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Above-threshold ionization (ATI) ionization by linearly polarized light has been proposed by several authors
as a means of driving recombination lasers in the soft x-ray spectral region. The pump radiation generates a
cold electron plasma with ions in a single ionization stage, which is an ideal starting condition for strong
recombination. Population inversions form during the recombination cascade to the ground state of the next
ionization stage. In the absence of any relaxation the electron distribution is strongly peaked near zero energy.
However, a number of different processes all heat the cold electrons towards Maxwellian, and may thereby
reduce the recombination rate in the higher levels. Using numerical models we investigate these relaxation
processes and their effect on recombination. We show that the recombination can be well described by the
standard cascade model, provided an appropriate temperature is used. We examine two cases in detail,
hydrogen-like lithium where the inversion is with respect to the ground state, and lithium-like nitrogen where
it is with the first excited state. The two cases differ markedly in the degree of relaxation achieved, and in the

duration of the population inversion.
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I. INTRODUCTION

There has been considerable interest for some years in the
possibilities of generating x-ray laser action in the recombi-
nation cascade following high field tunneling ionization. The
potential for this mechanism has been investigated by a num-
ber of authors following the original proposal by Burnett and
Corkum [1] in 1989. Workable schemes have been proposed
based on transitions to the ground and to the higher states.
All these concepts rely on the very cold electron distribution
generated following tunneling ionization by plane polarized
light. Early calculations of the gain which could be generated
by such an approach used electron Maxwell-Boltzmann en-
ergy distributions based on the mean energy [2]. However, as
pointed out by Ditmire [3] the actual energy distribution of
the electrons released by ionization is in fact strongly non-
Maxwellian with very large values at low electron energy.
Such a distribution strongly favors recombination and should
enhance the generation of population inversion. Ditmire [3]
showed that marked increases of the three body recombina-
tion rate to lower states should occur. More recently Avitzour
et al. [4] have performed simulations on the recombination
of hydrogen-like lithium ions and obtained significant popu-
lation inversion and gain on the L, transition to the ground
state. Two distinct methodologies have been explored to gen-
erate gain through recombination based on tunneling ioniza-
tion.

(i) The direct analogy of the early expansion cooled re-
combination lasers [5,6] in which the lower laser state is the
first excited state state or higher. Such schemes operate in a
quasi-steady mode through cascade recombination.

(ii) Following the approach of Peyraud and Peyraud [7], a
direct transition to the ground state is used. Such an arrange-
ment is obviously self-terminating and places stringent de-
mands on the relative population rates of the states within the
recombination process. It also requires that the ionization
process itself leads to a very low population in the ground
state at the end of the pump phase—a situation practically
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unachievable with thermal ionization, but realistic with
photoionization.

Both these approaches rely on the characteristics of the
recombination cascade through the excited states. Key to this
behavior is the fact that collisional processes are strongest
for small energy gaps, whereas radiative ones are favored by
large jumps. Within the upper states transitions are, there-
fore, dominated by collisions between the bound and free
electrons, in which the ion may be either excited or de-
excited, the prevailing trend being downward. When the
electron distribution is Maxwellian this rapidly leads to a
Boltzmann distribution among the upper states in equilib-
rium with the free electrons. However, this thermal state can
only be maintained down to a certain level, known as the
“bottleneck™ or “collision limit” depending on the nature of
the transition across it. Below this level, the electrons de-
excite freely by either collisions or radiation. This level be-
ing determined by the electron temperature. The rate of
population to the lower states is determined by a random
walk (diffusion) through the upper states [8—10] and by the
nature of the subsequent decay. These processes were unified
and cast into the framework of the collisional-radiative
model by the author [11]. We shall need to return to this
topic later.

Although the distribution generated following ionization
by the laser is strongly non-Maxwellian there are important
processes which drive the system towards equilibrium. These
are all collisional and, therefore, operate most strongly on the
slow electrons.

(i) Electron-electron collisions. This is the standard relax-
ation process tending to drive the electrons to a Maxwellian
at the Spitzer equilibration rate. In our particular context
where the distribution takes a particularly extreme form, the
electron distribution tends to equilibrate most rapidly among
the slower moving electrons, passing through a series of
slowly heating quasi-Maxwellian distributions as the high
energy tail is slowly drawn in.

(ii) Electron-ion collisions. During the laser pulse inverse
bremsstrahlung absorption results from these collisions.
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Again the interactions are dominantly with the slow elec-
trons heating those in the low energy singularity to form a
quasi-Maxwellian [12]. Once the laser pulse is switched off,
this mechanism terminates.

(iii) Recombination of the slow moving electrons into
upper-lying states, which will form the reservoir for the cas-
cade, is accompanied by heating of the secondary electrons.
The dominant electrons are slow and these are heated by
energies corresponding to the upper states.

(iv) During the ionization process half the electrons will
return to the neighborhood of the ion, where they will be
scattered and gain further energy—in direct analogy with
harmonic generation [13]. This process is not amenable to
simple analysis. A number of electrons will be backscattered
and may be released with high energy. However, if the den-
sity is high the quiver motion amplitude may be comparable
with the ion separation, and an inverse bremsstrahlung colli-
sion will occur before the return. This process would then be
included within the normal inverse bremsstrahlung descrip-
tion.

In this paper we will examine the recombination of
plasma generated by tunneling ionization. The principal aim
of this work is to investigate the nature of the relaxation and
recombination in the cascade following tunneling ionization.
To that end we have considered a short wavelength pump
laser (0.25 wm) and hydrogen gas seeding to the primary
gas, in order to obtain as cold an electron distribution as
possible. Since hydrogen has only a single electron and a
relatively low ionization potential, its energy at release is
small. Hence adding a large fraction of hydrogen can sub-
stantially reduce the final electron temperature [2]. The re-
sults, although accurate, are intended to be explanatory,
rather than predictive for any particular x-ray laser designs.
We note that Avitzour and Suckewer in a recent paper [14]
have also considered the pumping of hydrogenic lithium in
the presence of a background of hydrogen, and shown sig-
nificant gain may be generated.

Our principal tool will be the Fokker-Planck model devel-
oped earlier by the author [15] in which ionization, ion-
electron, and electron-electron collisions are all modeled
within a zero dimensional time dependent system. In particu-
lar we will examine the relaxation of the electron distribution
towards Maxwellian and the simultaneous development of
the population within the various excited states. In order to
carry this out we will need to be able to accurately describe
not only the free electron collisional processes, but also their
interaction with those in the bound states. This will require
that all transitions are carefully balanced by their reciprocal
rate, through detailed balance relations. We, therefore, con-
sider the development of these relations in some detail.

