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Discrete soliton ratchets driven by biharmonic fields
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Directed motion of topological solitons (kinks or antikinks) in the damped and ac-driven discrete sine-
Gordon system is investigated. We show that if the driving field breaks certain time-space symmetries, the
soliton can perform unidirectional motion. The phenomenon resembles the well known effects of ratchet
transport and nonlinear harmonic mixing. Direction of the motion and its velocity depends on the shape of the
ac drive. Necessary conditions for the occurrence of the effect are formulated. In comparison with the previ-
ously studied continuum case, the discrete case shows a number of new features: nonzero depinning threshold
for the driving amplitude, locking to the rational fractions of the driving frequency, and diffusive ratchet

motion in the case of weak intersite coupling.
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I. INTRODUCTION

Transport phenomena induced by the interplay between
nonequilibrium fluctuations, symmetry breaking, and nonlin-
earity, have recently attracted a great deal of interest. In par-
ticular, point particle ratchets described by ordinary differen-
tial equations have been largely investigated due to their
relevance in several fields, including molecular motors and
Josephson junctions (see reviews [1,2]). In simple terms, the
point particle ratchets appear as the unidirectional motion of
a damped and driven particle, which is achieved under the
influence of only stochastic and deterministic forces of zero
average, independently on initial conditions. The phenom-
enon was ascribed to the breaking of the symmetries con-
necting orbits with opposite velocities in the phase space
[3-5] and to the phase locking of the particle dynamics to the
external driver [6-8].

Ratchet phenomena in infinite-dimensional systems de-
scribed by nonlinear partial differential equations of soliton
type have also been investigated. This has been done for both
spatially asymmetric potentials with temporarily symmetric
ac fields [9,10] and for symmetric potentials with tempo-
rarily asymmetric ac fields [11-14]. In both cases, the ratchet
effect appears as a unidirectional motion of the soliton,
which resembles the drift dynamics observed for point par-
ticle ratchets; from here the name of soliton ratchets [10].
Soliton ratchets induced by asymmetrical external fields have
been implemented experimentally in long Josephson junc-
tions [15] by means of nonlinear harmonic mixings. This
approach has been shown to be effective also in other physi-
cal contexts [16] (for a detailed list of references see the
review paper [2]). The existence of soliton ratchets in long
Josephson junctions was also experimentally demonstrated
by using asymmetric magnetic fields [17] and spatially
asymmetric currents [ 18]. From the theoretical point of view,
symmetry breaking conditions to generate soliton ratchets
were discussed in Ref. [12]. The mechanism underlying soli-
ton ratchets was proposed in Ref. [10] for the case of a
perturbed asymmetric double sine-Gordon equation driven
by a symmetric ac driver and extended in Ref. [11] to the

1539-3755/2006/73(6)/066621(12)

066621-1

PACS number(s): 05.45.Yv, 63.20.Ry, 05.45.—a, 03.75.Lm

case of the damped sine-Gordon (SG) equation with asym-
metric ac fields. In both cases, the phenomenon was ascribed
to the existence of an internal oscillation on the kink profile
which, in the presence of damping, couples to the transla-
tional mode of the kink and produces transport. The internal
vibration was shown to be spatially asymmetric, thus giving
directionality to the motion, and phase locked to the external
force. This mechanism, also known as the internal mode
mechanism, has been confirmed for a number of systems
such as the asymmetric double sine-Gordon equation with
symmetric driver [10,19] and the SG system with temporal
asymmetric forces [11,20,21].

In contrast to the continuous case, however, discrete soli-
ton ratchets have been scarcely investigated (some work on
spatially asymmetric discrete soliton ratchets has been done
in Refs. [22-25]). In this case, one can expect that the pres-
ence of the Peierls-Nabarro barrier can strongly influence the
transport of discrete solitons. It is therefore of interest to
investigate the conditions under which the discrete soliton
ratchets can exist. The present paper is just devoted to this
investigation. More precisely, we study the ratchet dynamics
induced by temporarily asymmetric forces of zero mean on
topological solitons (kinks and antikinks) of the discrete
sine-Gordon (DSG) system. This equation models a number
of physical systems such as arrays of Josephson junctions,
crystal dislocations, or charge-density waves (see [26,27]). In
particular, we investigate the conditions for the occurrence of
soliton ratchets and study the dependence of the average soli-
ton velocity on the system parameters. A comparison with
the results derived for continuous soliton ratchets in Ref. [11]
is also provided.

From our study it emerges that discrete soliton ratchets
are much more complicated than their continuum counter-
part. In particular, the mean velocity of the kink in most
cases appears to be a piecewise function of the parameters
which resembles a devil’s staircase. We find that kink trans-
port becomes very effective on the corresponding orbits
(limit cycles) which are phase locked to the external driver.
Transport is possible also in the presence of more compli-
cated dynamics such as chaotic and intermittency orbits, es-
pecially when the system becomes very discrete (this is
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achieved when the coupling constant is very small). In these
cases, however, the kink transport is not very efficient since
the drift velocity is rather small. Except for the very discrete
case, dominated by the pinning of the kink to the lattice, we
find that the internal mode mechanism remains valid also in
the DSG ratchet in all cases in which the transport is ob-
served.

We remark that the soliton ratchets induced by tempo-
rarily asymmetric fields may be an effective way to control
the transport properties of a large variety of continuous and
discrete systems. From the experimental point of view, in-
deed, it is much easier to produce ratchets by means of asym-
metric fields than by breaking the internal spatial symmetry
of the system [28], since in the former case no structural
changes of the system are required.

The paper is organized as follows. In Sec. II, we present
the model. In Sec. III we derive the necessary condition for
the directed kink motion in terms of a simple symmetry
analysis, which is based on a point particle description of the
kink dynamics. In Sec. IV we describe the desymmetrization
mechanism and confirm the results by means of numerical
simulations. In Sec. V, we study the dependence of discrete
kink ratchets on the system parameters. In particular, we in-
vestigate the dependence of the mean velocity of the kink on
the amplitude, phase, and frequency of the ac driver as well
as on the damping and the coupling constant. Moreover, the
validity of the internal mode mechanism in the discrete case
is discussed. In Sec. VI, we consider the soliton ratchet in a
finite lattice and discuss possible applications of the phenom-
enon to arrays of small Josephson junctions. Finally, in Sec.
VII, we summarize the main conclusions of the paper.

