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We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency
ac magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem
analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown
that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds
the critical value kc=F0 / ��l0�, which is determined by the linear density of the electromagnetic force F0 acting
on the edge, the surface tension �, and the effective arclength of edge thickness l0. Perturbations with wave-
length shorter than critical are stabilized by the surface tension, whereas the growth rate of long-wave pertur-
bations reduces as �k for k→0. Thus, there is the fastest growing perturbation with the wave number kmax

=2/3kc. When the layer is arranged vertically, long-wave perturbations are stabilized by the gravity, and the
critical perturbation is characterized by the capillary wave number kc=�g� /�, where g is the acceleration due
to gravity and � is the density of metal. In this case, the critical linear density of electromagnetic force is
F0,c=2kcl0�, which corresponds to the critical current amplitude I0,c=4��kcl0L� /�0 when the magnetic field
is generated by a straight wire at the distance L directly above the edge. By applying the general approach
developed for the semi-infinite sheet, we find that a circular disk of radius R0 placed in a transverse uniform
high-frequency ac magnetic field with the induction amplitude B0 becomes linearly unstable with respect to
exponentially growing perturbation with the azimuthal wave number m=2 when the magnetic Bond number
exceeds Bmc=B0

2R0
2 / �2�0l0��=3�. For Bm�Bmc, the wave number of the fastest growing perturbation is

mmax= �2Bm/ �3���. These theoretical results agree well with the experimental observations.
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I. INTRODUCTION

In several induction melting processes, such as the cold
crucible or electromagnetic levitation, liquid metal with a
free surface is subject to ac magnetic fields that may cause
considerable deformations of liquid metal resulting from the
electromagnetic forces due to the eddy currents, which are
often confined in a thin skin layer beneath the surface �1�. It
has been observed that the free surface sometimes may be-
come strongly asymmetric and even irregular when a suffi-
ciently strong magnetic field is applied �9–11�.

Most of theoretical studies of the effect of ac magnetic
field on the stability liquid metal surfaces have been con-
cerned with flat surfaces subject to tangential uniform mag-
netic field. McHale and Melcher �2� were the first to show
that the time-averaged electromagnetic force has a destabi-
lizing effect giving rise to traveling waves on the surface of
liquid metal. Although the theoretical instability threshold is
in good agreement with experimental results, the predicted
growth rates are too small compared to the experimental ob-
servations. Note that such small growth rates are typical for
the electromagnetic instabilities caused by the currents in-
duced by motion of conducting media in ac magnetic fields
�3�. This simple model was revisited by a number of authors
using various approximations. First, Garnier and Moreau �4�
found that ac magnetic field has only a stabilizing effect on
the surface waves when the currents induced by metal flow
are neglected. Deepak and Evans �5� took into account the

motion of a surface but not the associated flow in the liquid,
although both have a comparable effect, and they concluded
that ac magnetic field can, however, give rise to unstable
traveling surface waves. Stability of a flat metal layer sus-
pended by means of a uniform magnetic field, as in the ex-
periment of Hull et al. �7�, has been studied by Ramos and
Castellanos �6�, who analyzed the effect of the viscosity on
Rayleigh-Taylor type instability, which is unavoidable in this
system. Fautrelle and Sneyd �8� used a more elaborate
model, taking into account not only the time-averaged but
also the oscillating part of the electromagnetic force, which
results in much stronger parametric instabilities when the
frequency of surface waves is sufficiently close to the mul-
tiple of the electromagnetic force frequency. Note that this
simple model of a flat surface with tangential magnetic field
leads only to traveling but not stationary wave instabilities,
which require consideration of nonplanar surfaces in nonuni-
form magnetic fields. A stability analysis was performed by
Karcher and Mohring �12� to describe the experimental ob-
servations of static surface instabilities by Mohring et al.
�11�. However, drastic simplifications were made in the latter
analysis. First, the authors used the mirror image method to
find the magnetic field distribution at the end of annular gap
filled with liquid metal, however this method is applicable
only to simple geometries, such as half-space or a sphere
�13�. Second, they neglected the effect of surface perturba-
tion on the magnetic field distribution, although the coupling
between both constitutes the basic mechanism of this insta-
bility.

