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We study spatiotemporal patterns resulting from instabilities induced by nonlocal spatial coupling in the
Oregonator model of the light-sensitive Belousov-Zhabotinsky reaction. In this system, nonlocal coupling can
be externally imposed by means of an optical feedback loop which links the intensity of locally applied
illumination with the activity in a certain vicinity of a particular point weighted by a given coupling function.
This effect is included in the three-variable Oregonator model by an additional integral term in the photo-
chemically induced bromide flow. A linear stability analysis of this modified Oregonator model predicts that
wave and Turing instabilities of the homogeneous steady state can be induced for experimentally realistic
parameter values. In particular, we find that a long-range inhibition in the optical feedback leads to a Turing
instability, while a long-range activation induces wave patterns. Using a weakly nonlinear analysis, we derive
amplitude equations for the wave instability which are valid close to the instability threshold. Therein, we find
that the wave instability occurs supercritically or subcritically and that traveling waves are preferred over
standing waves. The results of the theoretical analysis are in good agreement with numerical simulations of the
model near the wave instability threshold. For larger distances from threshold, a secondary breathing instability
is found for traveling waves.
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I. INTRODUCTION

The interplay between nonlinear local kinetics �bistable,
excitable, or oscillatory� and short-range spatial coupling in
reaction-diffusion systems is the origin of a large variety of
spontaneously formed spatiotemporal patterns. Many differ-
ent patterns such as traveling fronts, solitary pulses, periodic
pulse trains, spiral waves, and spatiotemporal chaos have
been observed �1,2�. On the other hand, long-range spatial
communication arises naturally in various systems. The ex-
istence of this nonlocal coupling can significantly enlarge the
spectrum of emerging patterns. Examples of nonlinear sys-
tems with nonlocal spatial coupling can be found in many
different fields. They include electrochemical systems �3–5�,
neural tissue �6�, chemical reactions �7,8�, amplitude equa-
tions with nonlocal terms �9,10�, and models of population
dynamics �11–14�.

In electrochemical systems, nonlocal coupling is mediated
by the electric field in the electrolyte and gives rise to unex-
pected phenomena such as remote triggering of activation
fronts �3�, Turing-type patterns �4�, and asymmetric standing
waves �5�. Neural tissue provides a further example of long-
range spatial communication as axons connect neurons over
large distances �6�. Recently, a generic reaction-diffusion
system with nonlocal spatial coupling was analyzed in �8�.
Here the nonlocal coupling results from the adiabatic elimi-
nation of a fast variable. As a consequence of this nonlocal
coupling, moving localized patches of traveling wave pat-

terns embedded in a stationary Turing pattern background
�and vice versa� have been observed �8�.

Sometimes, the range of nonlocal coupling is very large
and corresponds practically to global coupling. Intensively
studied examples of such systems are catalytic surface reac-
tions as, for example, the CO oxidation on Pt�110� single
crystal surfaces under ultrahigh vacuum conditions �15–17�.
Because the mean free path of the CO molecules in the gas
phase is much larger than the size of the reaction chamber, a
local perturbation in the CO partial pressure caused by ad-
sorption of a CO molecule will be immediately spread out
over the whole surface. This intrinsic global coupling
through the gas phase has been shown to induce cluster and
wave instabilities �16� and to be very useful in controlling
spatiotemporal chaotic states �17�.

In this paper we want to consider the effects of nonlocal
spatial coupling in a realistic model for a chemical reaction.
One of the best studied examples of chemical pattern forma-
tion is certainly the Belousov-Zhabotinsky �BZ� reaction
�18,19�. After the pioneering work of Kuhnert in 1986 �20�, a
modification of the classical reaction that uses the light-
sensitive complex Ruthenium-4,4�-dimethyl-2 ,2�-bipyridyl
�further abbreviated as Ru�dmbpy�3

2+� as redox catalyst, has
attracted much attention. In the modified reaction illumina-
tion with light �460 nm� results in the release of bromide via
reduction of bromomalonic acid by the photochemically ex-
cited Ru�dmbpy�3

