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The interaction of nonlinear Schrödinger solitons with extended inhomogeneities with modified group-
velocity �GV� and group-velocity dispersion �GVD� coefficients is investigated numerically. Increased GVD
coefficients act as potential barriers and yield reflection or transmission of the incoming soliton. Decreased
GVD coefficients act as potential wells, and for a given range of parameters the scattering results exhibit
periodically repeating windows of trapping and transmission as a function of the length of the segment. It is
shown that the escape of the soliton is due to a resonance between the period of the shape oscillations of the
soliton inside the segment and the length of the latter. Segments with modified GV coefficients act as potential
wells for both positive and negative values of the GV mismatch and can also lead to periodic capture-
transmission scattering patterns.
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I. INTRODUCTION

The interaction of solitons with defects and inhomogene-
ities is a problem of considerable interest. Scattering of non-
linear Schrödinger �NLS� solitons from point defects has
been studied in �1–4� and of topological solitons in �5,6�. It
has been shown in particular that kinks can be reflected by an
attractive impurity via a “two-bounce” resonance mechanism
involving excitation and a following deexcitation of local-
ized impurity and shape modes. Interaction of NLS solitons
with strong localized inhomogeneities in the dispersion or
nonlinear coefficients has been studied in �7�. Recent inves-
tigations have been focused on the scattering of solitons from
extended inhomogeneities �8–10� and nonclassical behavior
has been obtained in �11,12�. Resonant interaction of NLS
solitons with wide linear and nonlinear potential wells has
been obtained in �13,14�. Trapping of NLS solitons in seg-
ments with inhomogeneous coupling constants has been
studied in �9� within a lattice DNA model. In the present
work, we investigate in detail the interaction of solitons with
long �compared to the soliton’s width� segments with modi-
fied group-velocity-dispersion �GVD� coefficient �Sec. II�
and/or group-velocity �GV� coefficients �Sec. III� as a func-
tion of the length of the segment. While the interaction with
segments with increased GVD coefficient �potential barriers�
is similar to the classical-particle case, segments with de-
creased GVD coefficients as well as with modified GV coef-
ficients of arbitrary sign act as potential wells and yield non-
classical evolutionary patterns, associated with the wavelike
extended character of the solitons.

II. SEGMENTS WITH MODIFIED
GROUP-VELOCITY-DISPERSION COEFFICIENTS

The perturbed NLS equation in the presence of a segment
with modified GVD coefficient can be written as

i
��

�t
+ M�x�

�2�

�x2 + 2���2� = 0, �1�

where

M�x� = 1 + � for x1 � x � x2, M�x� = 1 otherwise.

In an homogeneous media with M�x�=M =const, it possesses
a fundamental bright soliton solution,

��x,t� =
�M

L
sech

x − vt

L
ei�vx/2M−�t�, � =

v2

4M
−

M

L2 , �2�

where L and v are the width and velocity of the soliton. The
energy of the soliton in this case is

Es = �
−�

� �M	 ��

�x
	2

− ���4
 dx = � v2

4M
−

M

3L2
P , �3�

where P is the norm

P = �
−�

�

���2dx =
2M

L
. �4�

In the present work, we shall consider “slow solitons”
with v2�M2 /L2, in which case the integrity of the solitons
is preserved in the scattering process. The outcome depends
in general on the interplay between Es and the “potential
energy” Ed of the interaction with the segment. The latter can
be defined as

Ed = ��
x1

x2 	 ��

�x
	2

dx . �5�

When �Es � � �Ed�, the solitons are not influenced signifi-
cantly by the defects, and for �Es � � �Ed� the solitons can be
reflected even by an attractive defect �1�. Below we shall
study the interaction of slow solitons with extended inhomo-
geneities with Es�Ed, in which case interesting resonance
phenomena occur.

