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Marangoni convection in a real symmetric three-layer system is investigated. The transitions between different
flow regimes have been studied. The general diagram of regimes is constructed.
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I. INTRODUCTION

Prediction of fluid behavior under microgravity conditions
is an important problem in space engineering. Experiments
in space revealed the dominant role of the thermocapillary
convection in microgravity fluid dynamics. The case when
the system has only one interface between different fluids
has been studied analytically and numerically in many works
�see, for example, the monograph �1��. Convection in a sys-
tem with one interface and one free surface was considered
in �2�.

During the last decade, a new scientific direction of inves-
tigation, convection in multilayer systems, was developed.
The interest in such systems is caused first of all by various
technological applications. Among the modern techniques re-
quiring an investigation of convection in systems with many
interfaces are liquid encapsulation crystal growth technique
�3,4� used in Spacelab missions, droplet-droplet coalescence
processes, where Marangoni convection in the interdroplet
film can considerably affect the coalescence time during ex-
traction �5�, and others. The scientific interest in such sys-
tems is due to the fact that the interfacial convection in
multilayer systems is characterized by a variety of physical
mechanisms and types of instability. The understanding of
the underlying physical processes that can be achieved
through the exploration of the mutual influence and the in-
teraction between different interfaces is necessary for a suc-
cessful application of this phenomenon. Simultaneous inter-
action of interfaces with their bulk phases and with each
other was studied on heating from below and from above
�6,7�, as well as in the case of horizontal temperature gradi-
ents �8–11�.

Numerical investigations of thermocapillary convection in
multilayer systems were started in �12–14�. In these papers
the linear stability of the mechanical equilibrium state and
the nonlinear regimes of convection for a system of three
immiscible viscous fluids were studied. In particular, in
�12,14� it was shown that a symmetric three-layer configura-
tion may become unstable with respect to oscillatory distur-
bances when one fluid is sandwiched between two layers of
another fluid. This specific mechanism of instability is
caused by the interaction between the two interfaces. An
analysis of different mechanisms of direct and indirect inter-
action between Rayleigh and thermocapillary instabilities in
real three-layer systems was given in �7�. It was shown that

the oscillatory mechanism of instability in a three-layer sys-
tem is much more widespread than in a two-layer one.

Experimental results on the Marangoni-Benard instability
under microgravity conditions have been described in
�15,16�. A microgravity experiment, devoted to the instabil-
ity of a liquid system with close thermal diffusivities,
n-octane–methanol–n-octane, was performed on the LMS
mission of Spacelab onboard the U.S. Space Shuttle �16�.
The experimental results confirm the existence of an oscilla-
tory instability, essentially connected with the interaction of
the interfaces, in coincidence with the predictions of linear
stability theory �16�.

Under experimental conditions, the temperature gradient
in the system is not perfectly vertical and a horizontal com-
ponent of the temperature gradient appears. The appearance
of this component changes the situation completely: even for
small values of the Marangoni number �M �0�, the mechani-
cal equilibrium state becomes impossible in principle, and a
convective flow takes place in the system. The influence of
this flow on the convective patterns generated by the vertical
temperature gradient in two-layer systems has been investi-
gated in detail in the case of the usual Rayleigh-Benard
convection �see �17–19��. The stability of thermocapillary
flows with an inclined temperature gradient was studied in
�20,21�. Nonlinear simulations of convective flows in a
closed cavity filled by a symmetric three-layer system in the
case where the temperature gradient is directed along the
interfaces were considered in �22�. The interaction between
the convection caused by the temperature gradient directed
perpendicularly to the interfaces and the convective flow
produced by the horizontal component of the temperature
gradient in three-layer systems has not been studied to our
knowledge.

In the present paper, we investigate the influence of the
horizontal component of the temperature gradient on nonlin-
ear regimes of oscillatory Marangoni convection that are de-
veloped in the 47v2 silicone oil–water–47v2 silicone oil sys-
tem. Transitions between convective flows are studied
numerically.

In Sec. II, the mathematical formulation of the problem
and the numerical method are presented. Section III is de-
voted to the consideration of flows generated by the joint
action of the vertical and horizontal components of the tem-
perature gradient. Section IV contains some concluding re-
marks.