II. THE MODEL

The ac driven and damped discrete sine-Gordon (DSG)
equation is introduced in a dimensionless form as follows

n=1,2,...,N.
(1)

Here u,, is the displacement of the nth particle from its equi-
librium position, Au,=u,.;—2u,+u,_; is the discrete La-
placian, « is the coupling constant measuring the discrete-
ness of the lattice, « is the damping coefficient, and E() is
an external driving field. In the following we assume E(f) to
be of the form

ii, — KAu, + sin u, + aui, + E(t) =0,

E(t) = E, cos(wt) + E, cos(mwt + 6), (2)

where m is an integer even number. Notice that the superpo-
sition of two harmonics makes the periodic force to be asym-
metric in time for almost all values of 6, a feature which can
be used to break the temporal symmetry of the system (see
below). In this context, it is of interest to investigate the
condition under which a driving force of zero mean of type
(2) can induce kink’s unidirectional motion similar to the one
observed in the continuum SG case [11]. In this regard, we
remark that in the lower approximation, a discrete kink of the
form u,(t)=4 arctan{exp[n—X(z)]}, can be viewed as a single
particle [27] and its dynamics is described in terms of col-
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lective coordinates: the center of mass X(7) and the kink

velocity X(¢). In this approach, the effective point-particle
equation of the motion becomes

X+ aX + Vpy(X) + E(r) =0, (3)

where Vppy(X)=Vpy(X+1), Vpy(X) ~sin 27X is the Peierls-
Nabarro (PN) potential accounting for the discreteness of the

lattice and E(r) ~ E(r) is the effective driving field of the kink

[we assume E(7) to be proportional to E(¢)]. An important
parameter of the problem is the frequency of kink oscilla-
tions in the bottom of the PN potential (the PN frequency),
which can be written as [33]

wpy = 2mag? exp(— mVKl2),  ay=30m.  (4)

Within this approximation, the unidirectional motion of the
kink corresponds to a limit cycle of Eq. (3), which is phase
locked to the frequency of the external driver. On this orbit,
the average kink velocity is expressed as

(W)= (K=, (5)

with k and [ being integer numbers. Notice that in this reso-
nant regime, the kink travels k sites during the time [T
=2m7l/ w, so that, except for a shift in space, its profile is
completely reproduced after this time interval (in the pendu-
lum analogy, this orbit corresponds to k full rotations of the
pendulum during [ periods of the external drive). In the fol-
lowing, we will refer to the phase locked dynamics also as to
resonances.

III. SYMMETRY PROPERTIES AND CONDITIONS
FOR TRANSPORT

In analogy with the continuous SG case[11,12], one can
expect that the directed kink motion arises when all the sym-
metries of Eq. (3), which relate kink solutions with opposite
velocities, are broken. Qualitative conditions for the occur-
rence of this directed motion can be obtained from the analy-
sis of the symmetry properties of Eq. (3). In this approach,
the many-particle problem is reduced to the one-particle
ratchet studied before [3,4] [we neglect oscillations of the
discrete kink profile (to be discussed later) which also con-
tribute to the phenomenon]. Our analysis is based on the

simple observation that the sign of the soliton velocity X(1)
can be changed by means of the following symmetry opera-
tions:

Dyt —t+T2, X—-X, (6)

DX — X+Xp t— —1+ 21, (7)

where D x denotes a shift in time followed by a reflection is

space and D7 is a shift in space followed by a reflection in
time (here 7, is a constant and X, is either an integer or a half
integer). Notice that Eq. (3) is always invariant under the

symmetry D, provided the external driver satisfies
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E(t)=—E(t+T/2). (8)

Notice that Vpn(—X)=Vpy(X) is always satisfied because the
sine-Gordon potential is symmetric. In the zero damping
limit (a«—0), Eq. (3) becomes invariant also under the sym-

metry Dy with Xy=1, provided the external driver satisfies
the condition

E(t+1) =E(-1+1), 9)

with 7, being a constant, which depends on the shape of E(z).
In the overdamped limit (a— ), Eq. (3) can be rewritten as

X+ V,’,N(X)+E(t):0 from which one can see that it becomes

invariant under the symmetry ﬁT with Xy=1/2, provided the
external driver satisfies the condition

E(t+1ty))=—E(-t+1). (10)

It should be remarked here that Vj,(X)==V,\(X+1/2) is
always satisfied since for the DSG equation we have that
Vi(X) ~sin 27X. From the above symmetry properties it
follows that one can break all symmetries relating orbits with
opposite velocities by properly choosing the driving force
E(t). Thus, for the general case a#0, we have only the

symmetry D x for Eq. (3). This symmetry can be broken by
choosing any function E(¢#) which violates Eq. (8). In the

zero damping limit («¢—0), we have, besides D 1 also the

symmetry ﬁT with X,=1. In this case, one must choose a
driving field E(¢) which violates both Egs. (8) and (9). Simi-
larly, in the overdamped limit (o« — ),a function E(z) which
violates both Egs. (8) and (10) should be chosen.

From these considerations it follows that a simple sinu-
soidal driver cannot support the kink transport in the lattice,
since Egs. (6)—-(10) in this case are always satisfied. For a
biharmonic driver of the type (2), however, we have that Eq.
(8) is violated for any @ (if m is even), so that the kink
transport should become possible.

From these arguments it is also clear that an external pe-
riodic driver of zero mean, which consists of the superposi-
tion of only the first two harmonics, is the simplest driver
that can be used to induce the soliton ratchets in the DSG
system.