The energy of the soliton inside the inhomogeneity ac-
cording to Eqs. �1� and �3� is

Es = � v2

4�1 + ��
−

1 + �

3L2 
P . �6�

For small defect strengths ��� � �1�, the loss of energy due
to emitted radiation at the boundary is small and the soliton
energy and the norm outside and inside the inhomogeneity
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are nearly conserved. The conservation of energy reads

v0
2 −

4

3L0
2 =

v2

1 + �
−

4�1 + ��
3L2 , �7�

where v0, L0, v, and L are the soliton’s velocities and widths
in the ideal and defect regions, respectively. The conserva-
tion of the norm P yields

L = L0�1 + �� . �8�

The velocity of the soliton inside the segment evaluated from
Eqs. �7� and �8� is

v2 = �1 + ��v0
2 −

4�

3L0
2 . �9�

As v0
2�1/L0

2, the dependence of v on � is governed by the
last term which reflects the change of the soliton shape due
to the modified GVD coefficient. Thus negative values of �
lead to an increased velocity inside the inhomogeneity, i.e.,
the latter acts as a potential well, while positive values of �
lead to a decrease of the velocity and act as a potential bar-
rier.

In the numerical simulations, we employed a finite differ-
ence scheme with a fixed mesh of 2000 points in x, thus
turning Eq. �1� into a set of time-dependant ordinary differ-
ential equations, which we solved using a predictor-corrector
method �15�. It is known that discreteness can change the
soliton’s shape and velocity �see, i.e., �16��. For wide and
slow solitons, however �2L�1,v�1�, these changes are
negligible �they are of the order 1 /6L2 and v2 /6, respec-
tively� and the corresponding solution �2� is an excellent
approximation for ideal discrete lattices �we checked its sta-
bility over long time scales�. So in the numerical simulations
we input the solution �2� with 2L0=11.5 and v0�0.05 as
initial condition, placed 50 sites away from the defect seg-
ment. In order to eliminate boundary effects and the spurious
interaction of the soliton with emitted radiation revolving
along the chain, we introduced a damping term ib�x���x , t�
in the equations near the turnover point x= ±1000 with
b�x�=0.1�1− �1000− �x � � /250�2 for 750� �x � �1000 and
b�x�=0 elsewhere. Without the damping term, the norm was
conserved to within10−5 and the energy to within 10−4 for the

whole course of the simulations, which proves the accuracy
of the calculations.

Figure 1 shows the scattering results for an attractive po-
tential ��=−0.3525� and different values of the initial veloc-
ity v0. Plotted is the final �averaged� soliton velocity v f as a
function of the length of the segment N=x2−x1. The lower
horizontal parts with v f =0 correspond to capture of the soli-
ton inside the segment and the upper ones with v f �0 to
transmission. The capture-transmission patterns on curves
2–4 follow a period of �17 lattice sites. The increase of the
initial velocity leads to wider region of transmission and nar-
rower region of capture, while the total period remains nearly
constant. With the increase of N, the regions of capture on
curve 2 and these of transition on curve 4 become wider, at
the expense of the opposite regions. The periodicity is bro-
ken on curves 1 and 5 for N�50. The reason for this will be
explained below.

Similar plots are obtained for a fixed initial velocity v0
and different GVD mismatch �Fig. 2�. The increase of the
latter yields wider regions of capture and narrower regions of
transmission and vice-versa.

Three-dimensional �3D� evolutionary plots corresponding
to transmission and capture are shown in Fig. 3. Sharp
changes in the soliton velocity and amplitude mark the

FIG. 1. Averaged final soliton velocity v f as a function of the
length N of a defect segment with �=−0.3525 for different values
of the initial velocity v0. Curves 1–5 correspond to v0=0.0486,
0.0496, 0.050, 0.0504, and 0.0510, respectively. The lower horizon-
tal parts with v f =0 correspond to capture and the upper ones with
v f �0 to transmission. The period on curves 2–4 is X�17.

FIG. 2. Same as Fig. 1 for v0=0.05 and different GVD defects.
Curves 1–3 correspond to �=−0.35, −0.3525, and −0.355,
respectively.

FIG. 3. 3D evolutionary plots for v0=0.05 and �=−0.3525. �a�
Transmission for N=122 and �b� capture for N=130. The arrows on
the x axis mark the boundaries of the segment.
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boundaries of the inhomogeneity. The velocity and the am-
plitude ��M /L� of the soliton increase inside the segment
according to Eqs. �7� and �8� and drop when it escapes �Fig.
3�a��. The trapping of the soliton shows a peculiar behavior
�Fig. 3�b��: it crosses the segment once, stays near the second
boundary for a long time, turns back, and starts shuttling
inside the segment. At the turning points, the soliton gets
slightly outside the segment and its amplitude drops.