II. THE FOKKER-PLANCK APPROACH

Since this numerical technique will form the basis of our
study, it is necessary to give a brief introduction to its appli-
cation in this context.

We consider the electron distribution function, f(v), in a
one dimensional spherically symmetric velocity (or equiva-
lently energy) space. In this case the time dependency due to
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electron-electron collisions is described by the equation

a1 (9{ &f}

=l ar B (1)

o v
where « and B are terms involving integrals of f(v), whose
forms are given in standard texts [16—18]. This equation is,
therefore, nonlinear. It is assumed that the electron gas is
dilute so that individual electron collisions are weak. This
involves some implicit averaging over collision partners, in
order to take into account the Coulomb logarithm. This ap-
proximation is satisfactory when the distribution is nearly
Maxwellian. However, it may lead to error in more general
cases [19] when this average may lead to an increase in the
relaxation rate. However, the level of error can be checked
either by Monte Carlo calculation [20] or by molecular dy-
namic simulation [19], when each collision partner is treated
individually without averaging.

If the ions are assumed heavy and stationary, electron-ion
collisions only give rise to collisional absorption and, there-
fore, heating of the electrons during the laser pulse. Assum-
ing the individual energy impulses given to an electron are
small, this process can also be described by a Fokker-Planck
expression.

of 1 0)udo 29
;{: Fg{gg[ln[A(v)]R(v)f(v)] + Z—@[sm,v)f(v)]}.

(2)

The functions R(v), S(A,v), the appropriate Coulomb loga-
rithm for absorption In(A(v)) and its multiplying factor A are
given in an earlier work [15].

The development of the electron distribution proceeds as
an initial value problem, in which the velocity distribution is
defined on a finite difference mesh. The initial ionization is
carried out by assigning an appropriate probability to each
cell in accordance with the ionization rate at that time. The
calculations are reasonably straightforward involving nonlin-
ear diffusion in velocity space. As the system of finite differ-
ence equations are not fully conservative, there is a slow
total energy change [15]. Since this error is second order it
can be reduced by using a sufficiently large number of cells,
and is not a problem in the cases considered here, where we
have used 400 cells on a nonuniform velocity mesh.

III. INELASTIC COLLISIONS

We now turn to the problem of treating inelastic colli-
sions. In this case the energy exchange is no longer small and
we cannot continue to use a Fokker-Planck formalism, but
must treat the problem within a Boltzmann collision frame-
work. Numerically this entails exchanging electrons between
the various velocity (or energy) cells according to the respec-
tive energy overlaps and probability. This is not a trivial
problem, particularly for ionization and three-body recombi-
nation, if it is required that both energy conservation and
detailed balance be maintained, as is essential if equilibrium
is to be attained. We consider first the simpler case of
excitation/de-excitation. We assume that the electron cross
section for excitation is known as a function of the colliding
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FIG. 1. Plots of the normalized form of the differential ioniza-
tion probability function P(X,;X;)(Xy—1) for the classical model as
function of the normalized incoming electron energy, X, and the
energy of one of the outgoing electrons as a fraction of the energy,
excess X{/(Xy—1).

electron energy. Hence we may calculate the upward rate per
unit volume for the transition from the state 1 of energy E; to
the state 2 of energy E, by electrons of energy e; as
R,(Ey,€)nn,(€)de;, where n, is the density of ions in the
state 1 and n,(€,)de, =naf(v,)47'rv%dv] is the density of free
electrons in the energy range (€, ,de;). The reciprocal rate for
de-excitation is given by an identical term
R,\(E,, €)nyn,(€)de,. When the energies are related by the
conservation of energy, the processes are reciprocal and the
principle of detailed balance [21] requires the relation:

R, (E1.€)gi[p(€))de ] = Ry (Ey, €)gpler)de]  (3)

where g; and g, are the statistical weights of states 1 and 2,
respectively, and p(e) is the density of free electron states per
unit volume:

4m(2m,)

e (4)

p(e) =

The conservation of energy requires that £+ €,=FE,+¢€, and
that de;=de,. The symmetric nature of the process is clearly
demonstrated by writing Eq. (3) in the form:

R5(E, €)g1p(€) OE, + €
=Ry (E», €)g:p(€) JE; + €

- E2 - 62)d€1d€2
—El—fl)d€2d€1. (5)

Ionization and its inverse process—direct three body
recombination—are more difficult. We must assume that the
detailed ionization cross section giving the probability of the
individual electron speeds on release is known. In fact in
most cases this is not available but the total cross section is
known and some approximation as to the relative distribution
between the two electrons must be made, for example, based
on the classical model. To develop the reciprocal rates con-
sider ionization by an electron of energy (€,,de;) yielding
electrons of energy (e;,de;) and (e,,de,). We may write the
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ionization rate from a state of energy E, to one of energy E;
in the form:

R, (Ey. €);E, €, &)non (&) JE,| + € + € — Ey— €)deyde de,

(6)
and the recombination rate is
%R—(El’61352;E0’60)nlne(el)ne(62)

5(E1+61+€2—E0—60)d€0d61d62. (7)

The factor % takes into account the double counting associ-
ated with the indistinguishability of the electrons, €, and e,
implied within the integration over the &() function. The
equation of balance applied to these rates yields the follow-
ing reciprocal relationship:

golp(€)de)R (Ey, €):E}, €, €;)de de,
=gilp(e)de ][ p(e)deR_(Ey, €, &;E, €)de. (8)

Introducing the ionization potential /=E;—E, and inte-
grating over €,, the number of three body recombinations per
unit volume per unit time can therefore be written as

(EO—I)/Z
477(2m )3’2 f dsof
1/2

)1/2f(61)f(€0_1 61)

/2
1 (& -

XR+(E0, GO;El,El,(EO

-1-«)) )

where f(e€) is the energy probability distribution function and
n, the total electron density.

In thermal equilibrium, when the electron distribution is
Maxwellian,

4\’577 €

/ 1/2

=% -— 10

f(e) (27kT,) € exp( kTe) (10)

and the ion distribution is given by Saha’s equation:

2mmkT,)*"? I
—n1n6=2—( wmes o) &exp -— (11)
ny h 8o kTe

Eq. (9) reduces to the total ionization rate per unit volume
per unit time, in accordance with the familiar detailed bal-
ance relation, i.e.