IV. NUMERICAL STUDY OF TRANSPORT
VS SYMMETRIES

To verify the validity of the previous analysis and to
check the desymmetrization of the orbits as a function of the
driver parameters E;, E,, and 6, we recourse to direct nu-
merical integration of Egs. (1). In order to be sure that the
system explores the whole phase space and that the phenom-
enon does not depend on initial conditions, we perform the
first step: simulations in the presence of white noise. White
noise has been included by adding in the right-hand side of
Eqgs. (1) a stochastic term &,(z) of zero mean, (£,(¢))=0, and
with the autocorrelation function (&,(r)&,,(t'))=2aD§,,,8(t
—1"). The resulting Langevin equations have been integrated
numerically by using the fourth-order Runge-Kutta method,
adopting either free ends or periodic boundary conditions:
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FIG. 1. (Color online) Contour plot of the temporal evolution of
the particle velocities u,(z) for (a) £;=0.3, E;=0.15 and (b) E,
=0.45, E,=0. Other parameters are: k=1, «=0.05, w=0.1, 6=2,
D=0.002, N=500. Periodic boundary conditions have been applied.

u, . N(t)=u,(r) 27 (positive and negative signs refer to kinks
and antikinks, respectively).

Figure 1 illustrates the dynamics of a kink of the damped
DSG equation under the influence of noise, driven by a bi-
harmonic driver (2) with m=2 [panel (a)], and by a single
harmonic driver [panel (b)]. We see that while the single
harmonic driver is unable to produce directed motion, the
biharmonic driver is quite effective to produce the kink
transport. From this figure, one can also observe that there is
only one attractor corresponding to the unidirectional motion
of the kink. Further investigations (see below and Sec. V)
show that this is true in almost all cases, except for very
narrow intervals in the parameter space where two attractors
can coexist.

This fact makes possible to investigate Eqs. (1) in the
absence of noise without averaging over the initial condi-
tions. In Fig. 2 we plot the time average kink velocity (v) as
a function of the phase difference 6 in the case of a bihar-
monic driver with m=2. In contrast to the continuous case
for which (v) was shown to have a sinusoidal dependence on
0 [11,13], in the discrete case, we find a complicated piece-
wise dependence (v)(#), which resembles a sinusoidal func-
tion only slightly. This is due to the fact that in most cases
the dynamics is phase locked to the external driver and the
kink velocity is given by Eq. (5).

Notice that for a weak damping [see panel (a) of Fig. 2]
several resonances (k=Il==x1, k=+2,/=1) are clearly vis-
ible, while for a strong damping [panel (c)], the kink be-
comes pinned to the lattice for large intervals of 6 (depinning
of the kink would require stronger fields). From Figs.
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FIG. 2. Dependence of the average kink velocity on the phase
difference 6 for E,=E,=0.2, «=0.05 (a), «=0.2 (b) and «=0.5 (c).
Other parameters are: k=1, w=0.35. Corresponding pairs of rota-
tion numbers (k,[) are given nearby the most pronounced reso-
nances. Dashed lines mark the coordinate axes.

2(a)-2(c) a qualitative understanding of the symmetries to
break, in order to achieve unidirectional motion, can be
obtained. In particular, one can see that close to the under-
damped limit (@=0.05), the mean velocity becomes zero
in the intervals 6e[-2.26,-1.81], 6<[0.80,1.06], and
0e[1.11,1.33] [see Fig. 2(a)]. For larger values of the
damping constant [see Fig. 2(b)], we have (v)=0 in the
intervals @ e[-2.66,—-1.88] and 0<[0.48,1.26], while for
a=0.5, the kink stays pinned for 6e[-2.5,-0.95] and
0[0.64,2.19]. By increasing «, the extremal values of(v)
shift to 0 or +7r with the growth of . Moreover, the length
of the intervals in 6 where (v)=0 increases, while the aver-
age kink velocity decreases as « increases. This behavior
is an obvious consequence of the slowing down effect of
the damping on the kink motion. In the overdamped limit
a—oo, the intervals become centered around the points
O=+m/2 for which E(f)=E, cos wt+E, cosQwt+m/2)=
—E(7/ w—1) and thus the symmetry (6) is satisfied. Instead,
in the underdamped case (a@— 0), the centers of these inter-
vals gradually shift to the positions #=0,+7 for which
E(f)=E(-t) and the symmetry (7) is satisfied.

We recall that in the continuum case [11], the functional
dependencies obtained in the underdamped and overdamped
limits were found to be (v)~sin 6 and (v)~ cos 6, respec-
tively. Thus, the transition from one limit to another in the
discrete case is similar to the continuous case in the sense
that the directed soliton motion disappears in correspondence
with values of @ for which the respective symmetry is re-
stored. In the discrete case, however, the soliton velocity is
zero not only for those values of @ which restore the sym-
metries (6) and (7), but also for some finite interval around
these values.
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FIG. 3. Velocities of two kinks, running into the opposite direc-
tions at @=0.05, w=0.1, E;=0.21, =0 as a function of E,/E,.
Dashed line denotes that the given solution is no longer stable.

In the case of odd values of m, the condition (8) is
satisfied for any value of @ if E,# 0. We have indeed that
E(t+T/2)=E, cos(wt+m)+E, cos(mwt+mm+60)=—E(t) and
therefore the symmetry D v is always valid. This observation
implies that there should be no kink transport in the system,
a result which is indeed confirmed by direct numerical simu-
lations of the full system with m=3, both in the presence and
in the absence of noise. Also, in analogy with the continuous
case, we find that for the same parameter values the discrete
antikink ratchets always move in the direction opposite to the
kink motion.

The emergence of the directed kink motion can also be
seen as a consequence of the desymmetrization of the basins
of attraction of the two limit cycles corresponding to kinks
moving with opposite velocities (for single particle ratchets,
the desymmetrization of the orbits has been shown in Refs.
[3,7]).

As soon as the symmetry is broken (by switching on the
field E,), one of the basins of attraction begins to shrink and
eventually disappears as E, increases. As a result, only the
limit cycles which correspond to motion in one direction
survive, as one can see from Fig. 3.

In particular, for the parameters given in this figure, we
find that the attractor corresponding to the limit cycle with
rotation numbers k=1,/=1 disappears at E,/E;=0.0118, i.e.,
already for a rather weak asymmetry of the field (E, < E)).

V. DEPENDENCE OF THE PHENOMENON
ON SYSTEM PARAMETERS

In this section, we investigate the dependence of kink
dynamics on the system parameters such as amplitude and
frequency of the internal driver, interaction and damping
constants, and also investigate the internal mode mechanism
of the kink transport.

