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The effective thermal conductivity of composites with embedded self-similar H-shaped fractal-like tree
networks is studied. It is found that the effective thermal conductivity of the composites with these networks
is related to the structures of the networks and the ratio of the component thermal conductivities: the longer the
branches, the lower the thermal conductivity; the smaller the ratio ��� of successive branch diameters, the
lower the thermal conductivity; the denser the network, the lower the thermal conductivity. It is also found that
the thermal conductivity of the H-shaped fractal-like tree networks does not obey Murray’s law. The present
results show that a network embedded in a composite plays an important role, and the thermal conductivity of
the network itself may be less than that of the original material by several orders of magnitude. Fractal-like tree
networks can significantly reduce the thermal conductivity compared to an equivalent single cylinder.
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I. INTRODUCTION

Tree networks have received increasing attention because
of their wide existence in nature, as in lungs, vasculatures,
botanical trees, and river basins, and their relevance to many
real systems and applications such as the worldwide web, the
internet, and social and energy transport networks. It has
been shown that in natural systems tree networks often give
the minimal resistance and optimal vascular diameter for
driving the blood in mammals and water in plants. These
mechanisms have recently been applied in design of energy
transport systems and cooling systems of electronic chips
due to increasing miniaturization of chips in microelectronic
equipment and the production of redundant heat.

Bejan �1–3� developed a solution to the fundamental
problem of how to collect the heat generated volumetrically
in a low-conductivity volume and then how to transfer the
heat to one point �heat sink�. The solution was obtained as a
sequence of optimization and organization steps. The se-
quence has a definite time direction; it begins with the small-
est building block �element system� and proceeds toward
larger building blocks �assemblies�, and then finds the opti-
mized shape and size of the assembly. It was shown that in
an optimal design the high-conductivity material forms a
treelike network, and this structure has the minimum thermal
resistance and minimum entropy generation if the total heat
flow rate is fixed and the volume fraction of high-
conductivity material is also fixed. Bejan calls this theory a
constructal theory. Neagu and Bejan �4� showed that the glo-
bal thermal resistance between a volume and one point can
be reduced to unprecedented levels by shaping the external
boundary of each volume element. The volume is covered in
a sequence of optimization and assembly steps that proceeds
toward larger sizes. The resulting architecture is a leaflike

tree structure with high-conductivity nerves and low-
conductivity leaves. The fractal-like character of these de-
signs and their relevance to the trend toward fractal-like
properties in natural flow structures are discussed. The au-
thors later extended their analysis to three-dimensional struc-
tures �5�. The geometry of each volume element, and the
shape and distribution of high-conductivity inserts are opti-
mized. The optimized architecture is pineconelike, with
high-conductivity nerves and low-conductivity filling and
heat-generating material. Recently, Gosselin and Bejan �6�
also considered the problem of cooling a two-dimensional
heat generating conducting volume with one heat sink, when
the internal structure is so small that the conventional de-
scription of conduction breaks down. The effective thermal
conductivity exhibits the “size effect,” and is governed by
the smallest structural dimension, which is comparable with
the mean free path of the energy carriers. According to the
constructal method, this starts at the elemental level, where
there is only one high-conductivity layer for collecting and
evacuating the heat. The shape of the smallest volume can be
optimized for minimal thermal resistance. The construction
reveals an internal multiscale structure shaped like a tree,
where the spaces between the smallest branches are ruled by
nanoscale heat transfer. It was shown that the transition from
regions with nanoscale heat transfer to regions with conven-
tional heat transfer is governed not only by the smallest di-
mensions, but also by heterogeneity �relative amounts of
high and low conductivity�. This constructal method and
principle have also been used to analyze the convective heat
transfer and pressure drop in fractal-like tree networks
�7–11�. The results indicate that these structures can increase
total convective heat transfer rate and offer the minimal re-
sistance to flow and minimal pressure drop in a fluid, com-
pared with the conventional parallel channels.