It is important to note that small-amplitude shape oscilla-
tions of the soliton are excited at the first boundary of the
segment and persist for a long time. The temporal period of
these oscillations inside the segment evaluated from Fig. 3 in
a frame moving with the soliton is T=137. The velocity in-
side the defect region determined from Eq. �7� for �=
−0.35 to −0.355 �Fig. 2� and v0=0.049–0.051 �Fig. 1� is in
the range v=0.125–0.126. Hence the spatial period of the
oscillations is X=vT�17 and coincides with the period of
the capture-transmission patterns in Figs. 1 and 2. This
shows unambiguously that the periodicity is due to a reso-
nance between the length of the inhomogeneity and the spa-
tial period of the shape oscillations excited at the boundary,
or equivalently, the time for which the soliton crosses the
inhomogeneity and the temporal period of the shape oscilla-
tions.

Shape oscillations of perturbed NLS solitons have been
studied using the inverse-scattering transform �IST� �17–20�,
small-amplitude linear wave expansion around the soliton
solution �22,21�, or the collective-coordinate �variational�
approach �20,23,24�. Within the second method, the solution
of the perturbed NLS equation can be represented in the
form

��x,t� = 
�0�x,t� + �1�x,t�e−i�1t + �2
*�x,t�ei�1t�ei�vx/2M−�0t�,

�10�

where �0 is the envelope of the unperturbed solution �2� and
the functions �1 and �2 describe the small-amplitude pertur-
bation. They satisfy the linear system of equations,

�2�1

�x2 + �4�0
2 −

M

L2 + �1
�1 + 2�0
2�2 = 0

�2�2

�x2 + �4�0
2 −

M

L2 − �1
�2 + 2�0
2�1 = 0. �11�

The spectrum of Eqs. �11� consists of a discrete eigen-
value �1=0 corresponding to a static perturbation of the soli-

ton, and a band of frequencies �1= �M /L2+�2� �22� describ-
ing the shape modes. The frequency of the shape oscillations
in Fig. 3 is �=2	 /T=0.0458 and coincides with the band-
edge frequency of the shape modes ��=M /L2=0.0465,�
=0�. The corresponding solution of Eqs. �11� is

�1�
� = a0tanh2x − vt

L
, �2�
� = − a0sech2x − vt

L
, �12�

where a0�1/L. Shape oscillations of perturbed NLS soli-
tons with frequency �=M /L2 emerge also within the
inverse-scattering transform as a result of interference with
emitted radiation. The collective coordinate approach yields
a lower shape mode frequency �2/	�M /L2, and it has been
argued that it is not appropriate for single-soliton interactions
�20� and multiple scattering �9�.

The periodic evolutionary patterns in Figs. 1 and 2 can be
explained qualitatively in the following way: when the in-
coming soliton reaches the boundary of the segment, it inter-
acts inelastically with it and loses part of its energy exciting
small-amplitude shape oscillations. These oscillations are
weakly decaying and persist for a long time. When the os-
cillating soliton reaches the second boundary, different out-
comes are possible depending on the phase. In the nonreso-
nant case, the reduced energy of the soliton does not allow it
to overcome the potential barrier of the second boundary; it
is reflected from it and eventually gets trapped. However,
whenever the time for which the soliton crosses the potential
well is commensurate with the period of the shape oscilla-
tions, the inelastic interaction with the second boundary may
extinguish the shape oscillations, restoring the soliton energy
and allowing it to overcome the barrier and escape. The
higher the initial velocity of the soliton, the wider the escape
regions as seen from Fig. 1. The broken periodicity on curves
1 and 5 is due to the decay of the shape mode due to emis-
sion of radiation. Thus for very wide segments, the period-
icity vanishes and the soliton is either transmitted or trapped

FIG. 4. Capture-transmission patterns as a function of the seg-
ment’s length N for v0=0.05 and different GV defects. Curves 1–3
are for �=0.08, 0.085, and 0.09, respectively. The corresponding
periods are 35, 36, and 39.