In this work, we propose a simple theoretical model to
describe such static surface instabilities. The model consists
of a flat liquid metal layer in a transverse ac magnetic field.*Electronic address: priede@sal.lv
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The ac frequency is assumed to be high so that the magnetic
field is effectively expelled from the layer by the skin effect.
The layer is assumed to be thin so that it can be regarded as
a liquid perfectly conducting sheet. We start with the linear
stability analysis of the straight edge of a semi-infinite liquid
sheet, which allows us to work out a general approach,
which is applied later to the liquid layer in the magnetic field
of a straight wire parallel to the edge and to a thin circular
liquid disk in a uniform transverse magnetic field. We de-
scribe a pinch-type instability of the edge of a liquid metal
sheet with the following mechanism. The magnetic field
bends around the edge of a perfectly conducting sheet, giv-
ing rise to the magnetic pressure on the edge, which tries to
compress the sheet laterally. In the case of a straight edge,
the uniform magnetic pressure along the edge is balanced by
a constant pressure in the sheet. A wavelike perturbation of
the edge causes the magnetic flux lines to diverge at wave
crests and convergence at troughs. This redistribution is be-
cause the magnetic flux lines along the sheet are perpendicu-
lar to the electric current lines that are directed along the
edge and, thus, the magnetic flux lines have to be perpen-
dicular to the latter. As the result, the magnetic pressure is
reduced at the crests and increased at the troughs, which
enhances the perturbation.

The paper is organized as follows. In Sec. II, we consider
the general model of a semi-infinite perfectly conducting liq-
uid sheet with a straight edge, and compare with the experi-
ment. In Sec. III, the linear stability problem for a thin disk
in a transverse magnetic field is solved and compared with
experiment. The results are summarized in Sec. IV.

II. PERFECTLY CONDUCTING LIQUID SHEET

A. Mathematical model

Consider a thin layer of liquid metal submitted to a trans-
verse ac magnetic field B. We assume that the layer is semi-
infinite and lies on the right-hand side of x-z plane, so that
the unperturbed edge of the layer coincides with z axis, as
shown in Fig. 1. Field frequency is assumed to be high, so
that the layer is effectively impermeable to the magnetic field
because of the skin effect. In addition, the layer is assumed
to be a thin sheet in a static equilibrium state supported by a
flat horizontal nonwetting surface or constrained in the gap
between two parallel walls. Note that this model represents a

special case of a thin superconductor film �see, e.g., �14��.
The magnetic field B in the free space around the sheet can
be described by the scalar magnetic potential �. Then the
solenoidity constraint � ·B=0 results in

�2� = 0. �1�

The impermeability condition at both sides of the sheet is

��n · B��y=±0;x�0 = � ��

�n
�

y=±0;x�0
= 0, �2�

where n is the surface normal vector. First, we focus on the
distribution of the magnetic field in the vicinity of the edge,
which can conveniently be described in the cylindrical coor-
dinates with the z axis coinciding with the edge and the polar
angle � measured from the x axis, as illustrated in Fig. 1. The
solution for the unperturbed potential in the vicinity of
straight edge satisfying condition �2� is �15�

�0�r,�� = C0
�r cos��/2� , �3�

where C0 is an unknown constant. According to simple di-
mensional arguments, determining C0 requires an external
length scale that, however, is missing in this simple model.
Thus, C0 can be determined for a strip of finite width, a
magnetic field generated by a straight wire placed at some
distance parallel to the edge or a circular disk of finite size,
that will be done in the following section. But first, we de-
velop a general approach without specifying C0.

Suppose that there is a perturbation of the edge position
x=x1�z , t�= x̂�t�cos�kz� with a small, generally time-
dependent amplitude x̂�t� and the wave number k along the z
axis. This perturbation gives rise to the potential perturbation
that can be presented as

��r,�,z� = �0�r,�� + 	�1�r,�,z� + ¯ ,

where �1 is a perturbation with small amplitude 	. To relate
the perturbation of a potential to that of the edge, we need an
additional condition at the edge, which is derived as follows.
For the surface current with density J, we have �0J=n
B
�15�, where �0 is the permeability of vacuum. According to
this relation, the magnetic field along the sheet is perpen-
dicular to the current. Consequently, the magnetic field has to
be perpendicular to the edge because the current is flowing
along the latter. Thus along the edge L, we obtain �� ·B��L
=�� /���L=0, where � is the unit vector tangential to the
edge. This condition in turn implies that ��L=const, where
const=0 may be chosen because the potential is defined up
to an additive constant. Applying this condition at the per-
turbed edge, we obtain up to the first-order terms in the per-
turbation amplitude

���x=x1
	 �
�0 +

��0

�x
x1 + 	�1��

r→0;�=0
= 0,

which results in

FIG. 1. Sketch to the formulation of the problem with the mag-
netic flux lines �dashed� bending around perturbed edge x�z , t�
= x̂�t�cos�kz�.
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�	�1�r→0;�=0 = − � ��0

�x
x1�

r→0;�=0
= − �C0

2

x1

�r
�

r→0

. �4�

Note that the base potential cannot formally be expanded in
power series directly at the edge because the necessary de-
rivative is singular there. To circumvent this, we take the
expansion not exactly at the edge but define it as a limit
when the expansion point approaches the edge.