Usually, insulation materials such as foam and sponge
cannot sustain high mechanical strength although they have
good performance for heat insulation. However, if a treelike
branching structure consisting of a material of high mechani-
cal strength is placed in such an insulation material, a com-
posite with high mechanical strength is formed. It is ex-
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pected that its properties �mechanical, thermal, and
electrical� might be different from those of its original com-
ponents.

In this paper we study the thermal conductivity of a com-
posite with an embedded self-similar H-shaped fractal-like
tree structure or network based on the constructal theory and
the thermal-electrical analogy technique. The results might
find applications in design of insulating or conducting com-
posites and structures.

II. THERMAL CONDUCTIVITY OF COMPOSITES WITH
EMBEDDED FRACTAL-LIKE TREE NETWORKS

Bejan et al. �12� applied the method of thermodynamic
optimization to several classes of simple flow systems con-
sisting of T- and Y-shaped assemblies of ducts, channels,
and streams. In each case, the objective was to identify the
geometric configuration that maximized performance subject
to several global constraints. For simplicity in this analysis,
we start with the H-shaped structure, a possible smallest
structure. The H-shaped structure can be considered as a
doubled T-shaped structure. The self-similar H-shaped
fractal-like tree network structure of different branching lev-
els is shown in Fig. 1; it can be built by repeating a finite
number of elements shaped as H and by assuming a fixed
area �volume� and length ratio. This results in an increasing
number of channels with slender branches. If the volume of
all branches is neglected or stems are assumed to be infi-
nitely thin, the structures as shown in Fig. 1 are fractals �13�.
Figure 1�a� is the structure of fractal dimension D=2 and of
branching angle � yielding a plane-filling tree �13�; Fig. 1�b�
shows a typical branch of a half H due to symmetry at some
intermediate level k, i.e., the kth level of the network. Figure
1�c� is a structure of fractal dimension D=1.26, much below
2, producing a sparsely plane-filling tree �13�. Since the
present work deals with the self-similar tree networks with
finite volume branches, there is a possible smallest element
or unit structure �an H structure� because the daughter
branches may touch mother stems after finite repeats. There-
fore, the structures in this paper are called fractal-like tree
networks.

In Fig. 1�b�, dk and Lk are the branch diameter and branch
length of the kth level, respectively, and dk+1 and Lk+1 are,
respectively, the branch diameter and branch length of the
�k+1�th level. Each tube or cylinder branches into n �=2 in
Fig. 1� smaller ones.

We assume that each branch of the network is a smooth
cylinder or channel, which is composed of a material of high
thermal conductivity �, and of high mechanical strength,
such that this material also serves as the supporting material
in a matrix material and thus forms a composite. We also
assume that the left and right boundaries of this network
placed in a two-dimensional medium of low thermal conduc-
tivity are kept adiabatic, and the upper and lower boundaries
are, respectively, kept at higher temperature TH and lower
temperature TL �see Fig. 1�, so the one-dimensional heat flow
model is applicable. This one-dimensional heat flow model
was used to calculate the effective thermal conductivity of
heterogeneous media based on the thermal-electrical analogy
by many others �14–18�.

In order to calculate the effective thermal conductivity of
the composite, we first calculate the total thermal resistance
of the H-shaped fractal-like tree network shown in Fig. 1,
and due to symmetry, we take the second quadrant �upper
left part O-O�-O� in Fig. 1�a�� for analysis of thermal resis-
tance. The kth ��k−2�th� branching structure after m
�k=2m+1� iterations on an initially H-shaped structure is
shown in Fig. 2�a�. Figure 2�b� is the network of equivalent
thermal resistances of Fig. 2�a�, and Fig. 2�c� is the resis-
tance of the network. Since dk� �Lk, the thermal resistance
by the horizontal channel Lk−1 is neglected for simplicity.
From Fig. 2 and based on the series-parallel principle for
thermal resistance, the thermal resistance Rt,k can be found to
be

FIG. 1. Self-similar networks: �a� fractal dimension D=2 after
three �m=3� iterations �seven branching levels�, �b� construction of
two branches, and �c� fractal dimension D=1.26 after three itera-
tions �seven branching levels�.
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Rt,k =
Rk