FIG. 5. 3D evolutionary patterns for v0=0.05 and �=0.085. �a�
Capture �N=110� and �b� transmission �N=130�.
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depending on whether its final kinetic energy is above or
below the potential barrier of the second boundary.

The escape mechanism described above is not obvious
from the 3D plots in Fig. 3�a�, as the shape oscillations per-
sist outside the inhomogeneity too. However, a closer inspec-
tion of the period of the oscillations outside the segment
reveals a period of T=207, which coincides with the soliton
period in the ideal part of the lattice. Thus the resonant in-
elastic interaction of the oscillating soliton with the second
boundary is a complex �two-step� process: the shape oscilla-
tions with period T=137 are extinguished, which allows the
soliton to escape, and new oscillations with T=207 are ex-
cited immediately.

An increase of the depth of the potential leads to wider
regions of trapping and narrower regions of transmission
�Fig. 2, curves 1–3�. The perturbation that the boundary in-
duces is stronger in this case, and a larger portion of the
soliton energy is transformed into a shape mode. Hence a
more exact resonance condition is required at the second
boundary for escape, which yields narrower escape regions.

III. SEGMENTS WITH MODIFIED GROUP-VELOCITY
AND GROUP-VELOCITY-DISPERSION

COEFFICIENTS

The perturbed NLS equation in the presence of a segment
with modified GV and GVD coefficients is

i
��

�t
+ i��x�

��

�x
+ M�x�

�2�

�x2 + 2���2� = 0, �13�

��x� = �,M�x� = 1 + � for x1 � x � x2, ��x� = 0,

M�x� = 1 otherwise,

where � is the GV defect. Equation �13� with constant � and
M governs the dynamics of circularly polarized solitons in
gyrotropic media �25,26� and of linearly polarized solitons in
birefringent fibers. For a homogeneous media with �=const
and M =const, it possesses the following one-soliton solu-
tion:

��x,t� =
�M

L
sech

x − vt

L
ei��v/2+��x/M−�t�, �14�

� =
v2

4M
−

�2

M
−

M

L2 .

The soliton energy in this case is

Es = �
−�

� �M	 ��

�x
	2

+ i���*��

�x
− �

��*

�x

 − ���4�dx

= � v2

4M
−

M

3L2 −
�2

M

P , �15�

where the norm P is given by Eq. �4� and does not depend on
�.

The energy balance outside and inside the inhomogeneity
yields

v0
2 −

4

3L0
2 =

v2

1 + �
−

4�1 + ��
3L2 −

4�2

1 + �
, �16�

where we have neglected the small energy loss at the bound-
ary. Using the norm-conservation condition �8�, we obtain

v2 = �1 + ��v0
2 −

4�

3L0
2 + 4�2. �17�

For a purely gyrotropic defect segment ��=0� this gives

v2 = v0
2 + 4�2. �18�

This is an important and somewhat unexpected result, show-
ing that the velocity of the soliton inside a GV inhomogene-
ity increases, independently of the sign of the GV mismatch,
i.e., such an inhomogeneity always acts on the soliton as a
potential well. In all other perturbations we have studied so
far �linear, nonlinear, and GVD�, the sign of the perturbation
determines the sign of the potential “seen” by the soliton.

Applied to circularly polarized solitons with opposite
handedness �opposite signs of �� entering a gyrotropic seg-
ment, it follows from Eq. �18� that their velocities will be

FIG. 6. Regions of capture and transmission as a function of N
for segments with �=−0.3525 and different GV-defect coefficients.
Curves 1–4 correspond to �=0.0, 0.025, 0.05, and 0.07,
respectively.

FIG. 7. Scattering potential profiles near the boundary of a de-
fect segment �x0�0�. x0 is the distance from the center of the soli-
ton to the boundary and L is the width of the soliton. Curves 1–4
correspond to curves 1–4 in Fig. 6.

FIG. 8. Regions of capture and transmission as a function of N
for v0=0.05, �=0.085, and different GVD defects. Curves 1–4 cor-
respond to �=0.0, −0.1, 0.25, and 0.35, respectively.
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equal, while their carrier wave numbers will be modified
according to Eq. �14� as k±= �v /2±�� /M, and so will be their
phase velocities � /k±. Thus a linearly polarized pulse
�formed of two conjugate circularly polarized pulses� enter-
ing a gyrotropic segment will keep its shape, increase its
velocity, and have a rotating plane of polarization. Its scat-
tering patterns will be the same as these of the circularly
polarized pulses.

