in each
time step. However, this cannot be done without introducing
roundoff errors into the conserved quantities. Instead, we
make use of the fact that central moments «,,» can be ex-
pressed as polynomials of the raw moments up to the same
order. With the central moments of the post-collision state
known from the Maxwell-Boltzmann distribution, we can
solve for the deviation of the raw moments from their equi-
librium values. This has to be done step by step. We start
with the set {«,, k,,}:

K= 2 50 (ci =0, (11)
eq _ 2
K1 =2 sl ey —v,)?, (12)

where s? are the components of the post-collision state vec-
tor:

P=5+K-k. (13)

For the derivation we assume that the post-collision state was
the equilibrium state. Later we drop this assumption. It is
easily seen that «,, and «,, depend only on k3 and k4. Solv-
ing this yields
eq _ 2 2
k'=[plv;+vy))—e-n—-s-w

—2(se +sw+ne+nw—p/3)]/12, (14)

keqz[n+s—e—w+p(v§—v§)]/4. (15)
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The actual values for k3 and k, depend, via relaxation
constants w3 and wy, on the corresponding transport coeffi-
cients. In addition, we introduce a truncation operator (|-]) in
order to obtain an integer state vector. Thus, we get

k3=[w3[p(v§+v)2,)—e—n—s—w

—2(se +sw+ne+nw—p/3)]/12], (16)

k4=[w4[n+s—e—w+p(v§—v§)]/4]. (17)

The bilinear central moment «,, depends only on ks. It
can be obtained from

KZ=E Sf’(cix—vx)(ciy—vy). (18)

For ks, we get
ks =|ws[(ne + sw —nw —se) —v,v,pl/4]. (19)

The moments we dealt with so far are those corresponding to
the shear viscosity. It is the common tenet that the Galilean
invariance and the relaxation constants of all further mo-
ments are of no particular interest since they do not effect the
Navier-Stokes equation. By taking these moments into ac-
count, the derivation becomes more complicated because the
next group of central moments depends on relaxation con-
stants whose values we have already fixed. For adjusting k.,
and k,,,, we get '
k¢! = (—{[se + sw—ne —nw — ZUiv},p +uy(p—n—-s—-r))/4
+0,/2(ne —nw — se + sw)}) —v,/2(= 3k3 — ky) = 20, ks,

(20)

k5= (= {[sw+nw — se —ne — 2v§vxp +uvp-w—e-r)]/4
+vy(ne +sw—se—nw)/2}) —v,/2(= ks + ky) = 2v,ks.
(21)

The equilibrium of the higher-order moments depend on
the post-collision state. The values for k3, k4, and ks are
already determined. However, it is important to note that if
we add relaxation constants, we must not multiply them with
the k, since they correspond to the post-collision state while
the relaxation process goes from pre-collision to post-
collision. Thus, we get

ke =lwg(—{[se + sw —ne —nw — Zvayp

+vy(p—n—s=-r))/4+v,/2(ne —nw - se + sw)})
—v,/2(=3ks — ky) — 2v,ks], (22)

k7 =|w;(= {[sw+nw — se —ne — ZUivxp
+v(p—w—e—-r))4+v,(ne+sw—se—nw)/2})

—0,/2(= 3k + ky) — 20, k). (23)

By the same argument, we obtain
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kg =|wg(1/4{p/9 — ne — nw — se — sw
+2[v,(ne — nw + se — sw)
+vy(ne+nw—se—sw)]
+4v,v,(nw — ne + se — sw)
—vf(n+ne+nw+s+se+sw)
+ v§(3v§p —e—ne—nw-—se—sw—w)})
= 2k3 = 2v,k7 = 2v kg + 40,0 ks
= (3/2k3 = ky/2) (07 + V)], (24)

using

K)eczyy = 2 S?(Cix - Ux)z(ciy - Uy)z- (25)

1

The final scattering operation is then
S S+K-k. (26)

For isotropic viscosity, we require wy=ws=w,g. The speed
of sound is c¢,=1/y3. This model is typically stable for
w,z=2 and all other relaxation parameters set to unity,
meaning (theoretically) zero viscosity. It is, however, sensi-
tive to violations of the Courant-Friedrichs-Lewy (CFL)
condition [8]. Since sound propagation must be Galilean in-
variant and information must travel less than one lattice
spacing per time step, the velocity must be smaller than
Upax=1—c,=0.42[ Al/Af].