The potential perturbation that satisfies Eq. �2� is of the

same form as the base field �̂1�r ,��= f1�r�cos�� /2�. When
substituted into Eq. �1�, this leads to

1

r

d

dr

r

df1

dr
� +

1

4

f1

r2 − k2f1 = 0.

The solution satisfying Eq. �4� is f1�r�=− 1
2C0x1e−kr /�r, and

the full potential including the base field is

��r,�,z� = C0
�r
1 −

1

2

x1

r
e−krcos�kz��cos��/2� . �5�

Note that the potential above, which is defined relative to the
unperturbed edge, contains a singularity at the unperturbed
edge. This singularity can be removed by proceeding to the
coordinates defined relative to the perturbed edge as r=r�
+exx1, and expanding the solution in terms of x1. Thus, we
obtain up to the first-order terms in the perturbation ampli-
tude

��r� + exx1� 	 �
�0 +
��0

�x
x1 + 	�1��

r=r�

= C0
�r��1 +

x1

2r�
�1 − e−kr�cos�kz��
 , �6�

where r� is the cylindrical radius relative to the perturbed
edge. Having no singularity anymore, this solution simplifies
in the vicinity of the edge to

��r�→0 	 C̃0
�r�cos��/2� ,

where C̃0=C0�1+ 1
2 x̂k cos�kz��. Thus perturbation of the

edge results just in a redefinition of the constant C0, which is

now replaced by C̃0, whereas the distribution of the potential
remains the same as for the straight edge obtained above.
This is because a smoothly perturbed edge looks straight
again when examined on a sufficiently small scale. The sca-
lar magnetic potential in the vicinity of a straight edge and its
perturbation amplitude defined by Eq. �6� are plotted in Fig.
2 with 1/k used as the length scale. The corresponding mag-
netic flux and current lines along the layer in the vicinity of
the perturbed edge are shown in Fig. 3. As seen, the mag-
netic flux lines diverge at wave crests and converge at
troughs in order to remain perpendicular to the edge, as dis-
cussed above. This redistribution of the magnetic flux lines at
the perturbed edge is the principal physical mechanism be-
hind the instability considered in this study.

In the perfect conductor approximation, the electromag-
netic force due to an ac magnetic field reduces to an effective
magnetic pressure acting on the surface of the layer with the
time-averaged value pm= �B0�2 / �4�0�, where B0 is the ampli-

tude of an ac magnetic field. Note that part of the magnetic
pressure, which oscillates with double ac frequency, is ne-
glected here by assuming the frequency to be so high that
inertia precludes any considerable reaction of the liquid. Ac-
cording to Eq. �5�, the magnetic pressure increases toward
the edge as �1/r and, thus, it becomes singular at r=0.
Nevertheless, the integral force on the edge has a finite value.
This is because the magnetic pressure at the edge of a layer
of small but finite thickness �d0 increases as �1/d0, which,

FIG. 2. Scalar magnetic potential in the vicinity of a straight
edge �a� and its perturbation amplitude with 1/k used as the length
scale �b�.

FIG. 3. Magnetic flux and current lines along the layer in the
vicinity of the perturbed edge.
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integrated over the thickness, results in a finite value inde-
pendent of d0. The force on the edge can be evaluated by
integrating the Maxwell stress tensor over a small cylindrical
surface S enclosing the edge, as shown in Fig. 4, that results
in the first-order terms in

F =
1

2�0
lim
r→0
�

0

2� �−
1

2
B2n + �B · n�B
rd� = ex�F0 + F1� ,

�7�

where

F0 =
�C0

2

8�0
�8�

and F1=F0kx̂ cos�kz� are the base force and its perturbation,
respectively.