2
+

RkRk−2

2Rk−2 + Rk
. �1�

In Eq. �1� we have neglected the resistance of the two hori-
zontal branches Lk−1 because the diameter of the branch Lk−1
is assumed to be much smaller than its length. The resistance
Rk in Eq. �1� can be expressed as

Rk =
Lk

�Ak
= R0� �

�2�k

�2�

where R0=L0 /��d0
2 /4=L0 /�A0 is the thermal resistance of

the 0 level branch cylinder or channel, a single cylinder or
channel, which is called an element in Bejan’s work �1�, and
A0=�d0

2 /4 is the cross-section area of the 0th cylinder or
channel, � is the thermal conductivity of the branching ma-
terial, L0 is the length of the 0 level branch cylinder or chan-
nel, �=dk+1 /dk, �=Lk+1 /Lk, and k satisfies k= �2m+1�, m
=1,2 ,3 , . . . . The case of m=0 represents the initial structure,
a 0 level or rank H-shaped structure. Yu and Yao �19,20�
calculated the percolation and heat conduction on self-
similar fractal geometries, Sierpinski-like gaskets, and Sier-
pinski carpets, using recursive algorithms to build the struc-
tures from the corresponding initial structures, the 0 stage,
level, or rank gasket and carpet. This method was also ap-
plied to calculate the effective thermal conductivity of fractal
porous media �17,18�.

In Eq. �1�, the cross-section area Ak of a branch is

Ak =
�

4
dk

2 =
�

4
d0

2�2k. �3�

Substituting Eqs. �2� and �3� into Eq. �1� yields

Rt,k = R0� �

�2�k�1

2
+

��/�2�k−2

2��/�2�k−2 + ��/�2�k� �4�

Since R0 is a constant, we therefore let R0=1 for simplicity.
Then we arrive at

Rt,k = � �

�2�k�1

2
+

��/�2�k−2

2��/�2�k−2 + ��/�2�k� �5�

This equation can also be considered as the dimensionless
thermal resistance of the kth level element �i.e., after the mth
interaction�, a basic element. We assign the resistance Rt,k as
Rt,m. Then one can calculate the total thermal resistance
Rt,m−1 after the �m−1�th iteration shown in Fig. 3. Due to the
similarity of the network, the total thermal resistance Rt,m−1
of the �m−1�th level is

Rt,m−1 = Rt,m�1

2
+

Rk−2

2Rk−2 + Rt,m
�

= Rt,m�1

2
+

��/�2�k−2

2��/�2�k−2 + Rt,m
� �6�

where m�2. It should be noted that the subscript �super-
script� k in Eq. �6� is in fact less than that in Eq. �5� by 2.
During iterations, instead of using the subscript k−4 for re-
sistance for Fig. 3, we still use the subscript �subscript� k
−2 for resistance, but k in Eq. �6� is reduced by 2 in each
iteration. For example, if one needs to find the total resis-
tance of a network after totally m=4 iterations. One should
set m=4 and to find k=9, one then inserts k=9 into Eq. �5� to
calculate Rt,k=Rt,m�=4�. Next, one inserts the obtained Rt,m

and k=7 into Eq. �6� to calculate Rt,m−1�=3�, and so on, until
one obtains Rt,1 �by inserting Rt,2 and k=3 into the right side
of Eq. �6��.

In this model, we assume that the fractal-like tree network
is embedded in a two dimensional medium or matrix; thus a
composite with two components �branched network and ma-
trix material� is formed. We also assume that one dimen-
sional heat flow passes through the composite. Therefore, the
network and the matrix are in parallel in thermal, and the
total effective thermal resistance of the composite can be
expressed as

FIG. 2. �a� The kth level network, �b� the corresponding thermal
resistance network, and �c� the total effective resistance of the
network.