V. CDLBA IN 3D

In 3D, 27 degrees of freedom are necessary in order to
obtain an CDLBA that is stable for arbitrary low viscosities.
On lattices with only 13, 15, or 19 links per node it is not
possible to impose Galilean invariance on third-order mo-
ments. Hence, here is no convection of shear rate, which is
fatal for short-wavelength turbulence. The D3Q27 scattering
operators are presented in the Appendix.

VI. RESULTS

In order to determine the lower viscosity bound of the
CDLBA, we simulate the decay of a shear wave in a periodic
box of dimensions 30X 3 X3 with different superimposed
flow fields. The wave vector points along the long axis. We
chose w,z=2 corresponding to v=0. Turbulent behavior re-
quires a finite but small amount of dissipation. It turns out
that a positive rest viscosity remains at w,g=2. It can be
determined from the autocorrelation of the velocity field. The
simulation domain is small; however, the outcome of the
simulation is in fact independent of the size of the domain.
The initial conditions differ only in the direction of the wave
vector. The three layers of nodes along the short axis have
identical initial conditions. Since the algorithm is determin-
istic and free from roundoff errors, the result of the scattering
process is the same for all layers of nodes. Each layer is
identical to both neighboring layers and stays so after
streaming.
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FIG. 1. Viscosity versus superimposed flow speed (both in lat-
tice units) on a 30 X 3 X 3 D3Q27 lattice obtained from the decay of
a shear wave with amplitude pointing in the y direction and a wave
vector pointing in the x direction. The desired viscosity is zero
(wqp=2). The superimposed flow fields point in the axial and diag-
onal directions.

On the D3Q27 lattice all third-order moments except the
three longitudinal ones (k,,,) are made Galilean invariant.
Superimposed transversal flow fields have no visible influ-
ence on the viscosity. However, flow fields in the longitudi-
nal direction can increase the viscosity by more than two
orders of magnitude in the stable range (see Fig. 1). The
relevant stability criterion for turbulent flow is imposed by
the transport of shear rate with the mean flow, which is a
transverse effect. Most important is the fact that viscosity is
always found to be positive, since only negative viscosity
compromises stability, while positive viscosity artifacts re-
duce only the accuracy. Errors in viscosity are small for flow
speeds v <0.1 in lattice units, which is reasonable consider-
ing the CFL condition. The undesired numerical viscosity is
independent of w,z and becomes negligible for finite Rey-
nolds numbers. We find a remaining rest viscosity of ¥
~107. This lower viscosity limit is found to depend on the
numerical precision of the applied data type. Our current
implementation uses 32-bit signed integers to represent link
data. This imposes an upper bound on the number of par-
ticles allowed on a node [18]. Increasing the average number
of particles per node (p) improves numerical precision and
leaves the physics unchanged. The lowest attainable viscos-
ity for w,z=2 was measured to depend on the number of
particles per node as ¥~ 1/p. No saturation effect was ob-
served in the available range of 32-bit integers. This indi-
cates that highly turbulent flows can only be simulated with
high precision data types. More precisely speaking, we ob-
serve exponential growth of the attainable Reynolds number
as a function of the number of bits used for the data type of
the occupation number.

Showing that CDLBA holds its promise for actual simu-
lations of turbulent flow is not straightforward since no ana-
Iytical solutions are known for fully developed turbulent
flow. The plausibility of the result can only be checked indi-
rectly, for example by measuring the Kolmogorov exponent
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FIG. 2. Turbulent velocity field in the wake of a rectangular
obstacle at a nominal Reynolds number Re=1 400 000. The com-
putational mesh has 120 X 120 X 400 nodes and the Mach number is
Ma=0.168. The grid resolution is too coarse to host the nominal
Reynolds number. Yet, the lack of the unresolved eddies does not
ruin the resolved scales. The picture shows a cut through the central
plane of the simulation domain.