Further, we assume the sheet to be an inviscid liquid, and
consider a small-amplitude potential flow associated with the
edge perturbation. Justification of this assumption, particu-
larly at the threshold of monotonous instability, is discussed
at the end of the section. Then the linearized Euler equation
applied to a potential velocity field v=��,

�
�v

�t
+ �p = �
�

��

�t
+ p� = 0,

leads to the pressure distribution in the sheet p= p0
−��� /�t= p0+ p1, where p0 is a constant base pressure and
p1=−��� /�t is the perturbation of pressure. Velocity poten-
tial � is governed by the incompressibility constraint � ·v
=0 resulting in

�2� = 0. �9�

We integrate the normal stress balance over the edge by as-
suming both the pressure and curvature to be constant be-
cause of the small thickness of the layer, which yields

�p�x=0 =
�

R
+

F

l0
, �10�

where l0 is the effective arclength of the edge thickness; � is
the surface tension and 1/R denotes the curvature of the
edge. For an unperturbed edge, we have p0=� /R0+F0 / l0.
Then for the perturbation, the balance condition takes the
form

− �� ��

�t
�

x=0
=

�

R1
+

F1

l0
, �11�

where 1/R1	�2x1 is the curvature perturbation of the edge.
In addition, we have a kinematic constraint

�vx�x=0 = � ��

�x
�

x=0
=

�x1

�t
. �12�

Now we search for the amplitude of edge perturbation of
the form x̂�t�=x0e
t, where 
 is, in general, a complex
growth rate, whose real part has to be negative for the per-
turbation to be stable. The hydrodynamic potential is of the
form

��x,z,t� = �̂�x�cos�kz�e
t,

which when substituted into Eq. �9� leads to d2�̂ /dz2−k2�̂

=0, whose solution decaying away from the edge is �̂�x�
=�0e−kx. The amplitude of the hydrodynamic potential is
related to that of the edge perturbation by the kinematic con-
straint �12� �0=−x0
 /k. Finally, the normal stress balance
�11� yields the growth rate depending on the wave number


�k� = k�1

�

F0

l0
− k�� , �13�

which implies that long-wave perturbations with the wave
numbers 0�k�kc=F0 / ��l0� have positive growth rates and,
thus, they are unstable, as illustrated in Fig. 5. The stronger
the electromagnetic force F0 on the edge, the shorter the
critical wavelength. The waves that are shorter than the criti-
cal one are stabilized by the surface tension. Although long
waves are always unstable, their growth rate reduces as �k
for k→0. Thus there is a perturbation with kmax= 2

3kc for
which the growth rate attains the maximum 
max
=kmax�F0 / �3�l0� �see Fig. 5�.

Concerning the effect of neglected viscosity, simple
physical arguments suggest that this instability can only be
slowed down but not prevented by the viscosity. Note that
the viscosity is inherently related to the fluid flow. But at the
threshold of monotonous instability, where 
�kc�=0, the
characteristic time of monotonous instability tends to infinity.

FIG. 4. Evaluation of the electromagnetic force on the edge by
integration of the Maxwell stress tensor over a small cylindrical
surface S enclosing the edge.

FIG. 5. Characteristic dependence of growth rate square scaled
with its maximum value on the wave number.
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Consequently, there is no characteristic time and, thus, no
characteristic velocity scale for the monotonous marginally
stable mode, which, therefore, cannot be affected by the vis-
cosity.

B. Comparison with experiment

To compare our theory with the experiment of Mohring et
al. �11�, similarly to �12�, we unfold the annular layer of
InGaSn �Galinstan� melt used in experiment by approximat-
ing it by a semi-infinite flat perfectly conducting liquid sheet.
Magnetic field is approximated by that of a straight wire
lying at the distance L from the edge in the plane of the
sheet. The distance L provides us with the length scale nec-
essary to specify the constant C0 used in our model above.
This constant follows from the complex potential of the mag-
netic field, which is obtained by the conformal mapping

w��� =
�0I0

2�
log

�� + �L
�� − �L

,

where �=x+ iy, as C0=�0I0 / ���L�. The magnetic flux lines
and isolines of the scalar magnetic potential represented by
the real and imaginary part of this complex potential are
shown in Fig. 6�a� with L used as the length scale. In addi-
tion, we consider the gravity with the acceleration g=exg
directed downwards along the sheet normally to its edge.
Then Eqs. �13� and �8� with C0 defined above result in


�k� = k�1

�

 �0I0

2

8�L0l0
− k�� −

g

k
. �14�

As is easy to see, the gravity stabilizes long-wave distur-
bances, whereas short waves are stabilized by the surface
tension. Thus, the first unstable mode, defined by 
�kc�=0,
appears at the capillary wave number kc=�g�

�
	0.296 mm−1 that corresponds to the critical wavelength
�c=2� /kc	21.2 mm, where �=6440 kq/m3 and �
=0.718 N/m are the density and surface tension of Galinstan
�11�. Note that in the experiment, the surface of liquid metal
is covered by a layer of NaOH solution. Thus, perturbation
of the hydrostatic pressure at the interface is determined by
the density difference of GaInSn and NaOH. Assuming the
latter to have the density of water, we find the critical wave-
length �c	23 mm that coincides very well with that of the
static surface deformation observed in the experiment. The
critical electromagnetic force follows from Eq. �14� as F0,c
=�2�l0 /kc, which corresponds to the critical current ampli-
tude