FIG. 3. �a� The �kth−1� level network, �b� the corresponding
thermal resistance network, and �c� the total effective resistance of
the network.
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1

Rt,e
=

1

Rt,1
+

1

Rf
�7�

where Rf is the thermal resistance of the matrix material such
as a fluid, and Rf is expressed as

Rf =
Le

� fAf
�8�

where Le and Af are the effective length and cross-section
area perpendicular to the heat flow and are, respectively,

Le = 	
j=0

m

L2j+1 = L0�
1 − ��2�m+1

1 − �2 , �9�

Af = 2L0d0. �10�

In general, the volume of the network is small compared to
the matrix, so we neglect the volume of the network material
in calculation of Rf.

The total effective resistance of the composite �after m
iterations of the network� can also be defined by

Rt,e =
Le

�eAe
�11�

where �e is the effective thermal conductivity of the whole
composite, and Ae
Af is assumed �because the volume of
the network is assumed to be small compared to the matrix�.
The dimensionless effective thermal conductivity of the
whole composite �after m iterations of the network� can be
obtained from Eqs. �7� and �11� as

�+ =
�e

�
=

A0

L0

Le

Af
� 1

Rt,1
+

� f

�

L0

A0

Af

Le
� �12a�

=
� f

�
+

1

Rt,1

A0

L0

Le

Af
. �12b�

Inserting Eqs. �9� and �10� into Eq. �12� yields

�+ =
� f

�
+

1

Rt,1

�

8

d0

L0
�

1 − ��2�m+1

1 − �2 �13a�

=�1
+ + �2

+ �13b�

where

�1
+ = � f/� and �2

+ =
1

Rt,1

�

8

d0

L0
�

1 − ��2�m+1

1 − �2 . �13c�

In Eq. �13� Rt,1 is determined by Eq. �6�. Equation �13� pre-
sents the dimensionless total effective thermal conductivity
of composites with an embedded H-shaped fractal-like tree
network after m iterations. Equation �13� reveals that the first
term �1

† in Eq. �13� represents the contribution by the con-
ductivity ratio of matrix to network material, and the second
term �2

† can be considered as the dimensionless thermal con-
ductivity of the network. However, the term �2

† is not simply
the dimensionless thermal conductivity of the network. It
should be noted that the resistance Rt,1 in Eq. �13� is a func-
tion of the structural parameters �, �, and m, and �2

† is

closely related to the structural parameters of the network.
However, if a composite has embedded in it, instead of

the network, an equivalent single cylinder of length Le
�determined by Eq. �9�� and effective cross-sectional area Ae,
the total effective thermal conductivity of the composite can
be considered as that of the two portions �matrix and cylin-
der� in parallel. To calculate the total effective thermal con-
ductivity of the composite, we need to determine the resis-
tance of the equivalent cylinder. The cross-sectional area Ae
of the equivalent cylinder can be found from

Ae = V/Le �14�

where V is the total volume of conducting material with con-
ductivity � of the network, and the total volume V can be
found from

V = 	
j=0

m

4 j�d2j+1
2 L2j+1/4 = V0�2�	

j=0

m

4 j��4�2� j �15a�

=V0�2�
1 − �4�4�2�m+1

1 − 4�4�2 �15b�

where V0=�d0
2L0 /4 is the volume of a single cylinder/

channel at �initial� level 0. Equation �15� indicates that if
m=0, the total volume of conducting material with thermal
conductivity � is V=V0�2�=�d1

2L1 /4, which is exactly the
volume of a single cylinder or channel with diameter d1 and
length L1.

Substituting Eqs. �9� and �15� into Eq. �14� yields

Ae = �2A0
�1 − �4�4�2�m+1��1 − �2�
�1 − 4�4�2��1 − ��2�m+1�

. �16�

.
If we consider that the two portions, matrix and the cyl-

inder with length Le, cross-sectional area Ae, and conductiv-
ity �, are in parallel, the total thermal resistance of the com-
posite is

1

Rt,e
=

1

Rf
+

1

Re
�17�

where Rf is determined by Eq. �8� and Re=Le / ��Ae�, and
here Le and Ae are determined by Eqs. �9� and �16� respec-
tively. After tedious calculation, the total effective dimen-
sionless thermal conductivity of the composite is