(ep—-D)/2
”0] dfoJ de f(€)R.(Ey, €):E, €,(€g— 1 - €)).
I 0

(12)
If the released electrons are distributed uniformly in energy
with one electron in the range 0< €, <(€,—1)/2, the ioniza-
tion rate may be written in the simpler form

R.(Ey €:E},€,€) = R(Ey.€p:E).  (13)

_2
(e9=1)
This condition is implicit in the expression given by Lee [3],
where R, (E,, €); E;) is the net ionization rate for electrons of

066401-3



G. J. PERT

energy €, between the levels E, and E;, for example, given
by the Lotz approximation [22].

Unlike the situation with excitation between two bound
levels where the energy of the electron after collision is
uniquely determined, ionization has a continuum final state
where the energy is divided in some ratio between two elec-
trons. If we can identify the probability that the electron
energies are divided in some ratio, we may use well-known
results for the total ionization rate by electrons of energy ¢,
to obtain the required value. We define the probability that
the energy of electron 1 is in the range (e;,de;) by
P(Xy;X,)dX, where X;,=€;/(E,—E,) are the electron energies
normalized to the ionization energy. Clearly this function
must be symmetric with respect to the interchange of elec-
trons 1 and 2, and Xy=1+X;+X,. Unfortunately this prob-
ability is not generally expressible by a simple algebraic re-
lationship. Very close to threshold we may argue that since
the bound and continuum states form a continuous sequence,
the probability of the electron €, exciting the atom to a par-
ticular state is given by a continuous function of the overall
energy. Thus if the initial electron energy is near the ioniza-
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tion threshold, €y~ I=E,—E, this probability may be ex-
pressed by a Taylor’s series:

R.(Ey,€);E,€1,6) =R (Ey, €);E1,0,(Ey + €y — €)))
dR+(E0,Eo;E1»51»E2)
de;

+ € .
€=0

(14)

For sufficiently small variations in €, << €y~ I, the ionization
rate is nearly constant, and independent of the value of the
energies of the scattered or released electrons. Hence since
one electron must be found in the energy range 0<g¢
< %(60—1) near threshold the probability of a release energy
(€,,de) is simply 2de/(g—1); or P(Xy;X,)dX,
~2dX,/(Xy—1). This is a useful result for consideration of
OFI pumped recombination lasers, where the electrons are
necessarily cold.

Extending to higher energies in the neighborhood of the
threshold, we may use the classical impulse model [23] and
obtain the result:

1 [ 4 } 1 { 4 ] 1
1+ + 1+ -
(1+X,)? 31+X) | (1+X,)? 3(1+X,) (1+X)(1+X,)

P(X()?XI)Xm =2

The essential symmetry between the two outgoing elec-
trons is clearly seen. Figure 1 shows plots of this function for
various values of X, and the outgoing electron energy as a
fraction of the energy excess X;/(Xy—1). It is clearly seen
that for X;=2 the probability is nearly constant. Far from
threshold (X,>1) the Born approximation is valid and
P(Xy;X,) ~X3dX,/(1+X,)*. If the total ionization rate,

R.(E,,€;E,) is given by some appropriate source [22,24]
then the required rate can be written as

R.(Ep,€0:E |, €1.€) = IR (Eo,€:E))P(X;X,).  (16)

A. Ionization rate

The nature of the ionization process differs somewhat
from one application to another. For collisional systems the
electrons are hot, and empirical models based on the Bethe
approximation [22] or the Born approximation [24] can be
used. On the other hand the electrons are necessarily cold for
recombination lasers, and the ionization is near threshold.
Unfortunately the behavior near threshold still remains
poorly understood in that few general results are available.
Wannier’s [25] analysis showed that the energy scaling was
slightly stronger than linear, i.e., the rate scaled as (e,—1)"".

(o)

dx,. (15)

1 1
1-— - lnXO
X/ 1+X,

However, although the result gave the scaling, the actual
value remained undefined. At these low energies it can be
argued that the classical impact model should give reason-
able accuracy when correctly symmetrized and with ex-
change included [23]. The model can be further extended to
include higher energy collisions through the introduction of
the impact parameter formulation (ECIP) [26] to be consis-
tent in all regimes. In this work for studying recombination
in cold plasma we shall use the classical impact model alone.

B. Numerical integration

The treatment of excitation and ionization is relatively
straightforward within the finite difference scheme. The
Fokker-Planck algorithm [15] considers energy space di-
vided into a series of cells of width Ae, which define the
mesh. The energy of the upper boundary of the cell i is given
by the recursion €;,,,=¢€;_,,+A¢€; subject to € ,,=0. The
energy of the cell is taken as the mean value of the boundary
values, namely €=3(e/_,+€/). We assume the electrons are
distributed uniformly within the cell. Following excitation or
ionization we need to re-assign the electrons to cells overlap-
ping in energy taking into account the energy change in the
atomic system, i.e., the bound electrons, in such a way that
the total energy is conserved.
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Thus if we consider the excitation of electrons from the
energy group €, of width Ae;, the resulting electron may fall
in one of a number of energy groups, €,=FE;+¢€—E, of
width Ae,, within the energy range Ae¢;. The fraction of the
resultant rate, which is assigned to a particular final energy
group (€;,A€;), may be defined by a transfer weight assum-
ing a uniform distribution over the interval. In order to sat-
isfy the condition of detailed balance the weight w; ; assigned
to a transition from a cell (¢;,A€;) to (€;, A€;) must match the
reverse w;; from (¢;,A€;) to (€;,A€;). The easiest way to set
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metric form: [Ry,(E,, €)nn,(€)E,+€ -E,—€)de de,.
The symmetric weight is then obtained by integrating this
equation over the mesh intervals (€;,A¢;) and (€;,A€)), i.e.,

e+Ael2 €j+AEj/2
w; A€Ae; = f delj de;,SE\+ € —E,— 6).
e—A¢€l2 ej—Aej/Z

(17)

Since w;; is symmetric suppose A€;>Ag¢; and let € be the

up this reciprocal relation is to re-write the rates in the sym- energy mismatch e=|E,+¢,~E,— €|, then
|
1/A€; when € < %(Aej - Ag)
W= (%[Aej+ Ae]- 6)/(AEjA6i) when %(Aej -Ag)<e< %(Aej +Ag¢) (18)
0 when %(Aej+ Ag) < e

It is easy to see that this function w; ; is just the overlap of cell i with j taking into account the mismatch.