of the spectral distribution of kinetic energy. Theory [1,19]
predicts an energy spectrum E ~ k= for turbulent flow irre-
spective of its origin. Here k denotes the spatial wave num-
ber. We simulate the flow around a rectangular plate (20
% 30 nodes wide) at v=2 X 107% and v=0.097 corresponding
to a Mach number Ma=0.168. The mesh has 120X 120
X400 nodes and the simulation is run for a duration of
18 160 time steps. The resulting Reynolds number is Re
=1400 000 and the flow condition must be considered fully
turbulent while the grid resolution is insufficient to represent
the full spectrum of excited wave numbers. (That is to say,
we run an under-resolved simulation without resorting to tur-
bulence modeling, filtering, or entropic stabilization.) Pres-
sure boundary conditions are applied in the x direction.
Boundary conditions in the y and z directions are periodic.
The obstacle is implemented with simple bounce back
boundary conditions. Because CDLBA is fully deterministic
and free from roundoff errors it is necessary to add a small
random perturbation to the initial conditions in order to ob-
tain the break in symmetry necessary to start turbulent be-
havior. A cut through the velocity field is presented in Fig. 2.
Figure 3 shows the one-dimensional energy spectrum mea
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FIG. 3. One-dimensional energy spectrum in the wake of the
flow behind an rectangular obstacle (Fig. 2) using reduced units.
The line is a guide to the eye indicating the k'3 power law of the
Kolmogorov spectrum.
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sured perpendicular to the flow direction in the wake of the
obstacle. The energy values are averaged over 5/12 of the
simulation domain. Measuring starts 40 node spacings be-
hind the obstacle. We recognize agreement with the E
~ k™3 law as indicated by the line. However, more simula-
tions would be necessary to obtain enough data for a statis-
tical analysis.

VII. CONCLUSION

We pointed out that the common derivation of LBA scat-
tering operators fail to determine all degrees of freedom and
leave some choice for remaining high-order moments. Com-
plete Galilean invariance requires all considered central mo-
ments to be independent of velocity and all other central
moments. Crosstalk between different central moments due
to the derivation from velocity zero is not accounted for in
the original relaxation-type LBA. Since analytic expressions
for the crosstalk are known, it is possible to compensate
crosstalk exactly. Equipped with this fact, there are sufficient
constraints to determine the formerly arbitrary degrees of
freedom. The resulting relaxation operators are noncommut-
ing, but they provide a natural ordering of their execution
allowing to adjust all considered moments in a single pass.
The method is completely explicit. It makes use of neither
transcendental stabilization functionals nor root finding. We
have not used the assumption of a local H-theorem and en-
tropy was not considered in the derivation. The instabilities
of the LBA in the high Re limit are drastically reduced with
the CDLBA. The actual lowest attainable viscosity depends
exponentially on the width of the data type for link occupa-
tion numbers. Using integers might seem to be unnecessarily
restrictive when compared with the flexibility of floating
point numbers. However, when considering the low Mach
number approximation, we see that the occupation numbers
(particles per link) must all be of the same order of magni-
tude. Integers have more available digits for a given number
of bits and computational results based only on integers are
valid up to the least significant bit since no roundoff errors
occur. Using floating point data types for the occupation
numbers would not provide any benefit. Velocity, density,
and relaxation constants have to be floating point numbers,
of course. In contrast to entropic LBA and turbulence mod-
eling, CDLBA neither make use of viscosity modulation nor
of low-pass filtering. Whereas other methods try to eliminate
high frequencies, CDLBA treat them accurately without
compromising the accuracy for low frequencies. The objec-
tive of CDBLA is to capture physically correct behavior for
the shortest wavelength fitting on the computational grid. We
see this as the correct methodology to achieve the decoupling
of the resolved and the unresolved scales in turbulent fluidic
simulations. However, we have to admit that the model, as
presented here, might overestimate the role of Galilean in-
variance especially in the high-order moments. Galilean in-
variance of fourth and sixth order is obtained only with ex-
cessive numerical overhead while the actual corrections are
so small that it seems unlikely that they have any measurable
influence on the stability and accuracy of the method.
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Ky5= 8ap = g7+ O = S

KIG = 5wnb - 5enb + 5mf - 5wnf - 5wsh + 5esh - 5esf+ 5wsf’
APPENDIX: 3D MODEL

The derivation of the D3Q27 model is in essence the same K17= 1280+ Oup+ Buy+ Opy=4(0a+ Gp+ 5)),

as for the D2Q9 model. However, the requirement of .
27 degrees of freedom with up to order six polynominals as Kig= 05— 03,+2(8,- 3,),
equilibrium functions makes the calculation a lengthy task.
In order to write down the transformation matrix we use >

Kig=6,3—0,,+2(5,- 6
Kronecker deltas and the usual summation conventions: 19= Oap = Say+ 2(8, = &),

5“ = 5‘4’ + 66’ 1220 = 2(5sf+ 5nb - 5nf_ 5sb) - 5anb - 5asf+ 50151) + 5anf’