�e

�
=

� f

�
+

�

8

d0

L0
�2 �1 − �4�4�2�m+1��1 − �2�

�1 − 4�4�2��1 − ��2�m+1�
�18a�

=�1
† + �2

†� �18b�

where

�2
+� =

�

8

d0

L0
�2 �1 − �4�4�2�m+1��1 − �2�

�1 − 4�4�2��1 − ��2�m+1�
�18c�

Equation �18� indicates that the dimensionless total effective
dimensionless thermal conductivity of the composite is also
comprised by two terms, the ratio ��1

+� of the component
conductivities and the thermal conductivity ��2

†�� of an
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equivalent cylinder with the same volume as the network.
But the second term �2

†� in Eq. �18� is not simply the thermal
conductivity of an equivalent cylinder. It is also clear that
Eq. �18� is different from Eq. �13�.

III. RESULTS AND DISCUSSIONS

With Eqs. �6� and �13�, we can easily calculate the corre-
sponding thermal conductivity. It should be noted that Eq.
�6� requires m�2. If one is only interested in the thermal
conductivity of a network after only one iteration �m=1�,
i.e., three total branching levels �with k=3� as shown in Fig.
2, one can find the thermal resistance from Eq. �5� when the
structural parameters � and � are given and then insert
Rt,m�=1� into Eq. �13� by assuming m=1 to find the effective
thermal conductivity of the composite.

For general cases, i.e., cases of m�2, the algorithm for
the dimensionless total effective thermal conductivity of
composites with embedded H-shaped fractal-like tree net-
works is summarized as follows: �1� Given the structural
parameters �, �, m, and the ratio � f /�, �2� calculate the
dimensionless resistance Rt,k after m iterations from Eq. �5�
by setting k=2m+1, and set Rt,k=Rt,m after Rt,k is obtained.
�3� calculate Rt,m−1 from Eq. �6� according to
k=2�j− l�+1, j=m, m−1, . . . ,3 ,2, until Rt,1 is found and, �4�
insert the obtained Rt,1 and the ratio � f /� into Eq. �13a� to
obtain the dimensionless total effective thermal conductivity
�† of the composites. Step 3 is repeated until m=2.

Figure 4 presents the term �2
† in Eq. �13� versus the diam-

eter ratio � at different m and � obtained by the present
model. The term �2

† can be considered as the dimensionless
thermal conductivity primarily obtained from the contribu-
tion from the network geometric parameters. From Fig. 4 it
can be seen that the term �2

† decreases with the increase of
the length ratio �. This is expected because a higher length
ratio � implies longer branches, leading to higher resistance
and to lower thermal conductivity. Figure 4 also denotes that
the term �2

† decreases with increase of the branching levels
m. This can be explained as follows. When iterations m in-
crease, the network becomes densely filled with much slen-
derer branches, leading to increase of the thermal resistance
and to decrease of thermal conductivity. Figure 4 also reveals
that the term �2

† decreases with decrease of the diameter ratio
� and is lower than the thermal conductivity of the original
material by several orders of magnitude. This means that the
networks may be used as thermal insulation composities or
structures. However, it should be noted that when �
�0.707, the thermal conductivity �2

† continuously increases.
This phenomenon implies that no optimal diameter ratio �
exists in such H-shaped fractal-like tree networks, and the
effective thermal conductivity for the H-shaped fractal-like
tree network does not obey Murray’s law �21�. On the other
hand, the case with ��0.707 �and ��0.707� may also cause
overlapping within limited iterations although this case
might provide a network with higher thermal conductivity
than that of its original material. From Fig. 4 we find that the
dimensionless thermal conductivity �2

† scales with the diam-
eter as �1

†��4.3m.

Figure 5 shows the dimensionless thermal conductivity �2
†

versus iterations m at different length ratios and different
diameter exponents. The results show that the dimensionless
thermal conductivity �2

† decreases with increase of the itera-
tions m, and no asymptotic value is observed as m increases.
It is again interesting to see that the dimensionless thermal
conductivity increases with m when �=0.5 and �=0.707
�see Fig. 5�d��. This can be explained as follows: �=0.707 is
the maximum possible diameter ratio for preserving area and
�=0.5 is the minimum possible length ratio, leading to the
minimum thermal resistance and thus to the maximum ther-
mal conductivity.