The calculation of the rates for ionization/recombination is carried out in a similar fashion, but with the rates integrated over
the three cells of width Ae€;, A€;, and Ae; to yield a reciprocal weight function w; ;, to be used to assign the contributions
following collision. Thus given three cells centered at €;, €;, and €, respectively, such that A, > A€;> A¢; and integrating over
the appropriate intervals in Egs. (6) and (7), we may write the probability of a transition per ion per electron per unit time

between the three cells in the form R(E,E|,€;, €;, €)w; ;  A€;A€;A€. The value of weight function w; ;, is given by

Wijk= < {%(Aej +Ag) - e}/(AejAek)

where e=|Ej+€,—E|—€;— ] is the energy mismatch.
Radiative recombination is easily included within this
framework.

IV. ELECTRON TUNNELING IONIZATION

In the absence of re-scattering, immediately following
ionization in an oscillating electric field at phase angle ¢,
E =E0\/ %+( X+% cos(2¢) , the probability per unit time of an
electron being released with energy (e€,de) can be written
approximately as

\0  when SAe +Aei+Ae| < e

r{I/Ansk— {62 + %(Aek— Ae; - Ae,»)z}/(Ael-AejAek) if (Ag—Ae;—Ag <0 }
when 0 < e < 3|Ae, - A€ - Ag)|

1/A€, - %(%(Aek —-A¢;—-A¢g) - 6)2/(AeiAejAek)
when 3|Ag, — Ae—Ael <e< %(Aek—Aej+ Ag)

when %|A6k— A+ Al <e< %(Aek+Aej— Ag)
Hi(Ag+Ae+Ae) - ¢’/ (AcAeAe)

when %(Aek+ Aei—Ag) < e< %(Aek+ A€+ Ag)

(19)
|
Py(e/(e, - 6))(n*-1/2\m|-1/2)
ple)de= L1
m[(x-37-(-ee,)]
xexplall - Vef(e- 91 = (20)

q

where y is the polarization parameter (x=0 or 1 linear and
X=% circular), €,=eEy/(2m,w?) the peak quiver energy, E,
=(8ml/c)"? is the peak electric field, I and w being the in-
tensity and angular frequency of the field. The probability
constant for a state (n*,l,m) is given by Perelomov ef al.

[27].
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» —%Cz‘.i QL+ 1)+ |m|)!
0T 2 T2l () (- m)

1\32E (2n"~|m|-1)
x|2|—] =«
Iy} Eq

o[ g ]@n ml-1)
Xexp{—g{E—m} (21)
0

where the atomic units of frequency and electric field are,
respectively, w,, and E,, the effective quantum number n"
=Z(I,/D"? for an ion of charge (Z-1) and the constant
C,+=~(2e/n")" (2mn")™"? is given by Ammosov et al. [28].
The constant « in Eq. (20) is determined by the argument of
the exponential in Eq. (21) namely

I 3/2E
a=—<—) = (22)
3\1,/] E,

A. Circular polarization

For circular polarization X=% this reduces Eq. (20) to the
simple form

ple)de= POZ(”*_I/Z""‘_”Z) exp[ |2-1]a]d(e~-¢,/2)de
(23)

. . 1
since all electrons are released with energy ;€.

B. Linear polarization

For linear polarization we obtain

ple)de= PO['Eq/[Muz)
m[(ee,)(1 - €l€,)]

—— _de
&

Xexpla(l - \s"eq/(eq -€)] (24)

which, as noted elsewhere [3,4], diverges as e— 0.
For n"=1 the probability of an electron being released

with phase (¢,d¢) is
p(d)dd= Py exp(a)sec ¢ exp[— asec pldp  (25)

and hence the probability per unit time averaged over the full
cycle can be evaluated in terms of standard functions

2
p="—Poexp(a)Ko(a) (26)
and the average electron energy

- 2@ exp(a){Ko(a) + o[ Ki)(a) - K (@) T}e,
mp

a[Kiy(a) - K ()]
:{1,0+ lKo(a/) L }eq (27)

where K,(z) and K,(z) are modified Bessel functions of the
zero and first order and Ki(z) is the integral of Ky(z). For
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large a, i.e., near threshold, these expressions take a simple

form:
_ 2 1
p=~1\—P, and €~ —¢,. (28)
T o

Since the emission is dominantly at the field maximum, E
~E,(1-¢?/2), these asymptotic forms are valid to lowest
order in 1/« for arbitrary n".

1. Re-scattering

In a linearly polarized field, if the electron phase lies be-
tween O and /2, or 7 and 37/2, the electron will return to
the neighborhood of the ion on the next half-cycle, where it
will be scattered resulting in a deflection and a further ther-
mal energy gain; thereby removing the singularity in the dis-
tribution for half the electrons.

We may attempt to take rescattering into account by the
following quasi-classical argument [29,30]. The electron es-
capes from the ion by tunneling at a phase angle ¢. The
returning electron has a classical motion, which interacts
with the ion at phase angle ¢ given by:

cos y+ (f— ¢)sin p—cos =0 (29)
when the velocity is
U=0y—04=0,[sin - sin @] (30)

where v,=¢E,/(mw) is the maximum quiver speed. Note the
similarity of this process with that invoked to explain the
plateau region of high harmonic generation [13], whose limit
corresponds to release at phase angle ¢=0.313 and return at
=4.399: The corresponding energy change being 1.587¢,.
The harmonic process is completed by recombination. In
contrast in our case it is followed by elastic scattering.

Within an impact approximation, we may imagine that the
electron at this point is scattered by the ion through some
angle 6. The new velocity has components v,=v cos 6 and
vy=v sin 6. The “thermal” velocity is obtained by subtracting
the quiver term v, The thermal energy is, therefore

1
- 2, .2
€= 2me[(vx— vy)” + 0]

= mevg{ sin (sin - sin ¢)(1 — cos 6) + % sin’ qb}.
(31

To proceed further requires knowledge of the scattering
angle 6. In principle we may consider that the electron at
release has a wave-packet whose lateral spread is given by
the distribution of transverse momentum. This was found by
Delone and Krainov [31] to be Gaussian, which may be in-

terpreted as a wave packet of spatial width (i)m(E—Z)mao.
Following Paulus et al. [29], this may be used to determine a
scattering probability using the classical formula for Ruther-
ford scattering. We may note that typically the scaling with
ionic charge Z requires I~ Z? and E,~Z so that the wave
packet width is typically 3a,, i.e., of the order of the atomic

dimensions. However, the electron wavelength at the quiver

066401-6



RECOMBINATION AND POPULATION INVERSION IN...