2+ ion. Bromide is the inhibitor of the reac-
tion that controls the excitability of the system. Therefore,
the light-sensitive variant of the BZ reaction offers the appli-
cation of a wide variety of external perturbations to control
pattern formation. It has been successfully employed in the
periodic forcing of spiral waves in the excitable regime
�21,22� and in resonant forcing of phase patterns under os-
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cillatory conditions �23,24�. Further applications of the light-
sensitive BZ reaction include the study of wave dynamics in
the presence of external fluctuations as, for example, noise-
supported wave propagation �25�, and Brownian motion of
spiral waves subjected to spatiotemporal external noise �26�.
Reported experimental results under global feedback include
the observation of oscillatory cluster patterns �27� and the
control of spiral wave dynamics in excitable domains of dif-
ferent shapes �28–30�.

Hildebrand et al. have externally imposed nonlocal spatial
coupling in light-sensitive BZ media through an appropriate
optical feedback loop �7�. The intensity of the applied illu-
mination in a given point of the medium has been deter-
mined by the activity in an extended neighborhood of that
point. The authors reported spatial domains containing spiral
waves on a stationary background which result from a non-
local coupling with short-range activation and long-range in-
hibition.

A possible experimental setup for the externally imposed
nonlocal spatial coupling in light-sensitive BZ media is
shown schematically in Fig. 1. A continuously fed open re-
actor is used to maintain stationary nonequilibrium condi-
tions. The reaction takes place in a thin gel layer where the
light-sensitive catalytic complex is fixed. Details concerning
the reactor and the method of gel preparation are given in
�31�. The emerging concentration pattern of the oxidized
form of the catalyst is detected in transmitted light by a
charge-coupled device camera and digitized with a frame
grabber for immediate processing by the computer. Based on
the recorded data, a control signal is generated according to
the specified feedback algorithm. In the video projector this
signal is transformed into a corresponding space and/or time
dependent intensity distribution that is applied to the gel
layer. The characteristics of the feedback-mediated nonlocal
coupling as, for example, the coupling function or the cou-
pling range can be chosen arbitrarily �see below�.

In this work, we study the three-variable Oregonator
model with an additional integral term that takes into account
a nonlocal spatial coupling as described in the schematic
experimental setup. Earlier, a similar study was conducted
for the two-variable Oregonator model �7�, wherein a Turing
instability was reported as a result of nonlocal spatial cou-
pling. Here, the main focus is on the analysis of a wave

instability in the three-variable model. Such an instability
cannot be captured by the simpler two-variable model. We
note that a wave instability and the resulting patterns have so
far not been found experimentally in the BZ reaction in an
open reactor. However, such patterns have recently been dis-
covered in the BZ reaction in a microemulsion under batch
conditions �32�.

This paper is organized as follows. In the next section we
present the model to be studied and specify the nonlocal
spatial coupling considered in this paper. The linear stability
of the steady state is discussed in Sec. III. In Sec. IV we
perform a weakly nonlinear analysis and derive a set of
coupled amplitude equations for the slowly varying ampli-
tudes of the bifurcating solutions. These equations allow us
to analyze the properties of the spatiotemporal patterns
emerging beyond the wave instability. In Sec. V we compare
our theoretical predictions with numerical simulations of the
reaction-diffusion model. We conclude with a summary and
a discussion of the main results.