Op= 0+ 3, K1 =2(8,p+ 8o, = Sy = Oop) = Oy = e+ O + Oupys
8,= 0;+ 0. -
7 ! K22 = 2(5nw + 5&(3 - 5116 - 5sw) - 5nwy_ 55e7+ 5ney+ 5swy’
Here, f and b denote front and back, respectively. The matrix
then looks as follows: -
K23 = 2(5w/3+ 5w'y_ 5eﬁ_ 69)/) + 4(5e - 5w) - 5wﬂy+ 5eB'y»
K=[K0, ""KZG]? R

K24 = 2(5as + 5s‘y_ 5an - 5an) + 4(5n - 5?) - 5ozxy+ 6

any»
IEO=50+ Oqt Op+ Oy F Op+ oyt Apgy+ Oopys .
K5 =2(8up, + Oy — Oap— Opp) + (0= 8) = Sapp — Sapps
Ky = 8,4 8.+ Syt Oupy= Oy = Bp= By= By )
K26= - 850 + 4(5a+ 5B+ 5)/) - 2(5a,8+ 5ay+ 53,}/) + 557

Ky = 8,+ San+ Byt Oy = 6, = O = By = By Again, we have
- pP= 5' IE‘ )
5‘ Kl
- vx = N
Ky= 5wn - 6ws + 5es - 5en’ P
B, 5K,
KS = 5wf_ 5wb + 5eb - 5ef’ v}’ = p ’
Ke= 06, - 5nf+ ‘SSf_ Osps s - [2%
v, = =,
- p
K7 = 501 - 5B’
The central moments are tak_en from the Maxwell-
- Boltzmann distribution for ¢,=1/+3:
Kg = 5a - 5.},,
1
- K =3P
Ko=—308)+8(3p+ 80y + 83,) — 11(8,+ S5+ 5), 3
. 1
i Kxji? =P
K10= 5‘3B+ 6@7_5w,8_5wy+4(5w_5e)7 Y 9
- eq  _
K11= 5an+ 5117_ 6&3_ 5s'y+4(5s_ 6n); Kxxyyzz_ 27p

All odd moments vanish and the others follow from symme-
try. The equilibrium functions for the moments and the cor-
. responding over-relaxed vector k can be derived in the same
Ki3=0,y= 0yp+ O, Opys way one does for the D2Q9 lattice:

Ky = 8ap+ Sgp= O = Oppp + 4(3, = 9y),
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ky=|wy(ne + neb + nef — nw — nwb — nwf — se — seb — sef + sw + swb + swf — v,v,p)/4],

ks =|ws(ef — eb — neb + nef + nwb — nwf — seb + sef + swb — swf + wb —wf —v.v_p)/4],

ke =|we(sb — neb + nef + nf —nwb + nwf + nb + seb — sef — sf + swb — swf —v_v,p)/4],
k7=[w7[—b—e—f+nb+ne+nf+nw+sb+se+sf+sw—w+2(—eb—ef+n+s—wb—wf)+p(v§—2v§+vf)]/6j,
k8=[w8[—e+eb+ef—n+nb+nf—s+sb+sf—w+wb+wf+2(b+f—ne—nw—se—sw)+p(v§+v§,—2v§)]/6],

ko=|lwg[-b—e—f—n—s—w+2(—eb—ef—nb—ne—nf—nw-—sb—se—sf—sw—wb—wf)+3(—neb—nef —nwb —nwf

—seb —sef —swb — swf) + p(1 + vi + vf +v)]/126),

kig=lwo(nw +sw+wf+wb—eb—ef—ne—se+vdb+eb+ef+84ky/wyg+ f+n+ne+nw+s+se+sw+wh+wf
+2[nb + neb + nef + nf + nwb + nwf + sb + seb + sef + sf + swb + swf — (k7 + kg)/ w1} + 2[— neb — nef + nwb + nwf

—seb — sef + swb + swf — v, XY () — v, XZ(w)p)] - Zpr(v)z, + v?))/8j,

k“=[w11{sb+sf+se+sw—nw—ne—nf—nb+vy[b+e+84k9/w11+f+nb+ne+nf+nw+sb+se+sf+sw+w
+2(eb + ef + neb + nef + nwb + nwf + seb + sef + swb + swf + wb + wf + k;/w,,)] + 2[— neb — nef — nwb — nwf + seb