PHYSICAL REVIEW E 73, 066401 (2006)

T T T T T TIT] T T T T T TIT] T T—T

— Total
....... NO return
—--- With return

Probability per unit time

—125
—10 i%“
5
1 = FIG. 2. Plot of the probability of emission in
175 2 terms of P, as a function of the electron energy
2 showing both the probability per unit time and
1 = the energy differential probability. The parameter
15 a=12.
—25

Electron energy

speed \ = %%ao will also be of the order of Bohr radius «a.
As a result the collision is strong and it will be sufficient for
our purposes to consider only the case of backscattering,
where 6=m. The probability distribution of the phase angle
¢ is given by Eq. (20), when ¢ is obtained from Eq. (29) and
hence the energy from Eq. (31). As has already been pointed
out elsewhere [29,30] this leads to a substantial enhancement
of the electron energy up to a maximum value of 5.036¢,,
which occurs at an initial phase angle ¢=0.263 and rescat-
tering at angle /=4.56. Figure 2 shows both the probability
of release per unit time and the energy differential probabil-
ity both as fractions of Py as a function of the electron en-
ergy, when n"=1 and a=12. The plot is clearly divided into
two distinct parts. At low electron energies direct release
without scatter is dominant, whereas the high energy part is
due to rescattering. The sharp cutoff and discontinuity at
peak energy is a direct consequence of the zero gradient at
the maximum, and is smoothed out in a more accurate cal-
culation [30]. This graph, taken at a typical value of «,
clearly illustrates the essential nature of the re-scattering pro-
cess leading to much higher energies for 50% of the elec-
trons.

However, when the ambient density is sufficiently high,
the background fields deflect the electron before it returns to
the ion sufficiently strongly to avoid strong coherent scatter-
ing. Since only a small angle of scatter is required (due to the
small spatial size of the wave packet) to prevent the back-
scattering, re-scattering is much less effective at the densities
appropriate to generating x-ray laser action. In this case the
behavior is identical to the normal ion scattering which gives
rise to inverse bremsstrahlung scattering, and is already
treated within our modeling. We shall assume that this is the
case here. It is interesting to reflect that our primary aim is to
avoid generating too many “hot” electrons it may be advis-
able to maintain a sufficiently high background density to
destroy the coherence of the motion of the returning elec-
trons.

Alternatively since the hot electrons formed by re-
scattering have energies greatly in excess of those from pri-
mary emission, they will be seen to play no role in the re-
combination process, apart from possibly weakly ionizing

the ground state. For the purpose of estimating recombina-
tion, we may discount this process (if it is important) but
note that there may be an effective reduction of the electron
density by nearly 50%.

V. HYDROGEN-LIKE LITHIUM (LI III)

As an example of a ground state recombination system we
consider recombination to the hydrogen-like lithium ion. The
laser pulse is taken to have a peak power of 10'” W cm™2 in
a pulse of duration 100 fs at wavelength 0.254 um. To im-
prove the cooling of the gas we consider a mixture of 10%
lithium with 90% hydrogen at a total atom density of
10" cm™ [2].

The hydrogen-like lithium ion is treated with a set of hy-
drogen levels with the principal quantum number n in the
range of 1-10. At these fields both the hydrogen and lithium
are fully stripped. The hydrogen ionization occurs early on
the rising edge of the pulse, together with the early ionization
stage of the lithium. The later stages of lithium ionization
occur near the peak of the pulse. Thus we may conclude that
the electrons produced by the ionization of hydrogen and the
2s state of Lil are relatively cold, whereas those from Li Il
and Li 1 are hot. Since the fraction of lithium is relatively
small, the bulk of the electrons are cold. This behavior ac-
counts for the structure seen in Fig. 3(a).

A. Electron distribution

The electron distribution function due solely to the ATI
heating, shown in Fig. 3(a), confirms these expectations.
Comparing the distribution with the Maxwellian based on
the mean energy, we can see that the distribution is strongly
nonequilibrium, with a discontinuity at zero energy and a
substantial hot electron tail. However, the introduction of
collisional effects rapidly makes a significant difference to
the distribution [Fig. 3(b)] by the end of the pulse. The low
energy discontinuity is removed and it can be seen that the
distribution is nearly Maxwellian (except in the high energy
tail), but defined by the mode energy, given by the maximum
of the actual distribution rather than by the mean, which is
strongly affected by the energy in the tail.
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FIG. 3. Plots of the electron distribution function at the end of
the pump pulse for (a) pure ATI heating only and (b) with electron
collisions.

We now examine the development of the distribution with
time in Fig. 4, observing the progressive development of a
Maxwellian towards that defined by the mean electron en-
ergy.

We note that by 2.5 ps after the end of the pulse, relax-
ation to the mean energy is nearly complete. Since the energy
of peak of the Maxwellian based on the mean energy is al-
ways larger than that of the actual distribution based on the
same total electron energy, we note that the form of the dis-
tribution at high energies falls off more slowly than the Max-
wellian, up the maximum value allowed by the quiver mo-
tion, as exemplified in Fig. 3(a). Although these electrons are
small in number they possess a large proportion of the total
energy as evidenced by the difference between the mode and
mean energies. The hotter electrons will play no role in the
recombination.

B. Electron relaxation

Relaxation is the result of three distinct effects, which we
will now investigate individually, including each alone in the
development of the plasma by switching off the relevant
terms in the code:

PHYSICAL REVIEW E 73, 066401 (2006)

(i) Electron-electron collisions. This is the dominant ef-
fect leading to a Maxwellian distribution and continues until
relaxation is complete. It can be seen [Fig. 5(a)] that even
during the pulse it is effective removing the singularity in the
distribution at zero velocity. This is a consequence of the fact
that the collision frequency of the slow electrons is much
larger than that of the fast. This is further reflected in the
slow thermalization of the hot tail still remaining at the later
time [Fig. 5(b)].