A. Dependence on the driving amplitude

For continuous ratchets it was shown previously [11] that
the average kink velocity is proportional to E%Ez, so that,
provided the respective symmetries are broken, the directed
motion can occur for arbitrary small values of the driving
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FIG. 4. Dependence of the average kink velocity on the ampli-
tude of the driver E=E, for #=—0.5 (decreasing dependence) and
0=2 (increasing dependence). Other parameters are: a=0.1, k=1,
®=0.35. Numbers in brackets show the respective pair of rotation
numbers (k,/). Insets show more details for case §=-0.5.

amplitudes. For the DSG equation, the dependence of the
average kink velocity on the driver amplitudes is depicted in
Fig. 4 from which one can see that the kink velocity is not a
smooth monotonic function of E| ,, but a piecewise function
with plateaus of different lengths, resembling a “devil’s stair-
case” [the same as in Fig. 2(a) but monotonic]. The plateau
values of the kink velocities are given by Eq. (5) and corre-
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spond to dynamical regimes, which are limit cycles with ro-
tation numbers (k,l) phase locked to the driver. Notice that
the largest resonant step ((v)=0.0557) is achieved at the ro-
tation numbers corresponding to the main resonance (k
==1,/=1). One can easily observe the smaller resonant
steps with k=+2,/=1 and k==+1,/=2, for which the kink
velocities equal (v)=0.1114 and (v)=0.02785, respectively.
Higher order resonances can also be identified, but they are
not well visible in the figure.

A main feature of the discrete case is the existence of a
threshold in the driver amplitude (depinning threshold)
above which the transport occurs. For driving amplitudes
below the threshold the kink remains pinned to the lattice
and its center of mass

E:lzl n(“n+1 - un—l)
= 11
Xe 2(uy—u) (1

oscillates around a lattice site. This is shown in Fig. 5 where
X, is plotted as a function of time for different values of the
driving amplitude. Panel (a) of this figure refers to the case
of driving amplitudes below threshold while panels (b)—(e)
refer to the case of amplitudes above threshold at which the
standing kink becomes unstable and the directed motion
starts. Notice that for higher amplitudes the kink motion can
be either chaotic with an intermittent behavior [see panels (b)
and (c)] or phase locked to the external driver with rotation
numbers k=1,/=5 [see panels (d) and (e)]. Also notice that
in this last case the kink travels over a fixed number of sites
during each period T in agreement with Eq. (5). By further
increasing E |, we observe that the kink dynamics may start
to switch between periodic (or quasiperiodic) regime and in-
termittency. Similar chaotic transitions in the case of a single
harmonic driver were reported in Refs. [26,31]. In the inter-
mittency regime, the kink dynamics switches in an unpre-
dictable manner between two attracting limit cycles [see pan-

298+
296-

400 500 600 , 760 800 900
195
174 (b) ©
190
172
e 185
170 g 180 FIG. 5. Coordinate of the kink center X, as a
168 function of time for different values of the driv-
175 ing amplitude E;=F,=0.129 (a); 0.129 81 (b,c)
166
‘ . : 17f : : : and 0.1309 (d,e). In panels (c) and (e), X.(z) has
18000 18400 18800 5000 16000 17000 18000 been plotted after each oscillation period T (see
t text for details). Other parameters are: a=0.1,
w=0.35, k=1, =-0.5.
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els (b) and (c) of Fig. 5]. In this case, the kink dwells some
time interval on a certain site, pinned by the corresponding
minimum of the PN barrier, before jumping to the next site.
From panel (b) one can also see that the dwelling time is not
rationally related to the driving period 7 and changes ran-
domly from jump to jump. Thus in the intermittent regime
the kink does not travel the same number of sites during an
integer number of periods of E(r) and the global dynamics is
chaotic.

The same behavior is seen in panel (c¢) of Fig. 5 for a
larger time scale. Note that the intermittency behavior occurs
not only around the depinning threshold, but also for larger
values of the driving amplitude. Also notice, from the inset
(b) of Fig. 4, that the depinning threshold has an hysteretic
behavior. In this regard, we remark that the numerical inves-
tigation has been performed by increasing the driving ampli-
tude in small steps, taking the final state for a given step as
an initial condition of the next one. When the pinned state
loses stability, the system finds itself on a chaotic attractor,
which corresponds to the directed motion. By increasing fur-
ther E; we obtain larger values of the kink velocity, while if
we move backwards, we observe that two attractors can
coexist—one of them corresponding to a pinned kink oscil-
lating around its center of mass, and the other to a kink
performing ratchet dynamics. If E; is further decreasing, the
moving state loses stability and the system jumps back to the
pinned state. The width of the hysteresis (interval between
two bifurcations) appears to be rather small, i.e., 0.129 065
<E;<0.12979. Similar hysteretic phenomena also appear at
larger values of the driver amplitudes. For example, one can
find that in the interval 0.1660<FE;<<0.1678, two limit
cycles with k=1,/=2 and k=1,/=1 coexist. Coexistence of
attractors and existence of hysteresis was observed also in
point particle ratchets [7].

A more detailed numerical investigation of the (v)(E,)
dependence shows that there are gaps of the value (v) in the
observed devil’s staircase and these gaps depend on 6. As the
(v)(E,) dependence becomes steeper, less phase locked
states are found. In particular for the case =2, one can see
that in the transition from the k=1,/=2 to the k=1,[=1 state,
all steps that correspond to the intermediate rational values
of k and [ are missing.