II. THE MODEL

In 1990, Krug et al. proposed an extension of the well-
known Oregonator model of the BZ reaction to account for
the influence of light when the light-sensitive catalytic com-
plex Ru�dmbpy�3

2+ is used. They assumed that under illumi-
nation the reduced form of the catalyst becomes photochemi-
cally excited and causes the release of the reaction inhibitor
bromide �33�. Consequently, an additional bromide source
was introduced into the bromide balance of the Oregonator
model which in first approximation was considered to be
proportional to the intensity of applied illumination. Let us
consider this modified three-variable Oregonator model in
one spatial dimension:

FIG. 2. �a� Stability of the homogeneous stationary state of the
three-variable Oregonator model according to Eq. �1� in the �0−�
parameter plane. Below the Hopf bifurcation �full line� small am-
plitude uniform oscillations arise �light gray area�. Large amplitude
relaxation oscillations �dark gray area� result from a Canard explo-
sion �dashed line�. �b� Bifurcation diagram obtained for �
=0.090 91 �the thin dotted vertical line in �a� corresponds to this �
value�. The full �dotted� line indicates the stable �unstable� homo-
geneous stationary state. The dashed line limits the oscillation range
of the u variable. Small circles in �a� and �b� mark the �0 and �
values used throughout the paper.

FIG. 1. Sketch of a possible experimental realization for nonlo-
cal spatial coupling in a light-sensitive pattern forming reaction
using an open gel-reactor.
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�tu =
1

�
�u − u2 − w�u − q�� + �x

2u , �1a�

�tv = u − v , �1b�

�tw =
1

��
���x,t� + fv − w�u + q�� + ��x

2w . �1c�

Here u, v, and w are the dimensionless concentrations of
HBrO2, Ru�dmbpy�3

2+ and Br−, respectively. The parameter
�=Dw /Du denotes the ratio of the diffusion constants of w
and u �there is no diffusion in the second equation as the
catalyst is fixed in the gel matrix�. The characteristic time
scale of u is �. Time scales of u and w depend both on the
recipe concentrations and are related by a proportionality
factor � �34,35�. Typically the bromide concentration w is
the fastest variable of the Oregonator kinetics and conse-
quently ��1.

��x , t� denotes the photochemically induced bromide
flow. Following �33�, this quantity is assumed to be propor-
tional to the applied light intensity and consequently should
be always non-negative. For the sake of simplicity, in this
paper we will refer to ��x , t� in Eq. �1� as the light intensity.

For ��x , t��0, the Oregonator model for the standard BZ
reaction is recovered �35,36�. Following the parameter esti-
mation done in Refs. �31,37�, we choose the following pa-
rameter values �=1.12, �=0.011, q=0.002, and f =2.1 and
keep them fixed throughout this paper. In the absence of
illumination these parameter values represent oscillatory
conditions. The restriction to the spatially one-dimensional
case allows the derivation of amplitude equations and en-
ables systematic numerical simulations. In experiments, a
quasi-one-dimensional setup can be achieved if the BZ reac-
tion is allowed to take place in a small channel or a ring of
thin width.

A. Uniform illumination

Let us first consider the case of an illumination uniform
in space and time, i.e., ��x , t�=�0=const. This case
has been discussed previously in �33�. With the parameters
�, q, f specified above and for any value of �0 the model
of Eq. �1� has a unique homogeneous stationary state
X0��u0 ,v0 ,w0�, where u0=u0��0� is a real solution of
u−u2− ��0+ fu��u−q� / �u+q�=0 with u0�q, v0=u0 and
w0= ��0+ fu0� / �u0+q�.

FIG. 3. Results of the linear stability analysis of the Oregonator model Eq. �1� with nonlocal spatial coupling as defined in Eqs. �2� and
�3�, for 	0=0.000 55 and �=0.090 91. In �a� the instability lines are shown in the control parameter plane spanned by the inverse nonlocal
coupling range 
 and the coupling strength �. The full and dashed lines correspond to the threshold for wave and Turing instability,
respectively. In the white region the homogeneous stationary state is stable. The light- and dark-gray regions correspond to the locations
where wave and, respectively, Turing-like patterns are expected. In �b� the critical wave numbers for the Turing �kT

c� and the wave �kW
c �

instability are plotted as a function of the inverse coupling range 
. The dispersion relations shown in �c�, �d�, and �e� apply to locations
marked by small circles in �a�. �c� corresponds to the Turing instability, �d� to a situation where the homogeneous stationary state is stable,
and �e� to the wave instability.
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This homogeneous stationary state undergoes a Hopf bi-
furcation if the control parameter �0 �� light intensity� is
small enough. The Hopf bifurcation in the parameter space
spanned by the light intensity �0 and the characteristic time
scale of the activator � is shown in Fig. 2�a�.