(ii) Electron-ion collisions. These are the energy absorb-
ing, inverse bremsstrahlung collisions, which are only effec-
tive during the laser pulse. They also heat the slow electrons
preferentially, and hence again the zero energy singularity is
eliminated (Fig. 6). The electron heating is shown by the
increase in the value of the mean energy from
8.6 eV to 15.2 eV. Since the laser quiver energy is much
larger than the mean, the distribution would achieve a
(nonisotropic) Maxwellian [12]. In this simulation it is as-
sumed that isotropization is rapid due to electron-ion and
electron-electron collisions once the field is switched off, and
the distribution may, therefore, be treated as isotropic. The
clear Maxwellian form of the distribution about the mode is
readily seen, with the high energy tail relatively unchanged.

(iii) Electron recombination re-heat. As three-body re-
combination proceeds the spectator electron gains energy
from the recombination. Since three body recombination is
strongest for the low energy electrons, the electron distribu-
tion exhibits a series of peaks corresponding to the individual
energy levels in the ion immediately following the onset of
recombination (Fig. 7). As recombination proceeds, excita-
tion and recombination with faster electrons smooths the dis-
tribution until at 300 fs the irregular structure of the distri-
bution is lost. Some evidence of the discrete nature of the
energy levels remains at higher energy. At this time within
the upper levels, upward and downward transitions lead to a
quasi-thermal balance among their populations. Within this
quasi-balance there is a net downward diffusion through the
bound states, which eventually leads to the cascade to the
ground state.

C. Population

We now examine the effect of recombination on the popu-
lation of the various hydrogenic states of the lithium ion. We
show in Fig. 8(a) the reduced population (g;/g;) of each
level. It can be seen that the population growth in the levels
n=4 to n=10 is extremely rapid. Due to the rapid rate of
transition among these levels, a consequence of electron in-
elastic collisions, all these levels follow a similar time his-
tory. As may be expected the populations of the lower levels
are larger than the higher, reflecting the formation of a quasi-
thermal distribution among these states. Figure 8(b) shows a
Boltzmann plot of the reduced populations in the levels n
=2-10, compared with the populations derived from Saha’s
equation and the population of the Li IV next ionization stage
at 1 ps and assuming a Maxwellian distribution with tem-
perature given by the mode (7.9 eV). It can be seen that a
good thermal balance is maintained down to the level n=4,
which is the wvalue given by the “bottleneck”
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FIG. 4. Plots of the electron distribution function at successive times: (a) 20 fs, (b) 0.5 ps, (c) 1.0 ps, and (d) 2.5 ps after the end of the

pulse.

(n={Z?1,/kT,}) [11]. Thus the electrons are showing clas-
sical diffusion through the excited states, which forms the
flux leading to the lower state population by cascade. The
population of these levels decreases slowly with time due to
the removal of the cold free electrons by equilibration and
the cascade of electrons through the levels down into the
ground state. However, they clearly act as a reservoir sup-
plying the feed into levels n=3 and 2, which in turn decay
into the ground state.

The populations of the lower levels n=1 and 2 show a
different behavior reflecting the inability of collisions to
strongly populate them directly. They are populated sequen-
tially by both radiative and collisional transitions from the
levels above, i.e., by the cascade. In fact collisions are still
the dominant transitions as evidenced by the fact that the
smaller energy transitions (to the n=2 level) occur most rap-
idly. We, therefore, find a delay between the build-up of
population in the resonance (n=2) level and that in the
ground state (n=1). This leads to a population inversion,
which has quite a substantial density, but is relatively short
lived (=0.3 ps). This will lead to gain on the line L, at
135 A.

VI. LITHIUM-LIKE NITROGEN (N V)

We turn now to the case considered in our earlier work
[2], namely a mixture of nitrogen and hydrogen, in which
population inversion can be generated. In this case the active
ion is lithium-like. The ground state is 15°2s,,, with levels
2p at higher energy due to the electron-electron interaction.
In these cold plasmas this energy is sufficiently large
=~10 eV to allow electron decay from these states to the
ground state to be relatively unhindered by excitation. Since
the state 2ps,, has a radiative transition to the ground state, it
is a suitable candidate as the lower laser level. A number of
levels are suitable candidates for the upper laser levels, but
3ds,, has proved to have the highest gain. This arrangement
is in contrast to thermal lasers where the temperature is
higher, which use the 3d states as the lower laser level and
the 4f or 5f as the upper [32]. The role of the ground state is
solely that of a sink accumulating the population as it cas-
cades down through the excited states. The inversions pro-
duced are, therefore, at longer wavelength. We use the same
computer code, BREAKDOWN, with the same atomic system
as in our earlier work [2], including the identical ionization
and recombination rates from Moores et al. [24]. We con-
sider a mixture of 90% hydrogen and 10% nitrogen with a
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end of the pulse.

total atomic density of 3.5X 10'® cm™. The radiation has a
wavelength 0.254 um and an irradiance of 10'7 W cm=2 in a
pulse 100 fs duration. This is sufficient to fully ionize the
hydrogen and strip the nitrogen to the helium-like ion, N VI.
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FIG. 6. Electron distribution function with electron-ion colli-
sions only at O ps after the end of the pulse.
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A. Electron distribution

In the Fokker-Planck calculations we have used a rela-
tively simple atomic model for the lithium-like nitrogen ion,
namely a screened hydrogenic set of states, as a more com-
plete set would have required considerably more computa-
tional time, and the results, as we shall see, would not have
justified the effort. Figure 9 shows the electron distribution
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immediately after and 300 fs after the pulse. In contrast to
the lithium case, the electrons are substantially colder and
have almost fully relaxed by the end of the pulse. Relaxation
is complete by about 1 ps.

This difference is of some interest and may be worthy of
a remark. The hydrogen gas density in both the lithium and
nitrogen mixtures is the same fraction of the total, and its
mean above-threshold ionization (ATI) energy will be the
same in each case, namely 0.87 eV per electron. The most
important contribution to the difference is due to the varia-
tion of the ionization energies of the lasing ions, in the case
of lithium (5.39, 75.638, and 122.45 eV) compared to (14.5,
29.6, 47.5, 77.5, and 97.89 eV) for nitrogen. The average
ATT electron energy from the lasant is 32.5 eV from lithium,
and 4.6 eV for nitrogen. The average energy due to ATI
alone is as a result significantly larger from lithium than for
nitrogen—_8.8 eV compared to 2.3 eV. Inverse bremsstrah-
lung absorption also makes a larger contribution due to the
higher density in the former case. Finally the larger mean
energy in lithium gives rise to a substantial “hot” tail in the
distribution, whereas the nitrogen distribution is less sharply
peaked [cf. Figs. 4(a) and 9(a)]. The larger fraction of low
energy electrons in the latter case allows the system to ther-
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FIG. 9. Electron distribution function in nitrogen at (a) 20 fs and
(b) 300 fs after the end of the pulse.

malize more rapidly, and also the equilibration rate is corre-
spondingly increased.