PHYSICAL REVIEW E 73, 066310 �2006�

1539-3755/2006/73�6�/066310�6� ©2006 The American Physical Society066310-1

http://dx.doi.org/10.1103/PhysRevE.73.066310


II. GENERAL EQUATIONS AND BOUNDARY
CONDITIONS

Let the space between two parallel rigid horizontal plates
be filled by three immiscible viscous fluids �see Fig. 1�. The
physical properties of layer 1 �the top layer� and layer 3 �the
bottom layer� are identical, whereas those of layer 2 �the
middle layer� are different. The equilibrium thickness of each
layer is a. We assume that the deformations of interfaces are
small, and their influence on the flow and temperature distri-
bution can be ignored. The surface tension coefficient � is a
linear function of temperature T: �=�0−�T. We do not
take into account buoyancy effects which are negligible
in the case of thin layers or under microgravity conditions.
The temperature on the horizontal plates z=a1 and
z=−a2−a3 is fixed in the following way: T�x ,z ,a1�=−Ahx,
T�x ,z ,−a2−a3�=−Ahx+�, Ah�0. The vertical lateral bound-
aries x=0 and x= l are heat insulated. Let us use the follow-
ing notations:

� = �1/�2, � = �1/�2, � = �1/�2, � = �1/�2, 	

= 	1/	2,a = a2/a1.

Here �m, �m, �m, �m, 	m, and am are, respectively, the den-
sity, the kinematic and the dynamic viscosity, the heat con-
ductivity, the thermal diffusivity, and the thickness of the mth
layer �m=1,2�. As the units of length, time, velocity, pres-
sure, and temperature we use a, a2 /�1, �1 /a, �1�1

2 /a2, and �,
respectively. The complete nonlinear equations governing
the Marangoni convection �see �1�� have the following form:

�vm

�t
+ �vm · ��vm = − em � pm + cm
vm, �1�

�Tm

�t
+ vm · �Tm =

dm

P

Tm, �2�

� · vm = 0. �3�

Here, e1=c1=d1=1, e2=�, c2=1/�, and d2=1/	.
The conditions on the rigid horizontal boundaries are

v1 = 0, T1 = − �x, �z = 1� , �4�

v3 = 0, T3 = − �x + 1, �z = − 2� , �5�

where �=Aha1 /��0 is the nondimensional parameter char-
acterizing the horizontal component of the temperature gra-
dient. The boundary conditions on the interface z=0 can be
written in the form

�
�v1x

�z
−

�v2x

�z
−

�M

P

�T1

�x
= 0, �

�v1y

�z
−

�v2y

�z
−

�M

P

�T1

�y
= 0,

�6�

v1x = v2x, v1y = v2y, v1z = v2z, �7�

T1 = T2, �8�

�
�T1

�z
=

�T2

�z
; �9�

and at z=−1,

�−1�v2x

�z
−

�v3x

�z
−

M

P

�T2

�x
= 0, �−1�v2y

�z
−

�v3y

�z
−

M

P

�T2

�y
= 0,

�10�

v2x = v3x, v2y = v3y, v2z = v3z, �11�

T2 = T3, �12�

�−1�T2

�z
=

�T3

�z
. �13�

Here P=�1 /	1 is the Prandtl number for the liquid in
layer 1 and M =��a /�1	1 is the Marangoni number.

The conditions on the solid lateral boundaries, which are
assumed to be thermally insulated, are

vm = 0,
�Tm

�x
= 0, m = 1,2,3 �x = 0,L� . �14�

The above mentioned boundary value problem in the case
�=0 has a solution

vm = 0, pm = 0, m = 1,2,3, �15�

T1 = T1
0 = −

�z − 1�
2 + �

, �16�

T2 = T2
0 = −

��z − 1�
2 + �

, �17�

T3 = T3
0 = −

�z − 1� + �1 − ��
2 + �

, �18�

corresponding to the mechanical equilibrium state. Depend-
ing on the physical parameters of the fluids, the mechanical
equilibrium state may become unstable with respect to dif-
ferent instability modes. In the case ��0, the mechanical
equilibrium is impossible in principle and the convective
motion appears in the system.

FIG. 1. Geometrical configuration of the system and coordinate
axes.
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III. NUMERICAL SIMULATIONS

In this section, we present the results of the nonlinear
numerical solution of the boundary value problem �1�–�13�
for the system 47v2 silicone oil–water–47v2 silicone oil with
the following set of parameters: �=1.7375, �=2, �=0.184,
	=0.778, �*=�*=�*=	*=1, P=25.7. We take a=a*=1. It
means that the exterior layers have the same thermophysical
properties. For two-dimensional flows �vmy =0; the fields of
physical variables do not depend on y�, we can introduce the
stream function �m and the vorticity 
m,

vm,x =
��m

�z
, vm,z = −

��m

�x
, 
m =

�vm,z

�x
−

�vm,x

�z

�m = 1,2,3� ,

and rewrite Eqs. �1�–�3� in the following form:

�
m

�t
+

��m

�z

�
m

�x
−

��m

�x

�
m

�z
= dm

m, �19�


�m = − 
m, �20�

�Tm

�t
+

��m

�z

�Tm

�x
−

��m

�x

�Tm

�z
=

cm

P

Tm �m = 1,2,3� .