After crossing the dashed line in Fig. 2�a�, large amplitude
relaxation oscillations emerge due to a so-called Canard ex-
plosion �38�. The sharp increase in the oscillation amplitude
is shown in the bifurcation diagram Fig. 2�b� where the u
amplitude is plotted versus �0 on a logarithmic scale. For the
chosen value of � we find uniform oscillations around the
homogeneous stationary state for �0
0.000 505. The Ca-
nard explosion takes place at �0�0.0002.

B. Nonlocal spatial coupling mediated by optical feedback

Throughout this paper we consider a nonlocal coupling
realized through a space-time-dependent illumination or pho-
tochemically induced bromide flow according to

��x,t� = �0 + ��
−�

�

K�y��v�x + y,t� − v�x,t��dy , �2�

where for the coupling function we choose

K�y� = e−
�y�. �3�

Here, � denotes the coupling strength while 1 /
 charac-
terizes the coupling range. The sign of � indicates whether
the nonlocal spatial coupling is inhibitory ���0� or activa-
tory ��
0�. In the following, we consider � and 
 as the
main control parameters.

According to Eq. �2�, to determine the light intensity ap-
plied to a given point x at time moment t the actual differ-
ence in light transmission between that point and the other
points of the medium has to be measured. This can be readily
done with the experimental setup sketched in in Fig. 1. For
simplicity we also neglect a time delay in the feedback loop
imposed externally or possibly induced by internal latency
effects. Nonlocal coupling enters into the dynamics exclu-
sively through the actual concentration v�x , t� of the oxidized
form of the catalyst that is monitored experimentally. Note
that the nonlocal coupling, as defined in Eq. �2�, vanishes
both for the homogeneous stationary state and for spatially
uniform oscillations. This property is very convenient since
the nonlocal term does not change the location of the homo-
geneous stationary state of the model. In contrast, the nonlo-
cal coupling strongly influences the stability properties of the
homogeneous stationary state as will be discussed in the next
section. Recall also that only values ��x , t��0 have a physi-
cal meaning.

III. LINEAR STABILITY ANALYSIS

In this section we will consider the linear stability of the
unique homogeneous stationary state with respect to spatial
perturbations. Here and in the remaining part of the paper we
will fix the activator time scale to �=0.090 91 and the ho-
mogeneous light intensity, to �0=0.000 55 �the same values
as used in Fig. 2�b��.

To study the stability of the homogeneous stationary state
X0 with respect to perturbations proportional to eikx−��k�t, we
have to analyze the linear eigenvalue problem ��k�X
=J�k�X. The stability matrix �Jacobian� J�k� is given by

J�k� =	
1 − 2u0 − w0

�
− k2 0

− �u0 − q�
�

1 − 1 0

− w0

��

��2
/�k2 + 
2� − 2/
� + f

��

− �u0 + q�
��

− �k2
 .

Eigenvalues ��k�����k�+ i���k� of this matrix with a nega-
tive real part ���k� indicate stability of the reference state.
The dispersion relations �1�k�, �2�k�, and �3�k� reveal that
the homogeneous stationary state can be destabilized under
nonlocal spatial coupling either by a Turing or a wave insta-
bility. Figure 3�a� shows the corresponding stability bound-
aries in the parameter plane spanned by the coupling strength
� and the inverse coupling range 
. While for positive val-
ues of � a Turing instability occurs, a wave instability takes
place for �
0. In Fig. 3�c� an example of the dispersion
relation of the three eigenvalues of the Jacobi matrix is plot-
ted at the Turing instability. The threshold parameters and the
critical wave number kT

c follow from the condition �1��kT
c�

=�1�kT
c�=0 �where �1 denotes the dominating eigenvalue

with the smallest negative real part�. For the wave instability
�see Fig. 3�e��, the critical value �W

c �
� and the critical wave
number kW

c are obtained from the condition �1��kW
c �=0, where

�1��kW
c �= ±�0�0. Figure 3�b� shows how the critical wave

number for Turing and wave instability depend on the in-
verse coupling range. Both kW

c and kT
c are proportional to �
.