I0,c = ��8d0L�g��

�0
, �15�

where the edge arclength l0 over the layer thickness d0 is
approximated by a half-circle, i.e., l0=�d0 /2. In order to
compare this result with the measured critical currents �11�,
note that the coil used in the experiment consists of two
horizontal layers, each of which contains five windings.
Thus, the measured current has to be multiplied by 10 to
obtain the total current amplitude. Unfortunately, the authors

do not specify the coil dimensions but give only the gap
width Lexp=17 mm between the metal surface and the lower
side of the inductor, which is not sufficient for comparison
with our theory. Therefore, we treat the distance L as a free
parameter to fit the experimental results that yield L
	45 mm �see Fig. 7�. Note that the model of a semi-infinite
layer may not be very adequate for the given experiment
with the layer extension H=24 mm, which is comparable to
the gap width L, especially when the layer resides on a well
conducting metal plate. Finite extension of the layer and the
conducting bottom can partly be accounted for by a more
sophisticated complex potential,

FIG. 6. Magnetic flux lines and isolines of the scalar magnetic
potential represented by the real and imaginary parts of the complex
potential for a straight wire placed at x=L=1 and a semi-infinite
sheet at x�0 �a� and for the sheet of finite height −H�x�0 trans-
verse to a perfectly conducting wall at x=−H=−2 �b�.

EDGE PINCH INSTABILITY OF LIQUID METAL¼ PHYSICAL REVIEW E 73, 066303 �2006�

066303-5



w��� =
�0I0

2�
log

���� + 2H� + �L�L + 2H�
���� + 2H� − �L�L + 2H�

,

which is plotted in Fig. 6�b�. This yields C0
=�0I0 / ���L�1+L / �2H���, resulting in L	28 mm, which is
considerably closer to the corresponding experimental value.

III. A THIN LIQUID DISK

A. Analytical solution

Now we will apply the approach developed in the previ-
ous section to a thin circular liquid disk of radius R0 and
fixed thickness d0, which is subjected to a uniform axial ac
magnetic field with an induction amplitude B0, as shown in
Fig. 8. The thickness d0 is assumed to be small relative to the
radius of disk d0�R0, so that the disk may be regarded as a
thin sheet. The magnetic field is sought in terms of the scalar
magnetic potential � governed by Eq. �1�, whereas the im-
permeability condition at the disk surface S takes the form

� ��

�n
�

S

= 0. �16�

At large distances from the disk, the field is uniform and
axial, which implies

���r�→� → �r · B0� = zB0, �17�

where z is the axial distance from the disk. Solutions for both
a circular and a slightly perturbed disk can be obtained ana-
lytically in the oblate spheroidal coordinates, which are re-
lated to the cylindrical ones by

r = R0
��1 − �2��1 + �2� ,

z = R0�� ,

where 0���1 and 0���� are the angular and radial
spheroidal coordinates, respectively, as defined in �17�.
Equation �1� for the unperturbed potential �0 around a cir-
cular disk takes the form

�

��

�1 − �2�

��0

��
� +

�

��

�1 + �2�

��0

��
� = 0. �18�

The impermeability condition �16� is

� ��0

��
�

�=0
= 0. �19�

The second boundary condition �17� suggests a solution of
the form �0�� ,��=�f0���. This results in �18�

�0��,�� = C0��1 + � arctan���� , �20�

where C0=2R0B0 /�, which is plotted in Fig. 9 with the cor-
responding magnetic flux lines. Note that in the vicinity of
the edge this solution reduces to �0=C0�+O��2�, which is
equivalent to Eq. �3�.

Further, let us consider a perturbation of disk radius along
the azimuthal angle � of the form

R��,t� = R0 + R1
m��,t� ,

where R1
m�� , t�= R̂1

m�t�cos�m�� is a small perturbation with

generally time-dependent amplitude R̂1
m�t� for the wave num-

FIG. 7. Critical current amplitude vs the layer thickness. The
circles correspond to the measured total current amplitude for the
gap Lexp=17 mm between the metal surface and the lower side of
the inductor �11�. The theoretical curve corresponds to the best fit
with the effective gap with L	45 mm for a semi-infinite sheet and
L	28 mm for a sheet of finite height H=24 mm with a perfectly
conducting bottom.