�21�

At the interfaces the boundary conditions read, for z=0,

�1 = �2 = 0,
��1

�z
=

��2

�z
, T1 = T2, �22�

�T1

�z
=

1

�

�T2

�z
,

�2�1

�z2 =
1

�

�2�2

�z2 +
M

P

�T1

�x
, �23�

and for z=−1,

�2 = �3 = 0,
��2

�z
=

��3

�z
, T2 = T3, �24�

1

�

�T2

�z
=

�T3

�z
,

1

�

�2�2

�z2 =
�2�3

�z2 +
M

P

�T2

�x
. �25�

On the horizontal solid plates, for z=1,

�1 =
��1

�z
= 0, T1 = − �x , �26�

and for z=−2,

�3 =
��3

�z
= 0, T3 = − �x + 1. �27�

On the solid heat-insulated lateral walls, for x=0,L,

�m =
��m

�x
=

�Tm

�x
= 0 �m = 1,2,3� . �28�

The boundary value problem formulated above was
solved by the finite-difference method. Equations were ap-
proximated on a uniform mesh using a second-order approxi-

mation for the spatial coordinates. The calculations were
started with initial conditions corresponding to equilibrium
fields of temperature and localized vorticity of different signs
in several points. Equations were solved using the explicit
scheme on a rectangular uniform 42�84 mesh. The Poisson
equations were solved by the iterative Liebman successive
overrelaxation method on each time step: the accuracy of the
solution was 10−5. The nonlinear simulations have been per-
formed for L=3.2. The details of the method may be found
in �1�.

A. The case �=0

According to the nonlinear simulations, the mechanical
equilibrium state is stable if M �Mc

n=12 400. As M �Mc
n,

the equilibrium state becomes unstable with respect to oscil-
latory disturbances.

Let us describe qualitatively the flow evolution during the
period of oscillations 0� t�� �see Fig. 2�. For any values of
t, the fields of stream function and temperature satisfy the
symmetry conditions

�m�x,z,t� = − �m�− x,z,t�, Tm�x,z,t� = Tm�− x,z,t� ,

m = 1,2,3. �29�

We start from the state where an intensive thermocapillary
convection takes place mainly in the top and middle layers,

FIG. 2. �a�–�f� Streamlines for periodic oscillatory motion
��=0; M =25 000�.
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while the fluid in the bottom layer is almost stagnant �Fig.
2�a��. The fluid motion in the middle layer induces two weak
vortices in the bottom layer. Because the descending flow in
the center of the middle layer is more intense than the as-
cending flow in the bottom layer, a minimum of the tempera-
ture distribution appears at the central point of the lower
interface. As a result, the thermocapillary stresses on the
lower interface generate a new four-vortex structure, which
consists of two vortices in the bottom layer and two vortices
in the middle layer �see Fig. 2�b��. A “two-storey” structure
appears in the middle layer. Eventually, the new vortices oust
the former ones in the middle layer. The intense motion de-
veloping in the middle layer induces a motion in the opposite
direction in the top layer �Fig. 2�c�� and diminishes the tem-
perature in the center of the lower interface. Because of the
latter phenomenon, the motion in the bottom layer slows
down �Fig. 2�d�� and changes its direction �Fig. 2�e��. A two-
storey structure appears again in the middle layer. Note that
after half a period � /2 the structure coincides with the initial
one but it is shifted by the distance L /2 in the horizontal
direction:

�m�x,z,t + �/2� = �m�x + L/2,z,t� ,

Tm�x,z,t + �/2� = Tm�x + L/2,z,t� , m = 1,2,3. �30�

The new growing vortices in the middle layer suppress
the upper pair of vortices �Fig. 2�f��, enhance the temperature
near the sidewalls on the upper interface, and diminish the
temperature in the center of the lower interface. That is why
the flow in the bottom layer is suppressed, and finally the

structure returns to the configuration of Fig. 2�a�.
Let us define the following integral quantities, character-

izing the intensity of motion in the left or in the right half of
the corresponding layer:

Sl1�t� = �
−L/2

0

dx�
0

1

dz �1�x,z,t� ,

Sr1�t� = �
0

L/2

dx�
0

1

dz �1�x,z,t� , �31�

Sl2�t� = �
−L/2

0

dx�
−1

0

dz �2�x,z,t� ,

Sr2�t� = �
0

L/2

dx�
−1

0

dz �2�x,z,t� , �32�

Sl3�t� = �
−L/2

0

dx�
−2

−1

dz �3�x,z,t� ,

Sr3�t� = �
0

L/2

dx�
−2

−1

dz �3�x,z,t� . �33�

FIG. 3. The dependence of the oscillation period � on the Ma-
rangoni number M; �=0 �lines 1, 2�; �=0.045 �line 3�; �=0.085
�line 4�.

FIG. 4. �a�–�f� Streamlines for periodic oscillatory motion
��=0.05; M =25 000�.
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The time evolution of the quantities Sl,m�t�, m=1,2 ,3,
shows that the oscillations are almost harmonic; the largest
amplitude of oscillations is observed in the middle layer. For
symmetric oscillations satisfying conditions �29�, the integral
quantities satisfy the relations

Sl1�t� = − Sr1�t�, Sl2�t� = − Sr2�t�, Sl3�t� = − Sr3�t� .

�34�

The period of oscillations � decreases with the growth of the
Marangoni number M �see line 1 of Fig. 3�.

If M �M*, the symmetric oscillatory motion is unstable.
A new, asymmetric, motion is developed through a period-
doubling bifurcation. For this motion, the symmetry condi-
tions �29� and �34� are violated. The time evolution of quan-
tities Sl,m�t�, m=1,2 ,3, for the asymmetric motion is
essentially nonsinusoidal. The period of oscillations de-
creases with increasing M �line 2 of Fig. 3�. For larger values
of M, the motion becomes aperiodic in time.

B. The case �Å0

Let us consider now the influence of a horizontal tempera-
ture gradient on structures described above. For any ��0 the
symmetry conditions �29� are violated and asymmetric oscil-
latory motion takes place in the system. The streamlines for
this type of motion during the period of oscillations
0� t�� are presented in Fig. 4. One can see that in com-
parison with the symmetric oscillatory motion the vortices
have the tendency to become longer �cf. Figs. 2 and 4�. The
time evolution of quantities Sl,m�t� m=1,2 ,3, for asymmetric

FIG. 5. Phase trajectory in variables Sl1 ,Sr1, for periodic asym-
metric oscillatory motion ��=0.05; M =25 000�.

FIG. 6. Phase trajectory in variables Sl1 ,Sr1, for aperiodic oscil-
latory motion ��=0.05; M =29 000�.

FIG. 7. Streamlines for stationary motion ��=0.1;
M =25 000�.

FIG. 8. Diagram of the flow regimes. �, equilibrium state; �,
periodic symmetric oscillations; �, periodic asymmetric oscilla-
tions; �, stationary state; �, irregular asymmetric oscillations.
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motion is essentially nonsinusoidal. The phase trajectory of
asymmetric periodic oscillations in the variables �Sl1 ,Sr1�, is
shown in Fig. 5. The period of oscillations decreases with
increasing M �lines 3 and 4 of Fig. 3�. For larger values of M
at a fixed value of �, oscillations turn out to be aperiodic in
time. The phase trajectory for the aperiodic motion is pre-
sented in Fig. 6. With an increase of � at a fixed value of
M, the asymmetric oscillatory motion disappears and a sta-
tionary structure with long cells in each fluid layer is prefer-
entially formed in the system �Fig. 7�. The results of the
numerical simulations described above are summarized in
the general diagram of regimes on the plane �� ,M� �see Fig.
8�.

IV. CONCLUSION

The influence of the horizontal component of the tempera-
ture gradient on the Marangoni convection in a symmetric
three-layer system 47v2 silicone oil–water–47v2 silicone oil
has been investigated. The transitions between the nonlinear
regimes of convection have been studied. It is shown that in
a definite region of the parameter � characterizing the hori-
zontal component of the temperature gradient, regular asym-
metric oscillations develop in the system. With an increase of
� at a fixed value of the Marangoni number, the asymmetric
oscillatory motion becomes unstable and a stationary struc-
ture is formed preferentially in the system. A general dia-
gram of the regimes is constructed.
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