B. Population

The near complete relaxation into a Maxwellian distribu-
tion greatly simplifies the calculation of the excited state
populations, since thermal rates can be used. We have, there-
fore, used this approach with a more extensive data set of
energy levels than used for the hydrogen-like lithium, taken
from our earlier calculations with the same computer model,
which uses thermal population rates [2]. In Fig. 10(a) we
show the populations of a restricted set of states (not includ-
ing the ground state) taking one from each principal quantum
number shell. The n=2 state is the 2p5,, which lies 10 eV
above the ground state (also n=2) and the n=3 state the
3ds,. These states are the ones showing the highest gain on
the line at 249 A in our earlier simulation. It can be seen that
the behavior of the populations of these levels follows the
same pattern as that seen in the lithium ion. Population in-
version and gain are obtained between the states n=3 and
n=2 almost immediately after the completion of the laser
pulse and lasts for about 13 ps until the lower laser level is
filled by the cascade. The upper levels show an approximate
Boltzmann distribution with the “bottleneck™ at about n=4.
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Since the upper laser level in this case is n=3, this gives
more direct pumping into the lasing states. We observe that
the upper laser level n=3 does not follow the general behav-
ior of the higher states. We also note that since the effective
temperatures are lower than in the lithium case, the popula-
tions tend to be more differentiated.

In Fig. 10(b) we show the Boltzmann plot for all 38 levels
included in our calculation at 10 ps. The weak inversion be-
tween the n=2 and n=3 levels can be seen, but it will soon
be destroyed as the lower levels fill. Unlike the lithium case,
the populations do not follow a smooth distribution due to
the splitting of the levels n=2 to n=6. However, the general
trend is clear, and can be seen to closely follow the equilib-
rium line based on the current He-like N VI population and
temperature. The departure from equilibrium for levels with
n<13 indicates the bottleneck at n=4. Although the electron
temperature is only about 4 eV and the hydrogenic formula
would indicate that the bottleneck should be at n~9, the
closer spacing of the actual levels brings the value down to
4. This is a useful feature of the nonhydrogenic systems,
which can enhance gain, although at the expense of the
shorter wavelength.
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VII. DISCUSSION

The plasma generated by tunneling ionization by linearly
polarized light has a distribution which is characterized by a
large component near zero energy. The plasma as a whole is
therefore very cold. The actual shape of the distribution de-
pends quite sensitively on the nature of the ionization struc-
ture of the gas and the rise time of the pulse. The distribution
may show structure associated with the passage through in-
dividual ionization stages. While this is not as apparent as
with circularly polarized light, it is nonetheless a significant
factor [Fig. 3(a)] and is the reason for seeding the lasant gas
with hydrogen, which will ionize early and only generate
cold electrons [2].

A complicating factor is that 50% of the ionized electrons
may return to the neighborhood of their parent ion where
they will be strongly scattered to high energy. At this stage
the electron is removed from strong interactions with its fel-
lows or with the ions, i.e., becomes a bystander in the pro-
cesses of interest. Fortunately at reasonably high densities
relatively small deflections by neighboring ions will destroy
the coherence of this motion, and the electron will in conse-
quence be only weakly scattered, i.e. absorb a smaller
amount of energy similar to inverse bremsstrahlung.

In our analysis we have assumed that the intense laser
field which gives rise to tunneling has a negligible effect on
the atomic energy levels. Our justification for this is twofold.
Firstly the duration of the pulse is very short and during this
phase the atoms are assumed to be ionized down to a closed
shell (bare nuclei or helium ions), which form an inert core
as regards this analysis. During this process it is assumed
that only the ground state of each ion is active. No correction
is made for any shift of the ground state, which would
change the corresponding ionization energy. Secondly it is
assumed that the laser switches off rapidly, over times short
compared to the onset of recombination. Any residual pulse
will ionize the high lying states into which recombination
occurs as well as changing their configuration due to a.c.
Stark effects. As the laser pulse decreases, the atomic energy
levels are assumed to relax back to their field free condition.
This allows us to separate the ionization and recombination
phases, which are consequently treated independently in the
analysis. A more detailed analysis of this process would be of
interest, although it is unlikely it would significantly change
our conclusions.

The electron distribution is developed through three pro-
cesses following ionization:

(i) inverse bremsstrahlung during the laser pulse;

(ii) electron-electron collisions;

(iii) three body recombination heating.

We have shown that all three play an important role at the
densities we require for sufficient gain to be developed, if
working soft x-ray lasers are to be constructed in this man-
ner. All these processes depend on electron-electron or
electron-ion collisions, which are much stronger for cold
electrons. Therefore the effect of each is similar, namely to
drive the low energy part of the distribution into a Maxwell-
ian, whose peak (mode) progressively shifts to higher energy
as the hotter electrons are drawn in. Since the cold electrons
dominate these processes, their rate can be expressed by a
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thermal rate, but with the “temperature” determined by the
mode (kT,=2¢,).

The electron distribution immediately following ATI will
depend strongly on both the ionization structure of the atom
and on the pulse rise time of the pump pulse [20]. The pulse
rise time should be sufficiently slow that each ionization
stage can be ionized near its own threshold field in order to
avoid the generation of unnecessary hot electrons, but not
long enough to give rise to appreciable inverse bremsstrah-
lung heating.

The electron distribution is cold and the electron energy is
much less that the ground state ionization energy. Three-
body recombination is, therefore, dominant into the upper
states of the ion, which rapidly achieve an equilibrium dis-
tribution with temperature determined by the mode of the
free electron distribution. Within these levels, the bound
electrons drift up and down in response to excitation/de-
excitation collisions with bound electrons of similar energy.
The overall drift, however, is down towards the ground state
and a fully recombined electron-ion pair. The rate of recom-
bination is, therefore, set by the rate at which electrons drift
through the level at which electrons can no longer maintain
the upward excitations and only de-excitation can occur. This
level can be set either by collisions (bottleneck) or by radia-
tion (“collision limit”). It essentially marks the limit of ther-
mal equilibrium within the excited states.