FIG. 8. Sketch of a thin perfectly conducting disk in axial ac
magnetic field.

FIG. 9. Isolines of the base magnetic potential �r�0� and the
corresponding magnetic flux lines �r�0� around a circular disk.
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ber m, which is integer in this case. Perturbation of the disk
disturbs the magnetic potential as

���,�,�,t� = �0��,�� + �̂1
m��,�,t�cos�m�� + ¯ ,

where �̂1
m is the perturbation amplitude, which is associated

with the wave number m, and satisfies the equation

�

��

�1 − �2�

��̂1
m

��
� +

�

��

�1 + �2�

��̂1
m

��
�

−
m2��2 + �2�

�1 − �2��1 + �2�
�̂1

m = 0. �21�

Perturbation of the magnetic potential is related to that of the
radius by the edge condition ��r=R=0 resulting in

��̂1
m��→0 = − R̂1

m� ��0

�r
�

r→R0

=
R̂1

m

R0
�C0

�
�

�→0
. �22�

This perturbation vanishes with the distance from the disk,

i.e., �̂1
m��→�→0. Although Eq. �21� admits variable separa-

tion, such a solution is complicated by the edge singularity
�22�. Nevertheless, a compact analytic solution can be found
with the following original approach. First, note that if � is
a solution of the Laplace equation and � is a constant vector,
�� ·��� is a solution too. Second, if � satisfies a uniform
boundary condition �16� and � is directed along the bound-
ary, �� ·��� satisfies that boundary condition too. Third, the
operator �� ·�� changes the radial dependence of � from
��r−R0�� to ��r−R0��−1, while the azimuthal dependence
is changed from mode m to m+1. Algebra becomes particu-
larly simple when � is defined in the complex form as �
=ex+ iey =ei��er+ ie��. Then each application of the complex
operator �� ·��� is accompanied by the multiplication with
ei�. Thus, the solution for m=1 follows simply from the
axisymmetric basic state as

�̂1
1��,�� = − e−i�C1�� · ���0 = C1C0
1 − �2

1 + �2 �1/2 �

�2 + �2 .

Similarly, higher azimuthal modes can be found as �̂1
m

=e−im��� ·��m�̂0
m, where �̂0

m is an axisymmetric solution sat-
isfying Eq. �18�. From the edge condition

�� · ��m�0
m �

�0
m

�2m �
1

�

we obtain �0
m��2m−1 as �→0. Moreover, vanishing of per-

turbation far away from the disk �̂1
m��→�→0 implies that

along the disk �̂0
m��=0=c0

m�2m−1, where c0
m is a constant. The

corresponding axisymmetric solution of Eq. �18� can be rep-
resented as

�0
m��,�� = c0

m�
k=1

m

ck
mP2k−1���Q2k−1�i�� ,

where Pn�x� and Qn�x� are the Legendre polynomials and
functions of the second kind, respectively �16�; the expan-
sion coefficients are ck

m= �4k−1�Ik
m /Q2k−1�0�, where

Ik
m = �

0

1

�2m−1P2k−1���d� =
��21−2m�2m − 1�!

�m − k� ! ��m + k + 1/2�
.

Then the solution for perturbation amplitude can be written
as

�̂1
m = Dm−1Dm−2 ¯ D1D0�0

m, �23�

using the operator

Dm �
r

R0

1

�2 + �2
− �
�

��
+ �

�

��
� −

mR0

r
,

which is a spectral analog of �� ·�� acting on the azimuthal
mode m. Calculation of Eq. �23� is algebraically complicated
but can be done using MATHEMATICA �19�, which requires a
considerable amount of computer memory and, thus, is pos-
sible only for m�5. Nevertheless, this suffices to deduce the
general solution for arbitrary m,

�̂1
m��,�� = CmC0
1 − �2

1 + �2 �m/2 �

�2 + �2 ,

where the unknown constant Cm= R̂1
m /R0 follows from Eq.

�22�. It can easily be checked that the above solution indeed
satisfies both Eq. �21� and the edge condition �22� as well as
the impermeability condition �19�. As for the semi-infinite
sheet, the solution relative to the perturbed edge is obtained
by the coordinate transformation

��r� = ��r� + erR1
m� 	 �0�r�� +

��0�r��
�r

R1
m + �1

m�r��

= �0�r�� + �̃1
m�r��cos�m�� ,

where �̃1
m�r��=�̂1

m�r��−�̂1
1�r��. In the vicinity of the edge,

this reduces to ��� ,��= C̃0�+O��2�, where C̃0=C0�1− 1
2 �m

−1�R̂1
m /R0�. Note that there is no perturbation of the mag-

netic field with respect to the edge for m=1, because this
mode corresponds to the offset of the disk as a whole. In this
case, the field distribution moves together with the disk caus-
ing perturbation with respect to the original position of the
disk, but not with respect to the disk itself. Perturbation am-

plitudes �̃1
m�r�� are plotted in Fig. 10 for modes m=2 and 3.