B. Dependence on the driving frequency

The dependence of the mean kink velocity on the driver
frequency was investigated in Ref. [11] for the continuous
SG model. In this case, it was shown that the average veloc-
ity depends on the driving frequency as (v)~sin[@
—0y(w:;a)]/®’, where tan Oy(w;a)=[a/w)][3+(a/w)?].
This fact implies that max,.[g,.{v) decays with the growth
of w. For a fixed value of #, however, this dependence is
defined by the mutual relations between w and a, so that (v)
can experience oscillations and sign reversals before tending
to zero either in a decreasing or in increasing way. Similar
behavior is expected also for the DSG equation, although in
this case, the problem is complicated by the presence of the
Peierls-Nabarro (PN) frequency wpy in Eq. (3). In analogy
with Fig. 2, one can expect the dependence (v)(w) to be also
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FIG. 6. (Color online) Dependence of the normalized kink ve-
locity (v)T on the driving frequency for E,=E,=0.1, =2, «
=0.05 (°) and E;=E,=0.02, 6=1.5, @=0.15 (X). In both cases «
=1. The insets (a) and (b) show the kink profile for the first set of
parameters when w=0.45 and w=0.507, respectively. Inset (c)
shows more detailed behavior around w=0.5. The connecting lines
in all cases have been used as guides to an eye.

a piecewise function with a devil’s staircase character.

In Fig. 6, we depict the kink velocity, normalized to the
driving frequency ({(v)T=2mv/w) as a function of w for two
values of the damping constant (notice that for phase locked
dynamics, (v)T coincides with the ratio of rotation numbers
k/I). One can see that the dynamics is characterized by a
series of resonances, the most pronounced one being at the
main frequency (k=1,/=1). We also observe that the reso-
nances with k>1 are less pronounced and the subharmonic
resonances with k<<[ are practically not visible in the figure.
The case of small damping and larger driver amplitude (de-
picted in the figure by circles) is characterized by an almost
monotonic decay, while in the opposite case (larger damping
and smaller driving amplitude), there are wide pinned re-
gions and some peak around the value of wpy [notice from
Eq. (4) that wpy=0.17 for k=1].

In both the cases we find that, except for the resonances
w=~w; and 2o0=w;, where w; is the frequency of linear
waves

wi(q) =2k(1 —cos q) + 1, (12)

the kink transport becomes effective mainly at low frequen-
cies w< w; and disappears for driving frequencies w> w;.
Also, from Fig. 6 one can see that the kinks become pinned
to the lattice for values of w significantly smaller than w;. At
the resonances w= w; and 2w = w;, we observe that the kink
dynamics become coupled to linear waves in the system
(plasmons in the case of array of Josephson junctions). Insets
(a) and (b) of Fig. 6 show the profiles of the kink solution in
these resonant cases, while inset (c) shows details of the (v)
dependence in the neighborhood of the second resonance.
The coupling of the kink motion with linear waves occurs in
the interval 0.447 <w <<0.517. At the beginning of this inter-
val, the kink displays a chaotic tail as shown in Fig. 6(a). As

066621-6



DISCRETE SOLITON RATCHETS DRIVEN BY...

frequency increases, the chaotic tail becomes more and more
regular. This is shown in inset (b) of the figure, from which
one can see that at w=0.507 the oscillating tail is almost
monochromatic. At w=0.517 the oscillating tail turns into a
localized oscillating mode which decays at infinity. A further
increase of the driving frequency causes the decay of the
width of the mode.

A similar scenario occurs also at w= w;, but in this case
the kink velocity is much smaller and practically not visible
in Fig. 6. Notice that in the frequency interval 0.895<w
< 1.05, the kink becomes again coupled to linear modes and
displays a chaotic tail, which becomes more regular as w
further increases. At the beginning of this window, the dy-
namics in the tails are strongly chaotic and they are accom-
panied by the formation of large-amplitude localized excita-
tions (breathers).

By reducing the driving amplitude, the frequency win-
dows, in which the coupling with linear waves occurs, de-
crease. We find that for E;=FE,=0.04, the first coupling win-
dow occurs at 0.480<w<<0.495 and the second one at
0.955<w<<0.994. In this case, no chaotic dressing of the
kink is observed [the coupling occurs with very few (or
single) linear modes and the kink looks very similar to that in
Fig. 6(b)]. For the driving amplitude E,=E,=0.01, the cou-
pling with linear waves does not take place at all, and around
the resonant frequencies w; and w;/2, the kink remains
pinned to the lattice. As the driving amplitude increases, be-
yond a certain threshold chaotic oscillations can completely
destroy the kink. From these results, we conclude that the
coupling of the kink dynamics with linear waves depends
very much on the amplitude of the external field and this
effect is nonlinear in E;. Near the resonances with linear
modes, the kink dynamics become more chaotic (diffusive),
resembling the one of a Brownian particle (the kink makes
many random jumps backward and forward and the unidirec-
tional motion can be seen only at a large time scale).

C. Dependence on the coupling constant

In this section, we investigate the dependence of the
ratchet phenomenon on the interaction constant x and the
conditions to sustain mobile kinks in the system. As well
known [34], the discreteness usually prevents free topologi-
cal soliton propagation. In our model, the discreteness of the
system is characterized by the interaction constant x, with
k— o corresponding to the continuum limit. In Fig. 7, we
depict the temporal evolution of the kink center of mass X,
for two values of the coupling constant k=0.5 [panel (a)] and
x=0.25 [panel (b)]. From this figure, we conclude that the
unidirectional motion exists also for small values of « with
dynamics which is chaotic rather than phase locked (see in-
sets of the figure).

Chaotic motion, leading to transport is found to be either
of the intermittent type [curve 4 of panel (a)] or diffusive
type [curves 1-3 of panel (a)]. The intermittent regime is
more often observed for k=1 and the behavior is the same
as described in the previous section, i.e., the kink oscillates
in the minima of the PN potential until it jumps to the adja-
cent site [see lower inset of panel (a)]. The motion is char-
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FIG. 7. Time evolution of the position of the kink center for: (a)
k=0.5; E;=E,=0.21 (curve 1), 0.19 (curve 2), 0.17 (curve 3), 0.11
(curve 4), and (b) k=0.25; E;=E,=0.14 (curve 1), 0.24 (curve 2),
0.22 (curve 3). Other parameters are: =1.5, a=0.1, ®=0.35. The
upper inset of panel (a) corresponds to details of the case E|=E,
=0.19 and the lower inset corresponds to the case E;=FE,=0.11.
The inset of panel (b) corresponds to the case E;=E,=0.22. In all
figures, the data have been plotted with the interval T=27/ w.

acterized by the fact that the jumps of the kink occur ran-
domly in time, but always in the same direction. For k=<1
the diffusive motion is the most typical scenario. In this case,
the kink jumps randomly forward and backward [see upper
inset of panel (a) and inset of panel (b)], but on average the
motion remains unidirectional. A decrease of the coupling
constant makes the dynamics even more diffusive in the
sense that the forward and backward jumps become of larger
amplitude with a consequent decrease of the average veloc-
ity.