The importance of the bottleneck and collision limit for
recombination pumping were pointed out many years ago by
the author [6,33], namely that the upper laser level should lie
at or near the limit, and that the lower should be well below.
This ensures a good flux of electrons into the upper state,
provided recombination and de-excitation within the upper
states is rapid. The corresponding rate is the well-known
T,”" recombination rate [11]. This condition is established in
both our trial systems.

Ground-state lasers were originally proposed in 1972 [7],
but were never practicable with traditional expansion-cooled
pumping, as the ground state could not be sufficiently well
emptied. However, the advent of ATI pumping by short pulse
CPA lasers [ 1] changed that. The original proposal by Eder er
al. [34] using lithium-like neon is probably not viable, but
recently Suckewer and co-workers [4,14] have successfully
re-visited the lithium L, scheme, originally suggested by Na-
gata et al. [35], despite the uncertainty regarding the latter
experiments. In our simulations, we have found that popula-
tion inversion, and consequently gain is practicable, but is
short lived. The short lifetime may be a problem as the line
width is likely to be very narrow. Consequently the gain
lifetime-line-width product may be significantly less than
unity, which will reduce the accessible gain. These results
are broadly in line with those of Avitzour and Suckewer [14],
but they found a significantly longer gain lifetime under their
pumping conditions.

Systems not using the ground state, although longer
wavelength, avoid this problem as the lower laser state fills
more slowly, until an equilibrium is reached with the ground
state, as in the case studied here. Excited states used as the
lower laser level are the traditional route into recombination
pumping where the inversion is formed as a consequence of
the transition rates in the cascade down to the ground state.
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Lithium-like nitrogen examined here is an exemplar of these
systems. In contrast to the lithium system, the electron dis-
tribution rapidly equilibrates and the laser behaves similarly
to thermal systems, although the lower state is lower than
that normally used, where the lower laser state is the 3d and
the upper either 4f or 5f. The ATI lasers may, however, be
limited for practical purposes by their long wavelength and
low saturation intensity.

In this paper we have not attempted to use our results for
the design of working lasers based on these principles and
have, therefore, made no estimates of possible gain resulting
from the population inversions. Our reasons for this are two-
fold. In the case of the hydrogen-like lithium, the separation
of the n=2 sub-levels are about 4 meV. Consequently at the
density and electron temperature in these experiments these
states of common principal quantum number, n, are further
split and mixed. Detailed calculation of the gain may be
complicated and require a more detailed analysis of the in-
dividual states [36]. In our calculations we have assumed
that the states are fully mixed. For lithium-like nitrogen,
these problems do not arise and we have already presented
detailed calculations of gain elsewhere [2].

Throughout this work we have assumed that dilute weakly
coupled plasma theory is appropriate despite the low tem-
perature and relatively high densities. For the lithium system,
where Z'=1.2, n,~1.2X 10! cm™3, and T,=79¢eV, we
find that the Debye length \,=~5.8X 1077 cm and the ion
sphere radius Ry=~2.9 X 1077 cm, the strong coupling param-
eter is thus I'=Z"2\,/R,~2.2. Similarly for nitrogen we
have Z'=~1.4, n,~4.9%x10"® cm™, and T,~3.5 eV so that
Ap=6.3%X10"7 cm, Ry=4.1X 1077 cm, and I"~2.3. These
systems, therefore, lie at the borderline of strongly coupled
plasmas. In the present context, ion-ion correlations are un-
important as the ions are assumed fixed over the short time
scales of the calculation. The ions, therefore, retain the origi-
nal random positions of their parent atoms: A result consis-
tent with weak ion-electron thermalization calculated for ni-
trogen using the BREAKDOWN code.

More serious is the effect on the electron-electron colli-
sions of the result that the ion sphere radius is less than the
Debye length Ry<<\p. In principle this may violate our con-
dition of weak collisions implicit in the Fokker-Planck
model. However, provided this radius is still large compared
to the inner “cutoff’ distance—the larger of the electron
wavelength and the Landau length—the majority of the col-
lisions are still weak, but the outer cutoff should be taken as
the ion sphere radius rather than the Debye length. Fortu-
nately in this case there is little difference between the two,
as the term is only used logarithmically. Estimating the inner
cutoff we find that for the lithium simulations the Landau
length b,,,,~2.3X 1078 cm and the electron wavelength \,
~2.8% 1078 cm, and for nitrogen b,,;,~\,~5.8 X 107% cm.
The condition of validity is thus upheld, although perhaps
not as strongly as one would wish. This limitation can be
overcome by either molecular dynamics [19] or Monte Carlo
[20] calculations but only at the expense of a very substan-
tially increased computational effort.

There is one further effect of dense plasmas, which should
be examined, namely the depression of the ionization level,
which will be determined by the inter-particle separation. We
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note that since an equilibrium is assumed between the high
lying bound states and the continuum in our model of cas-
cade recombination, the exact nature of these states will play
little role. However, if we recall that the radius of the Bohr
orbits scate as agn’/Z where Z is the ion-core charge and
ap=0.532% 1078 cm the Bohr radius, we see that the elec-
trons are bound for n=<12 for lithium and n=<21 for nitro-
gen. We may remark that this depression of ionization is
included in the code BREAKDOWN used in the calculations for
the nitrogen ions using the thermal picture, where bound
states are found at n=12 [Fig. 10(b)].

The calculations using our Fokker-Planck model have
only considered recombination resulting from radiative and
three-body capture. We have not included di-electric recom-
bination or other effects. Clearly di-electronic recombination
is only important for lithium-like plasmas, and is included in
our more general thermal code BREAKDOWN using a screened
hydrogenic atom model. Calculations show that it plays little
role in the cases discussed here.
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One further observation concerns the choice of density.
Clearly high density improves the gain directly through the
number of inverted ions present, although since it also in-
creases the linewidth through Stark broadening this may be
somewhat mitigated. The pumping rate due to recombination
will increase through the ng scaling. But increasing density
also increases the inverse bremsstrahlung absorption rate
during the laser pulse, and increases the temperature. Since
the recombination rate scales as T;9/ 2, this can be seriously
damaging. As a rough guide the density should not exceed
the value at which the inverse bremsstrahlung energy gain
equals the ATI energy. However, in assigning this limit, care
must be taken to avoid some of the potential pitfalls noted
above.
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