+sef + swb + swf—v, XY (o)) —v.YZ(w)] - 2v),p(v)2( + vf)}/SJ,

kip=lopleb+nb+sb+wb—ef—nf—sf—-wf+vle+eb+ef+n+nb+nf+s+sb+sf+w+wb+wf+84ky/w,
+2(ne + neb + nef + nw + nwb + nwf + se + seb + sef + sw + swb + swf + kg/w,) | + 2[ - nef + neb + nwb — nwf + seb

—sef +swb — swf—v XZ(w,) —v,YZ(w),)] - 20,p(v% + vi)}/SJ,

kiz=lowps({eb+ef —ne+nw—se+sw—wb-wf+v[-b—eb—ef—f+n+ne+nw+s+se+sw—wb—wf

+2(kg — k7)) w31M8 + [V.XZ(w)3) — v, XY (@)3) + pv,(v7 = vi)]/4)],

kiy=lw({ne —nb—nf+nw+sb—se+sf—sw+v,[-e+b+f+nb—ne+nf—nw+sb—se+sf—sw-w

+2(= kg = 2kg) @14]}/8 + [0, XY (@14) = v, Y Z(w14) + pv, (0] = v2)]/4)],

kis=lws({eb—ef—nb+nf—sb+sf+wb—wf+vle+eb+ef—n—nb—nf—s—sb—sf+w+wb+wf
+2(kg + 2k7)/ w5 1}/8 + [0, Y Z(w,5) — v, XZ(wy5) + pvz(vi —v)))/4)],

kig=lw s[neb —nef —nwb + nwf — seb + sef + swb — swf —v,YZ(w6) — v,XZ(w;6) = v XY () = 2pv,0,0,1/8],

ki7=|w5[(p/3 = 96ky/ w7 — eb — ef — nb — ne — nf — nw — sb — se — sf — sw —wb — wf — 3(nwf + nwb + nef + neb + swf + swb
+sef + seb) + 2[v. X(w7) +v,Y(w17) +v,Z(w17)] + v~ 84koy/w;— b —eb —ef — f —n—ne —nw — s — se — sw — wh — wf
+2[ (k7 + kg)/ w17 — nb — neb — nef — nf — nwb — nwf — sb — seb — sef — sf — swb — swf|} + vi[— 84ky/wi7—b—e—f—nb
—ne—nf—nw-—sb—se—sf—sw—w+2(-kj/w;;—eb—ef —neb—nef —nwb — nwf — seb — sef — swb — swf —wb
—wf)]+v§[—84k9/w,7—e—eb—ef—n—nb—nf—s—sb—sf—w—wb—wf+2(—k8/w,7—ne—neb—nef—nw—nwb
—nwf —se —seb —sef —sw —swb —swf) ]+ 4[v,0, XY (w7) + 0,0 XZ(w17) + V0, YZ(wy7) ] + 3p(v§v§ + vivf + vivf))/lZ]J,

066705-7



GEIER, GREINER, AND KORVINK PHYSICAL REVIEW E 73, 066705 (2006)

kig=lwg[— eb - ef —ne —nw — se — sw —wb — wf + 2(nb + nf + sb + sf + v,X(w;g) + v ,{ne — neb — nef + nw — nwb — nwf — se
+ seb + sef — sw + swb + swf + 2[sf + sb — nb — nf — 2k, + 6k14)/ 03]} + v {ef — eb + neb — nef + nwb — nwf + seb — sef
+swb — swf —wb + wf + 2[nb — nf + sb — sf — (2ky, — 6kys)/w\3]}) + vA{—b—eb—ef — f—n—ne—nw—s —se — sw—wb
—wf — 84ky/w g — 2[nb + neb + nef + nf + nwb + nwf + sb + seb + sef + sf + swb + swf — (k; + kg)/w3]} + vi{eb —e+ef
—ne + neb + nef —nw + nwb + nwf — se + seb + sef — sw + swb + swf —w + wb + wf + 42ko/ w5+ 2[b + f + nb + nf + sb
+sf—(k7+3k3)/w18]}+v?{ne—e—eb—ef+neb+nef+nw+nwb+nwf+se+seb+sef+sw+swb+swf—w—wb
—wf +42ko/wyg+ 2[n + nb + nf + 5+ sb + sf — (kg + 3k7)/ w1} + Hv, [0, XY (w15) + v XZ(w;5) ]} = 8v,0, Y Z(w)3)
+[- 6v§v§ + 3v)2€(v§ + v?)]p]/lZJ,