In the left panel of Fig. 8 the diagram of possible dynami-
cal regimes in the plane («,E;) is shown. We observe that by
changing the coupling constant «, one can pass from regular
(phase locked) dynamics to chaos. The regular dynamics are
dominant for k> 1 and when « is decreased, the windows of
chaotic motion appear. By further decreasing «, the number
of chaotic windows increases and the chaotic motion be-
comes dominant. At k=0.25, almost no regular dynamics
exist. Notice that the diagram in Fig. 8 does not show the
complete picture and the details of transitions to different
dynamical regimes because in order to limit the computation
time, we have used in the numerical calculations the step of
0.01 in the amplitude of the driving field E;=E, and a coarse
step of 0.25 in «. We find that for driving amplitudes E,;
=FE,=0.3, the chaotic dynamics of the whole lattice destroy
kink solutions.

In the right panel of Fig. 8, we show the dependence of
the average kink velocity on the driving amplitude E=E,
for different values of the coupling constant k. We observe
that already for k=2, the curve is very smooth (except for
the small resonant steps k=3,/=1 and k=3,/=2) and the
behavior becomes very similar to that reported for the con-
tinuous limit ((v>~E%E2) [11]. By increasing the driving
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FIG. 8. (Color online) Left panel. Diagram that demonstrates
main regimes of the kink ratchet motion for different values of the
coupling constant « and the driving amplitude E;=E, (other param-
eters are: 6=1.5, a=0.1, and w=0.35). In the diagram © stands for
the regime when kink is pinned ((v)=0), @ stands for the periodic
or quasiperiodic ratchet motion, X stands for the chaotic regime,
and @ corresponds to the case when kink solutions do not exist.
Right panel. Dependence of the average kink velocity on the driv-
ing amplitude E,=E, for different values of the coupling constant
k=0.5(A), k=0.75 (X), k=1 (), k=15 (#), and k=2 (°). Other
parameters are as in the left panel. The insets show dependence of
the average velocity on the phase difference 6. Inset (a) corresponds
to k=0.75, E;=E,=0.19 (°) and E;=E,=0.25 (#), inset (b) corre-
sponds to k=0.5, E;=E,=0.22 (&). The connecting lines are drawn
as guides to an eye.

amplitudes E| ,, the dependence becomes nonmonotonic, a
fact which was also observed in the continuous SG case and
ascribed to the interaction of the kink with internal oscilla-
tion modes [11]. On the other hand, decrease of the coupling
constant makes the phase locking steps more pronounced.
For k=1.5, the dependence (v)(E;) almost coincides with the
one for k=2 (for larger amplitudes, however, the three reso-
nant steps k=I[=1, k=3,/=2, and k=2,/=1 become much
more visible).

Further decrease of the coupling constant makes the de-
pendence even less monotonic: for k=1 (shown by < in the
figure), the nonmonotonicity is quite weak, with a small in-
terval 0.145<FE;<0.154 in which the kink velocity drops
back to zero. For E; =0.2, the dependence is also nonmono-
tonic because of the interaction of the kink with vibrational
modes localized on it. For k=0.5 and x=0.75, the average
kink velocity becomes strongly nonmonotonic function of
E,.

Notice from the right panel of Fig. 8 that several reversals
of the kink motion along the E; axis occur. In this regard, we
remark that the sign of (v) depends on the relations between
o, a, and wpy. Decrease of « can change wpy significantly
[see Eq. (4)], thus effecting the sign of the velocity. The
reversals of (v) as a function of E;, however, are not fully
explained by these arguments and we believe that, in analogy
with the continuous case, the coupling of the kink with small
amplitude waves plays also an important role.

By comparing the left and the right panels of Fig. 8, one
can also see that the nonmonotonic jumps occur in corre-
spondence with the transitions from chaotic to regular (phase
locked) regimes. In order to get a better understanding of this
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behavior, we have plotted in insets (a) and (b) the mean
velocity as a function of the phase difference 6. The inset (a)
refers to the case x=0.75 for two different values of the
driver amplitude. We see that while for £;=0.19 the depen-
dence (v)(6) is piecewise, but somewhat similar to Fig. 2
(i.e., it has one minimum and one maximum), the depen-
dence becomes more irregular as E; increases, with small
islands of phase locked regimes with opposite velocities. A
similar phenomenon is observed, when « decreases to «
=0.5 [inset (b)]. This behavior is linked to the well known
phenomenon of crises of attractors, i.e., to sudden appear-
ance (or disappearance) of an attractor as a system parameter
varies (see [35]). Attractor crises for one-particle ratchets
have been observed in Refs. [36]. By further decreasing the
coupling constant, more and more attractor crises are found.

From the insets of Fig. 8, we also see that, in contrast with
the case k=1 in Fig. 2, the dependence (v)=(v)(6) loses any
resemblance with a sinusoidal function for small values of «.
From Fig. 8, it is also evident that the depinning amplitude of
the kink motion increases when « decreases. For very small
K, e.g., k=0.0625 (not shown in Fig. 8), no directed motion
is found—the kink is either pinned by the lattice or destroyed
by chaos when the driving amplitude becomes large enough.
This behavior is not surprising, since we know that high
discreteness normally prevents solitons from free propaga-
tion.

We remark that the attractor crises leading to reversal phe-
nomena are out of the range of validity of the single particle
approximation since they involve many degrees of freedom.
In particular, in the limit of weak coupling, the point particle
approximation (3) as well as the symmetry analysis dis-
cussed in Sec. III become not valid.

D. Internal mode mechanism and dependence
on the damping parameter

In the case of continuous soliton ratchets, it was shown
(see Refs. [10,11,20,21,19]) that a contribution to the ratchet
phenomenon comes also from the internal oscillation of the
kink via the internal mode mechanism. We expect this effect
to be true also in the present case, both for large values (i.e.,
close to the continuum limit) and intermediate and small
values of the coupling constant « (for very small values of «,
however, the kink becomes pinned to the lattice and the
ratchet phenomenon disappears as discussed above).