Figure 4 shows schematically the dependence of the scat-
tering results on the length of a GV-defect segment. Periodi-
cally repeating windows of capture and transmission are ob-
served, similarly to the case of a segment with modified
GVD coefficient. The increase of the GV coefficient leads to
wider windows of capture and narrower windows of trans-
mission, and vice versa. 3D evolutionary plots corresponding
to transmission and capture are shown in Fig. 5. The spatial
period of the shape oscillations 36 is in excellent agreement
with the corresponding capture-transmission period in Fig. 4,
curve 2.

The combined effect of a segment with a strong GVD and
a weak GV mismatch is shown in Fig. 6. Curve 1 corre-
sponds to the pure GVD case. The addition of a weak GV
defect �Fig. 6, curve 2� removes the periodicity and leads to
transmission for segments with N�22. This is a peculiar
behavior, as both potentials are attractive and one can expect
that their overlapping should favor capture of the solitons.
An increase of the GV coefficient reintroduces the periodic
capture-transmission pattern �Fig. 6, curve 3�, and a further
increase leads to capture of the solitons for N�15 �Fig. 6,
curve 4�. The explanation of the observed peculiarities is the
following: the energy stored into the shape mode depends on
the perturbation of the soliton at the boundary, which is re-
lated to the profile of the potential. Slowly varying potentials
induce weaker perturbations, while potentials with more
steep and more complex profiles induce stronger perturba-
tions. Near the boundary of a long segment, the scattering
potential is given by

Ed = �
−�

x0 ��	 ��

�x
	2

+ i���*��

�x
− �

��*

�x

�dx , �19�

where x0 is the distance from the center of the soliton to the
boundary. The potential profiles near the boundaries of seg-
ments with modified GVD and GV coefficients correspond-
ing to Fig. 6 are shown in Fig. 7. Note that the profile for the
purely GVD defect �Fig. 7, curve 1� has a step in the middle,
which seems to increase the perturbation at the boundary.
Adding a small GV mismatch �Fig. 7, curve 2� smooths out
the GVD potential step and decreases the perturbation, lead-
ing to escape of the soliton, although the combined potential
well has become deeper. A further increase of the GV coef-
ficient �Fig. 7, curves 3 and 4� makes the resulting potential
well considerably deeper and with a steeper profile, and al-
though without a step, the latter increases the perturbation
and eventually leads to capture.

The scattering results for the opposite case, corresponding
to a small GVD defect added to a GV defect segment, is
shown in Fig. 8. For a negative GVD defect �attraction�, the

regions of capture become wider �Fig. 8, curve 2� as can be
expected. A peculiar behavior here is observed in curves 3
and 4, where positive values of the GVD defect �repulsive
potential� lead again to an increase of the regions of capture,
although the resulting potential well has become shallower.
This can be associated with the more complex potential pro-
files �Fig. 9, curves 3 and 4�, which apparently induce stron-
ger perturbations. It is worth mentioning that a further in-
crease of the positive GVD mismatch did not lead to regions
of transmission, as could be expected, but eventually lead to
reflection of the soliton from the first boundary.

IV. SUMMARY

We have investigated numerically the interaction of NLS
solitons with long �compared to the soliton width� segments
with modified group-velocity and group-velocity-dispersion
coefficients. Decreased GVD coefficients act as potential
wells and for a given range of parameters yield periodically
repeating regions of transmission or capture of the solitons as
a function of the length of the segment. It is shown that this
phenomenon is due to a resonance between the period of the
shape oscillations of the soliton, excited at the first boundary
�which take away part of the soliton energy� and the length
of the segment. In the nonresonant case, the reduced kinetic
energy of the soliton is not sufficient for it to overcome the
potential barrier of the second boundary and it gets trapped.
When the length of the segment is commensurate with the
spatial period of the shape oscillations of the soliton, the
inelastic interaction with the second boundary may extin-
guish the shape mode, transferring its energy back into ki-
netic energy of the soliton and allowing it to escape.