kig=lwo[—nb—ne —nf—nw —sb — se — sf —sw+2(eb + ef + wb + wf + v, {ne — neb — nef — nw + nwb + nwf + se — seb — sef
— 5w+ swb + swf+2[wb + wf — eb — ef — (2k g = 6ky3)/ w191} + v, Y (w)9) + v {nf — nb + neb — nef + nwb — nwf — sb + seb
—sef + sf + swb — swf + 2[eb — ef + wh — wf — (2ky, + 6k;5)/w10]}) + vH{nb — n — ne + neb + nef + nf — nw + nwb + nwf
—s+sb—se+seb+sef+sf—sw+swb+swf+42k9/wlg+2[b+eb+ef+f+wb+wf+(k7—2k8)/w19]}—v§[b+e+f
+nb+ne+nf+nw+sb+se+sf+sw+w+ 84ko/wig+2(eb + ef + neb + nef + nwb + nwf + seb + sef + swb + swf + wb
+wf+k7/w19)]+vf{ne—n—nb+neb+nef—nf+nw+nwb+nwf—s—sb+se+seb+sef—sf+sw+swb+swf
+42ko/ w19+ 2[e + eb + ef + w + wh + wf + (3k; + 2kg) w19 ]} + 4v, [0, XY (019) + v, YZ(w19) ] - 80,0 XZ(w)5)
+[- 6v)2(v§ + 3(U)2€ + Uf)vi]p]/IZ) ,

kyo =lwyg{neb — nef + nwb — nwf — seb + sef — swb + swf + v, Zp(wy) + v, ¥ y(wag) + 20,[ XY Z(wa0) + v,XZ(w) + v XY ()]
+ 02V Z(wy0) + v,v.EPa(wy) + p3vayvz}/8j,

ky =lw, {neb — nef — nwb + nwf + seb — sef — swb + swf + v, Y y(0y)) + v Xp(w3)) + 20, [ XY Z(wyy) + 0, Y Z(wy) + v XY ()]

+ viXZ(wZI) +0,0.EPc(wy;) + pSUivva}/SJ,

kyy =lwyfnwb — neb — nef + nwf + seb + sef — swb — swf +v,Y p(wy,) + v, Xy(w3)) + 20 [ XY Z(w1,) + v, XZ(w1) + 0, Y Z(wy,)]
+ vaY(wzz) +0,0,EPb(wy) + p3v§vxvy}/8j,

kyy =lwys{nwb — neb — nef + nwf — seb — sef + swb + swf — v,A(wy3) = 2[v,UZ(wy3) + v,UY (wp3)] - U§XN(C’)23) - U?XP(w23)
+ ZUX[— U),Yp(wz:;) - UZZN(C()23)] - 4U),UZ[XYZ((023) + UXYZ(Q)23)] - UX[UEEPC(Q)Z;) + UiEPb(wB)] - 2[U§UZXZ(Q)23)
+ vagXY(wB)] - 4vxv§v§p}/8j,

kyy =|w,4{seb — neb — nef — nwb — nwf + sef + swb + swf = v,C(wys) = 2[v,UZ(wp4) + v, UX(w,4)] - 02V p(054) — vaN(wM)
+ 2U_V[_ UXXN((J)24) - UZZP(C()24)] - 4UXUZ[XYZ((1)24) + UyXZ((J)24):| - U),[UiEPb((J)ZA‘) + U?Epa((,()24)] - 2[U)26UZYZ((1)24)
+ vxngY(wM)] - 4v),v§v§p}/8j,

kys =|w,sineb — nef + nwb — nwf + seb — sef + swb — swf — v,CA(w,5) — 2[v, UY (w,5) + v, UX(wy5)] - v Zy\(wys) — viZP(wzf,)
+20,[= 0, Xp(w25) = 0, Y \(05) ] = 40,0, [ XY Z(w95) + v XY (w,5)] = vz[viEPc(w%) + viEPa(w%)] - 2[v§vaZ(w25)
+0,03XZ(w5)] - 4viviv p}/8),