The time-averaged force on the edge follows from Eq.
�7�,

F = F0 + F1 = F0
1 − �m − 1�
R1

m

R0
� ,

where F0=�C0
2 / �8�0R0�=B0

2R0 / �2��0�. Similarly to the
semi-infinite sheet, the normal stress balance at the edge of
disk �10� results in

− �� ��

�t
�

r=R0

= K1� +
F1

l0
, �24�

where � is the surface tension of the disk. The hydro-
dynamic potential governed by Eq. �9� is found in cylindrical

coordinates as ��r ,� , t�=�̂m�t�rmcos�m��, while the
kinematic constraint vr=�� /�r�r=R0

=�R1
m /�t yields
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�̂m�t�=1/ �mR0
m−1�dR̂1

m /dt. The curvature perturbation of the
edge is

K1 = −
R1

m

R0
2 − �2R1

m =
R̂1

m

R0
2 �m2 − 1�cos�m�� .

Searching the edge perturbation as R̂1
m�t�=R1e
mt, where 
m

is in general a complex growth rate of the azimuthal mode m,
and substituting � and K1 into Eq. �24�, we eventually obtain


m
2 =

m�m − 1�
�0

2 
Bm

�
− m − 1� , �25�

where �0=��R0
3 /� is the characteristic time of capillary os-

cillations; Bm=B0
2R0

2 / �2�0l0�� is the dimensionless magnetic
Bond number characterizing the ratio of electromagnetic and
surface tension forces. Without the magnetic field �Bm=0�,
the growth rates for all modes are purely imaginary, 
m

= ± i�m−1��m, corresponding to capillary oscillations of an
inviscid disk. Increasing the magnetic field results in a de-
crease of the frequency of oscillations until the critical value
of Bm is attained, at which an exponentially growing mode
appears. According to Eq. �25�, the critical Bond number for
mode m, which is defined by the condition 
m�Bmc

m�=0, is
Bmc

m= �m+1��, m=2,3 , . . .. Note that for m=0 and 1, we
have 
m=0 regardless of Bm because the first mode is not
permitted by the incompressibility constraint for the layer of
fixed thickness under consideration here. The mode m=1, as
already noted above, corresponds to the offset of the disk as
a whole, which has no effect relative to the disk itself as long
as the external magnetic field is uniform. Thus, the first un-
stable mode is m=2, for which the instability threshold is
Bmc=3�. Similarly to the straight edge case considered
above, when Bm�Bmc the growth rate attains a maximum
at the wave number mmax defined by 
mmax

2 =
mmax−1
2 that

yields mmax=� 2
3Bm/��, where the square brackets denote the

integer part.

B. Comparison with experiment

In the experiment, a detailed description of which may be
found in �9�, a flat circular gallium drop of thickness d0
	6 mm and radius R0	30 mm was placed on a glass plate,
which was slightly concave to center the drop, and put into a
6-winding solenoidal coil supplied by ac current of f
	13 kHz frequency. At low currents in the coil, the drop
was observed to be nearly circular, as seen in Fig. 11�a�, and
remained such until the current exceeded some critical value,
after which the drop became noticeably distorted, as seen in
Fig. 11�b�. Further current increase resulted in the develop-
ment of more corrugated drop shapes shown in Fig. 11�c�.
According to the experimental observations, the circular
shape became unstable about the magnetic field induction
amplitude in the range 12.9�B0�23.5 mT. Assuming the
layer has approximately uniform curvature over the edge
thickness with the radius r0	d0 /2 that corresponds to an
arclength l0	�d0 /2, we find B0,c=��Bmc�0�d0 /R0
	13.4 mT for the critical Bond number Bmc=3�, where �
=0.718 N/m is the surface tension of gallium �20�. This
critical field strength is slightly higher than that in Fig. 11�a�
but considerably lower than that in Fig. 11�b�. For the latter
case we have Bm	30, which corresponds to the critical
wave number mc= �Bm/��−1=8 defining the range of lin-
early unstable modes 2�m�mc. Note that the shape seen in
Fig. 11�b� has m	8, which corresponds to the critical mode
for the given Bond number, although the fastest growing
mode in this case is mmax=6. Given the simplicity of our
theoretical model, these results may be thought to agree well
with the experiment. There may be several reasons that pre-