Figure 6 shows the total effective dimensionless thermal
conductivity �by Eq. �13�� of composites with embedded net-
works at different diameter ratios and different length ratios.

FIG. 4. �Color online� �2
† versus diameter ratios

��=0.2–0.707� at different m and �.
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It is found that the total effective dimensionless thermal con-
ductivity is dominated by the thermal conductivity ratio of
matrix material to network material, � f /�, if the ratio � f /� is
higher than a certain value depending on the diameter ratio
�. For example �see Fig. 6�a��, when �=0.707 and � f /�
�0.20, the total effective dimensionless thermal conductiv-
ity is mainly determined by the term �1

† due to the lower
thermal conductivity of the network. However, when � f /�
�0.20, the total effective dimensionless thermal conductiv-
ity is mainly governed by the term �2

†. This means that the
network plays an important role when � f /��0.20. The fig-
ure again shows that the total effective dimensionless ther-
mal conductivity decreases with decrease of the diameter ra-
tio �, this is expected.

Figure 7 compares the thermal conductivities due to the
term �2

† in Eq. �18� with those due to the term �2
† in Eq. �13�.

It can be found that the thermal conductivity due to �2
† in Eq.

�13� is much lower than that due to �2
† in Eq. �18�. This

means that although both cases, the fractal-like tree network
and the equivalent single cylinder, have the same bulk ther-
mal conductivity �, the H-shaped fractal-like tree networks
significantly reduce the thermal conductivity compared to the
equivalent single cylinder.

Figure 8 compares the effective thermal conductivities by
the different models Eqs. �13a� and �18a�. The results clearly
indicate that the model Eq. �18a�, which is equivalent to the
parallel situation of matrix and a single channel with the
same volume material as the network, provides much higher
�about one order of magnitude; see Fig. 8�c�� thermal con-
ductivity than that obtained by Eq. �13a�, which is equivalent
to the parallel situation of the matrix and the network with

FIG. 5. �Color online� �2
† versus iterations m at different � and

�.

FIG. 6. �Color online� The effective thermal conductivities at
�= �a� 0.707, �b� 0.632, and �c� 0.577.
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the same volume material as a single channel. This means
that a composite with embedded fractal-like tree network can
provide much lower thermal conductivity as the ratio � f /� is
lower than a certain value such as 0.1 as shown in Fig. 8�c�,
depending on the values of � and �. This implies that a
composite embedded with the fractal-like tree network might
be particularly useful for design of insulating devices/
equipments.

IV. CONCLUSIONS

In this paper, we have studied the effective thermal con-
ductivity of composites with embedded H-shaped fractal-like
tree networks. The effective thermal conductivity of such
composites consists of two portions: the ratio of component
conductivities and the portion primarily related to the net-
works. When the ratio of component conductivities is higher
than a certain value, the thermal conductivity of the compos-
ite is mainly determined by the matrix. Otherwise, the ther-
mal conductivities of both portions have important effects on
the total thermal conductivity of the composite. It is found
that the thermal conductivity of the networks is closely re-
lated to the geometry of the networks; the longer the
branches, the lower the thermal conductivity; the effective
thermal conductivity decreases as � decreases; the effective
thermal conductivity of the networks is less than that of the
original material by several orders of magnitude when the
branches become slenderer and the network becomes denser
�i.e., at high iterations m�. It is found that the dimensionless
thermal conductivity of the network scales as the diameter
exponent �, �2

†��4.3m. It is also found that the thermal con-
ductivity of the H-shaped fractal-like tree networks does not
obey Murray’s law. The properties of the H-shaped fractal-
like tree networks might have application for designing in-
sulating or conducting structures such as space equipment.
The fractal-like tree network structures can provide much
lower thermal conductivity than that of an equivalent single
cylinder.
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