krg =|wy{p/27 — neb — nef — nwb — nwf — seb — sef — swb — swf + 2[v, (neb + nef — nwb — nwf + seb + sef — swb — swf
+ 8kps/wye) + vy(neb + nef + nwb + nwf — seb — sef — swb — swf + 8kyyl wy6) + v (— neb + nef — nwb + nwf — seb + sef
= swh + sWf + 8kys/wae) ] + ViA (o) + Uic(w%) + UECA(‘U%) +4[0,0,UZ(w56) + 0,0, UY (036) + 0,0, UX(w56)]
+2[v30,Y pw26) + V30 Zy(@36) + 030, Zp(@36) + 0,03 X p(@36) + 002X p(w36) + V20, Y y(w26)] + 80,0,0 XY Z(w6)
+ UingPc(w%) + viv)z,EPb(wzﬁ) + viv?EPa(w%) +40,0,0,[v XY (036) + 0, XZ(w56) + U, Y Z(w036) ] + 5pv§v§vf}/8],
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In the above we have used the following substitutions:

XY(w) =—ne — neb — nef + nw + nwb + nwf + se + seb + sef — sw — swb — swf + 4k4/ w,
XZ(w) = eb — ef + neb — nef — nwb + nwf + seb — sef — swb + swf — wb + wf + 4ks/w,
YZ(w) = nb + neb — nef — nf + nwb — nwf — sb — seb + sef + sf — swb + swf + 4k¢/ w,

X(w)=eb +ef + ne—nw+ se — sw—wb —wf +2(neb + nef — nwb — nwf + seb + sef — swb — swf) + 8k o/ w,
Y(w)=nb +ne+nf+nw—sb—se—sf—sw+2(neb +nef + nwb + nwf — seb — sef — swb — swf) + 8k, |/w,
Z(w)=ef —eb—nb+nf—sb+sf—wb+wf+2(nef —neb—nwb + nwf — seb + sef — swb + swf) + 8k )/ w,

Xy(w) =eb + ef + neb + nef — nwb — nwf + seb + sef — swb — swf —wb —wf + 4(k,o — k13)/w,

Xp(w) =ne + neb + nef — nw — nwb — nwf + se + seb + sef — sw — swb — swf + 4(k,o + k3)/ o,

Yy(w) = ne + neb + nef + nw + nwb + nwf — se — seb — sef — sw — swb — swf + 4(k;, — k14)/ o,

Yp(w) =nb + neb + nef + nf + nwb + nwf — sb — seb — sef — sf — swb — swf + 4(ky; + ky4)/ w,

Zy(w) =nef —nb — neb + nf — nwb + nwf — sb — seb + sef + sf — swb + swf + 4(k, — ki5)/ o,

Zp(w) = nef — eb + ef —neb — nwb + nwf — seb + sef — swb + swf — wb + wf + 4k, + kis)/ o,
XYZ(w) = — neb + nef + nwb — nwf + seb — sef — swb + swf + 8k¢/ w,

EPa(w) =—42ky/w — e — eb — ef — ne — neb — nef — nw — nwb — nwf — se — seb — sef — sw — swb — swf —w —wb — wf — 2(k;
+k8)/w,

EPb(w) =—-42ko/w — b —eb —ef — f —nb — neb — nef — nf — nwb — nwf — sb — seb — sef — sf — swb — swf —wb — wf + 2kg/ w,
EPc(w) =—42ky/w —n — nb — ne — neb — nef — nf —nw — nwb — nwf — s — sb — se — seb — sef — sf — sw — swb — swf + 2ks/ w,
A(w) = (4k,g — 32kg)/w — nb — neb — nef — nf — nwb — nwf — 4k 7/w — sb — seb — sef — sf — swb — swf,

C(w) = (4(kyg— ky7) — eb — ef — 32kg)/w — neb — nef — nwb — nwf — seb — sef — swb — swf —wb — wf,

CA(w) =[—4(k\g + kg + k17) — 32kg)/w — ne — neb — nef — nw — nwb — nwf — se — seb — sef — sw — swb — swf,

UZ(w) = nwb — neb — nef + nwf + seb + sef — swb — swf — 8kl w,

UY(w) =neb — nef — nwb + nwf + seb — sef — swb + swf — 8k,,/ w,

UX(w) =neb — nef + nwb — nwf — seb + sef — swb + swf — 8kyo/ w.

The moments have been arranged so that k;=f(k;) and k;# f(k;) for i>j. The relaxation constants for an isotropic shear
viscosity are w,z=w,=ws=ws=w;=wg. The equations can be simplified when other relaxation constants are set to one as has
been done for the simulations presented in this paper.
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