In the following we investigate the internal mode mecha-
nism by fixing k=1 and performing direct numerical simu-
lations of Egs. (1). In particular, we show the existence of a
local oscillation on the kink profile which is, perfectly syn-
chronized (phase locked) with the kink motion. We have
found that when the dynamics of the kink center of mass is
phase locked to the resonance (k,[), the internal mode oscil-
lation is also locked to the same resonance. This is shown in
Fig. 9 for the discrete kink ratchet, which is phase locked to
the external driver with rotation numbers k=2, [=7. In the
panel (a) of this figure, the initial and final kink profiles are
depicted, from which one can conclude that these profiles
perfectly coincide after /=7 periods of the external driver
(notice that the final configuration has been shifted by two
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FIG. 9. Evolution of the kink profile u,(). Upper panel shows
initial kink profile (+) and kink profile after integration time 77
(o), shifted two sites backwards. Parameters of the model are: E;
=E,=0.135, #=1.5, a=0.1, ®=0.35, and x=1.

sites backwards in order to demonstrate full coincidence).

The phase locking of the motion to the external driver is
also observed from the three-dimensional plot of u,(7) in
panel (b). Similar results are obtained for different values of
the driving amplitudes, as one can see from Fig. 10. In this
case, the kink is locked on the resonance with rotation num-
bers (1,2) (notice that the kink reproduces itself completely
after the time 27). In panel (b), the complete dynamics in the
time interval [0,47] is also shown. The fact that the center of
mass motion and the oscillations on the kink profile (internal
mode) are perfectly synchronized suggests the existence of
coupling between the internal and translational modes simi-
larly as for the continuous case.

The existence of the internal mode mechanism in the dis-
crete case is also supported by the influence of the damping
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FIG. 10. Same as in Fig. 9. All parameters are the same except
E =E,=0.17. In panel (a), the initial kink configuration is shown by
(+), the configuration after time 7' (¢ ) and after time 27 (°), shifted
by one site backwards. Panel (b) shows three-dimensional dynami-
cal picture for the kink evolution in the time interval [0,47].
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FIG. 11. Existence diagram of the main resonance (k=[/=1) on
the plane (a,E|=E,) for ®=0.35, #=2, and k=1. The inset shows
the dependence of the width of resonance AE on damping coeffi-
cient a. When the resonance consists of several islands, AE is com-
puted as a sum of the widths of individual islands. The connecting
line is drawn as a guide to an eye.

constant on the phenomenon. In the continuous case, it was
shown that the coupling between the translational and inter-
nal modes decreases with the damping and for the case of
asymmetric potentials with symmetric drivers, it was proved
that in the limit «— 0, the coupling completely disappears
[19]. In the case of biharmonic asymmetric forces, the non-
linearity induces an effective bias component, which gives
rise to a point particle contribution also in the absence of
damping.

The contribution of the internal mode to the ratchet dy-
namics, however, should be sensitive to the damping, if the
coupling is controlled by the damping and the unidirectional
motion should become less effective for small values of the
damping constant. On the other hand, when the damping in
the system becomes too large, the dynamics are strongly re-
duced (or stopped), so that a nonmonotonous behavior of
transport with « is expected and an optimal value of the
damping which maximizes the transport should exist.

In the following numerical study we have taken the width
of resonance steps produced by the ratchet dynamics (see
Fig. 4) as a measure of the efficiency of the transport in the
system (in the experimental setting considered in Ref. [15],
these resonance widths correspond to the voltage steps in the
IV characteristic of a Josephson junction).

Figure 11 illustrates the width of the main resonance
(1,1) as a function of « (similar behavior is observed also
for other resonances). It follows from this figure that the
resonant steps are reduced when « is reduced and tend to
disappear as @—0 (for small « numerical calculations be-
come very difficult due to longer transient times to settle on
the attractor). The same behavior is observed as « increases
beyond the value a=0.35. From this figure we conclude that
the effect becomes maximum around an intermediate value
of damping with a=~0.2. The existence of an optimal cou-
pling between the kink phase looked dynamics and its inter-
nal oscillation which maximizes the transport, indicates the
validity of the internal mode mechanism also for the discrete
case.
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FIG. 12. (Color online) Dependence E;=E;(V) for k=0.25 (o)
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VI. APPLICATIONS TO ARRAYS OF SMALL
JOSEPHSON JUNCTIONS

In this section, we discuss possible applications of above
results to the case of an array of parallel shunted and ac-
biased small Josephson junctions (JJAs). This system is de-
scribed by Egs. (1) with u, corresponding to the phase dif-
ference of the wave functions of the nth junction. The
discreteness parameter equals k= ®y/ (27 .L), where P is
the magnetic flux quantum, L is inductance of an elementary
cell, and 1. is the critical current of an individual junction.
The dimensionless dissipation parameter is then «
=®,/(2mI.R), where R is the resistance of an individual
junction, and the time is normalized to the inverse Josephson
plasma frequency 1/wy=+/C®y/(271,). In these systems, the
topological solitary waves have the physical meaning of
trapped magnetic flux quanta (fluxons) and the voltage drop
V in the array is defined as

N '
> 1iml J i, (1")dt' . (13)

1
N11=1 [_mot 0

The experiments with annular JJAs have been performed
for typical lengths N~8-30 (see Refs. [37-39]). In the fol-
lowing, we consider the case of an array with N=10 junc-
tions subjected to periodic boundary conditions (annular ar-
ray). From the previous analysis we expect that the ratchet
dynamics of the fluxon give rise to nonzero voltage drops in
the IV characteristic of the array. The voltage drop in an
annular JJA (with one fluxon in it) is related to the average
fluxon velocity (v) by the equation V=2m(v)/N [38].