A GV-defect segment introduces an attractive potential
well for both positive and negative signs of the GV mismatch
and for a certain range of parameters yields similar periodic
capture-transmission patterns. The combination of GV and
GVD-defect segments shows some peculiarities, i.e., a non-
monotonous behavior with the increase of one of the coeffi-
cients. This is explained by the different shapes of the corre-
sponding potentials and the fact that the GVD defect has a
more complicated potential profile which yields stronger per-
turbation on the soliton.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation of Bulgaria under Grant No. F1414.

FIG. 9. Scattering potential profiles near the boundary, corre-
sponding to curves 1–4 in Fig. 8.

INTERACTION OF SOLITONS WITH SEGMENTS WITH¼ PHYSICAL REVIEW E 73, 066611 �2006�

066611-5



�1� Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Zh.
Eksp. Teor. Fiz. 93, 968 �1987� �Sov. Phys. JETP, 66, 545
�1987��; Phys. Lett. A 125, 35 �1987�.

�2� D. I. Pushkarov and R. D. Atanasov, Phys. Lett. A 149, 287
�1990�.

�3� X. D. Cao and B. A. Malomed, Phys. Lett. A 206, 177 �1995�.
�4� V. V. Konotop, D. Cai, M. Salerno, A. R. Bishop, and N.

Grønbech-Jensen, Phys. Rev. E 53, 6476 �1996�.
�5� Yu. S. Kivshar, Zhang Fei, and L. Vázquez, Phys. Rev. Lett.

67, 1177 �1991�.
�6� Zhang Fei, Yu. S. Kivshar, and L. Vázquez, Phys. Rev. A 45,

6019 �1992�; 46, 5214 �1992�.
�7� S. Burtsev, D. J. Kaup, and B. A. Malomed, Phys. Rev. E 52,

4474 �1995�.
�8� R. Scharf and A. R. Bishop, Phys. Rev. A 46, R2973 �1992�.
�9� J. J.-L. Ting and M. Peyrard, Phys. Rev. E 53, 1011 �1996�.

�10� H. Frauenkron and P. Grassberger, Phys. Rev. E 53, 2823
�1996�.

�11� G. Kälbermann, Phys. Lett. A 252, 37 �1999�; Chaos, Solitons
Fractals 12, 625 �2001�; 12, 2381 �2001�.

�12� Y. Nogami and F. M. Toyama, Phys. Lett. A 184, 245 �1994�.
�13� K. T. Stoychev, M. T. Primatarowa, and R. S. Kamburova,

Phys. Rev. E 70, 066622 �2004�.

�14� M. T. Primatarowa, K. T. Stoychev, and R. S. Kamburova,
Phys. Rev. E 72, 036608 �2005�.

�15� L. F. Shampine and M. K. Gordon, Computer Solution of
Ordinary Differential Equations �Freeman, San Francisco,
1975�.

�16� L. N. Trefethen, SIAM Rev. 24, 113 �1982�.
�17� J. Satsuma and N. Yajima, Suppl. Prog. Theor. Phys. 55, 284

�1974�.
�18� J. P. Gordon, J. Opt. Soc. Am. B 9, 91 �1992�.
�19� M. W. Chbat, J. P. Prucnal, M. N. Islam, C. E. Soccolich, and

J. P. Gordon, J. Opt. Soc. Am. B 10, 1386 �1993�.
�20� E. A. Kuznetsov, A. V. Mikhailov, and I. A. Shimokhin,

Physica D 87, 201 �1995�.
�21� Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard,

Phys. Rev. Lett. 80, 5032 �1998�.
�22� D. J. Kaup, Phys. Rev. A 42, 5689 �1990�.
�23� T. Ueda and W. L. Kath, Phys. Rev. A 42, 563 �1990�.
�24� B. A. Malomed and R. S. Tasgal, Phys. Rev. E 58, 2564

�1998�.
�25� M. T. Primatarowa and K. T. Stoychev, Phys. Rev. B 49, 6634

�1994�.
�26� K. T. Stoychev, M. T. Primatarowa, and R. S. Kamburova, J.

Phys.: Condens. Matter 12, 10429 �2000�.

STOYCHEV, PRIMATAROWA, AND KAMBUROVA PHYSICAL REVIEW E 73, 066611 �2006�

066611-6