FIG. 10. Isolines of perturbation amplitudes of the magnetic
potential relative to the perturbed edge for the azimuthal modes m
=2 �a� and m=3 �b� plotted with the step 0.03 for CmC0=1.
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clude a better agreement with the experiment. First, the drop
seen in Fig. 11�b� has a significant perturbation amplitude
implying that its shape may be affected by nonlinear effects
that are not accounted for by this linear stability analysis.
Second, our model of a thin perfectly conducting sheet may
be too simple for the given experiment with the relative drop

thickness d0 /R0	0.2 and the skin depth �=1/��f��0
	2.3 mm, where �=3.7
106 �−1 m−1 is the electrical con-
ductivity of gallium �20�.

Note that our theory is developed for a disk of fixed thick-
ness which excludes mode m=0, while in the experiment the
upper surface of the layer is free and this mode is permitted.
Nevertheless, the theory is applicable also to this case be-
cause small-amplitude modes with m�1 are not coupled
with the mode m=0. The only difference is that the thickness
of the layer may vary depending on the magnetic field. But
once the equilibrium thickness is known, our theory can be
used to predict whether the droplet will remain circular on
the further increase of the magnetic field.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the linear stability of the edge of a thin
liquid metal layer subject to a transverse high-frequency ac
magnetic field. The metal layer was considered in the perfect
conductor approximation supposing the ac frequency to be
high so that the magnetic field is effectively expelled from
the layer, while the thickness of the layer was assumed to be
small relative to its lateral extension so that the layer could
effectively be modeled as a thin perfectly conducting liquid
sheet. First, we considered a general model of a semi-infinite
sheet with a straight edge. This model, admitting an analytic
solution, allowed us to identify a pinch-type instability of the
edge with the following simple mechanism. The magnetic
field bending around the edge of a perfectly conducting layer
creates a magnetic pressure on the edge trying to compress
the layer laterally. In the basic state with a straight edge, the
magnetic pressure, which is uniform along the edge, is bal-
anced by a constant hydrostatic pressure in the layer. Pertur-
bation of the edge in the form of a wave causes divergence of
magnetic flux lines at the wave crests and convergence in the
troughs. This redistribution is because the magnetic flux lines
along the sheet are perpendicular to the current lines. But
since the latter are aligned along the edge, the magnetic field
has to be perpendicular to it. Consequently, the magnetic
pressure is reduced at the crests and increased at the troughs,
which drives the instability. Note that in this model of a thin
sheet, the induction varies with the distance r from the edge
as �1/�r and, thus, it formally becomes singular at the edge.
We circumvented this singularity by considering the sheet to
have a small but nevertheless finite thickness d0. Then inte-
gration of the magnetic pressure, which scales as �1/d0,
over the thickness d0 resulted in a finite integral force on the
edge independent of its actual thickness. This allowed us to
obtain an analytical solution showing that the long-wave per-
turbations are unstable when the wave number exceeds some
critical value kc=F0 / ��l0�, which is determined by the linear
density of the electromagnetic force F0 acting on the edge,
the surface tension �, and the effective edge arclength l0. The
perturbations with wavelength shorter than critical are stabi-
lized by the surface tension, whereas the growth rate of long-
wave perturbations reduces as �k for k→0. Thus, there is
the fastest growing perturbation with the wave number kmax
=2/3kc. When the layer is arranged vertically, long-wave
perturbations are stabilized by the gravity, and the critical

FIG. 11. �Color online� Top view of a flat gallium drop in a
transverse ac magnetic field of 13 kHz frequency at various induc-
tion amplitudes B0: 12.9 mT �a�, 23.5 mT �b�, and 48.5 mT �c�.
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perturbation is characterized by the capillary wave number
kc=�g� /�. In this case, the critical linear density of electro-
magnetic force is F0,c=2kcl0�, which corresponds to the
critical current amplitude I0,c=4��kcl0L� /�0 when the mag-
netic field is generated by a straight wire at the distance L
directly above the edge. Next, we solved analytically the
linear stability problem for a thin circular disk placed in a
transverse uniform high-frequency ac magnetic field. It was
found that the circular shape of the disk becomes unstable
with respect to exponentially growing perturbation with the
azimuthal wave number m=2 at the critical magnetic Bond
number Bmc=3�. For Bm�Bmc, the wave number of the

fastest growing perturbation is mmax= �2 Bm/ �3���. These
theoretical results were found to be in reasonably good
agreement with available experimental data.
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