Figure 12 shows the IV characteristic of an annular JJA
[dependence E,(V)] for two different values of the coupling
constant . For k=1 the characteristic is dominated by large
phase locking steps associated to limit cycles with rotation
numbers (k,l). In particular, the phase locking resonances
(k=1=1) and (k=2,I=1) are very well pronounced. On the
limit cycles of this type the voltage drop is equal to V
=kw/(NI) and for each lattice site n we have u,(t+IT)
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FIG. 13. Poincaré sections for w=0.35, a=0.1, =2, and N
=10 and different values of driving amplitudes and coupling con-
stants. Panels (a)—(c) correspond to case xk=1. In panel (a), E;
=FE,=0.182 (°), E;=E,=0.18202 (+), E;=E,=0.182 05 (dots). In
panel (b), E;=E,=0.182 07 and in panel (c), E,=E,=0.1821. Panel
(d) corresponds to k=0.25 and E,=E,=0.097.

=u,(f)+2mk (notice that for the phase locking dynamics,
NV/w corresponds to the ratio of the rotation numbers k/1).

For smaller values of « (e.g., k=0.25) directed fluxon
motion becomes diffusive almost for all values of the driving
amplitudes. This behavior corresponds to the irregular (non-
vertical) parts of the IV curve seen for k=0.25. Notice that in
this case, only very few regular regimes are observed: pin-
ning regions and very small phase locking steps with &
=+1,/=1. An idea of complexity of the dynamics, resulting
in this case, can be obtained from the Poincaré sections of
one of the junctions, as reported in Fig. 13 for different val-
ues of the driver amplitudes. The Poincaré section is pro-
duced by plotting the values of the pair of the dynamical
variables {u,(t),u,(r)} for n=2 after the time intervals NT.
The phase locking regime with the rotation numbers k=1
=1 is identified as the fixed point represented by the circle
(°) in panel (a) of Fig. 13 and it corresponds to the fluxon
which returns on the initial site (junction) after one trip
around the array during the time NT. As the driving ampli-
tude increases, the fixed point bifurcates into a period two
orbit corresponding to the two crosses in the Poincaré section
shown in Fig. 13(a) (the kink dynamics reproduces itself
after the time 2NT, making two trips around the array, and so
on). The curves shown in panel (a) refer to the case E,=E,
=0.182 05 and correspond to quasiperiodic motion. In panels
(b) and (c) of Fig. 13 we report the Poincaré sections of the
period-doubling route to chaos, while panel (d) shows the
case with k=0.25 for which chaos is fully developed and the
fluxon motion is strongly diffusive. A similar behavior is
found for the Poincaré sections taken on other junctions in
the array.

Notice the presence of voltage sign reversals in the IV
characteristic in Fig. 12 generated by reversals of the direc-
tion of the motion of the kink. In particular, the sudden emer-
gence of small intervals around E;=0.178 and E;=0.11,
associated with negative voltages at the resonances k=-1,
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[=1 and k=-1,[=3, respectively, are clearly visible. These
phenomena, as discussed in the previous section, are due to
attractor crises and have been observed also for other values
« as well as for longer arrays (see also Fig. 8). Comparing
the dynamical behavior of arrays of different lengths (differ-
ent number of junctions), we find that already for a small
array of 10 junctions, the fluxon dynamics is qualitatively
very similar to that obtained for the infinite chain. The quan-
titative difference, existing between the two cases, is prob-
ably due to the interaction of the fluxon with the radiated
small amplitude waves (Josephson plasmons), this being
more pronounced in the discrete case due to smaller size of
the system.

VII. CONCLUSIONS

The ratchet phenomena induced by temporarily asymmet-
ric zero mean fields on topological solitons (kinks and anti-
kinks) of the discrete sine-Gordon equation have been inves-
tigated. In particular, we have obtained the conditions for the
occurrence of discrete soliton ratchets. It has being shown
that, in analogy with the continuous SG case, the unidirec-
tional motion arises when all symmetries of the system re-
lating orbits with opposite velocities are broken. This condi-
tion can be achieved when an external driver, consisting of
the superposition of two sinusoidal signals: the main har-
monic and its first overtone, satisfies suitable inequalities. In
the paper the above mentioned condition has been numeri-
cally tested for different values of the relative phase between
the two signals. Numerical simulations have confirmed dis-
appearance of the directed soliton motion if the respective
symmetries have been restored.

The dependence of the mean velocity of the kink on the
amplitude, phase shift, and frequency of the biharmonic
driver, as well as on the damping and on the coupling con-
stant, have extensively been investigated. The main charac-
teristic of discrete soliton ratchets, in comparison with the
continuous case, is the existence of a depinning threshold (in
the driver amplitude) related to the Peierls-Nabarro barrier.
For driving amplitudes smaller than the critical threshold, the
kink performs periodic oscillations around its center of mass,
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while above this threshold, the kink directed motion takes
place. Numerical studies show that the ratchet dynamics be-
comes pronounced when the driving frequency is smaller
than all other characteristic frequencies in the system and
most effective when the kink motion is phase locked to the
external driver. In the phase locked regime the kink travels
an integer number of sites during the integer number of the
periods of the ac driver. We showed that the dependence of
the velocity on the system parameters is much more compli-
cated than in the continuous case, resembling in most cases a
devil’s staircase. Besides the phase locking regime we found
that transport is also possible (although less effective) in the
presence of chaos and intermittency. The mechanism of the
kink unidirectional motion was shown to depend strongly on
the coupling constant. For large and intermediate values of
the coupling constant the transport is dominated by the regu-
lar phase locked trajectories while for small values of the
coupling constant the diffusive chaotic nature of the kink
transport dominates. Our investigation of the dependence of
the kink transport on the damping constant shows that some
qualitative analogy with the continuous case remains. In par-
ticular, the existence of an optimal coupling between internal
and translational modes for some intermediate values of the
damping strongly suggests the existence of an internal mode
mechanism also in the discrete case (the dependence of the
phenomenon on the internal mode requires however further
investigations).

Finally, the possibility to observe experimentally discrete
soliton ratchets in a one-dimensional ac-biased annular array
of small Josephson junctions has been discussed in detail.
From our results we predict that the kink ratchet dynamics
induced by a biharmonic ac driver of zero mean leads to the
formation of voltage steps in the IV characteristic of the
array, in the absence of any DC bias.
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