This property is very interesting because it provides a way to
select an experimentally convenient wave number by chang-
ing the coupling range.

It is worth mentioning that there is no wave instability in
the two-variable version of the Oregonator model with non-
local spatial coupling that is obtained by an adiabatic elimi-
nation of the fastest variable w in the Oregonator kinetics
�for more details see Appendix A�. Thus, in contrary to the
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Turing instability that can be studied in the two-variable Or-
egonator model with nonlocal spatial coupling �7�, we have
to base the study of the wave instability induced by long-
range spatial communication on the full three-variable
model. From the experimental point of view, the latter is
more realistic because it includes the diffusion of the inhibi-
tor bromide. For these reasons in the next section our focus
will be on the weakly nonlinear analysis of the wave insta-
bility in the three-variable Oregonator model with nonlocal
spatial coupling Eqs. �1�–�3�.

IV. AMPLITUDE EQUATIONS FOR THE WAVE
INSTABILITY

In this section, we investigate the amplitude equations in
the vicinity of the wave instability. These equations can be
derived using the approach developed in �39� for reaction-
diffusion systems with nonlocal spatial coupling. For sim-
plicity, in this paper we will not consider spatial modulations
of the wave amplitude.

Near the wave instability, we can expand the deviations
from the homogeneous stationary state in a power series with
respect to the distance to the instability threshold which is
assumed to be small �40,41�. More precisely, we define a
small parameter � as �−�W

c =��1+�2�2+¯ and expand the
fields �u ,v ,w� with X=X0+�X1+�2X2+¯. Next, we use a
multiple scale ansatz to substitute the time derivative with
�t+�2��+¯, where � is a slow time scale. We then insert
these expansions in Eqs. �1�–�3� and sort the outcome in
different orders of �.

The ansatz solving the lowest order equation reads

X1 = �AL���UWei��ct+kW
c x� + AR���UWei��ct−kW

c x� + c.c�/2,

where UW is the �complex� null eigenvector of the Jacobian
J�k� at the wave instability. AL,R�C are the amplitudes of the
left- and right-traveling waves, and c.c. stands for the com-
plex conjugate. The solvability condition for the equation of
order �2 provides us with a set of two coupled nonlinear
equations. After transforming back to the original variable t,
these equations read

�tAL
� = �WAL

� − gWW�AL
��2AL

� − gRL�AR
��2AL

�, �4a�

�tAR
� = �WAR

� − gWW�AR
��2AR

� − gRL�AL
��2AR

� , �4b�

where AL,R
� =�AL,R, �W���−�W

c ��2 and the coefficients �2,
qWW, and gRL are complex. The general expression of these
coefficients as a function of the model parameters is quite
involved and not shown here.

The set of coupled amplitude equations �4� describes the
slow variation of the left- and right-traveling wave ampli-
tudes. They allow us to make some predictions about these
waves and their nonlinear interactions. Indeed, from the
value of the complex coefficients in front of the nonlinear
terms of Eq. �4�, we can gain insight into the nature of the
wave instability and the properties of patterns selected near
to it.

The wave instability is supercritical �subcritical� if gWW�
�0 �gWW� 
0�. In Fig. 4 we plot gWW for different values of
the homogeneous light intensity �0 as a function of the in-
verse coupling range 
. For values of �0
0.000 504 5, the
system undergoes a homogeneous Hopf instability. Above
this value a wave instability is possible. The 
 range for
which it is supercritical decreases as �0 increases. A general
observation is that the instability will typically become sub-
critical when we decrease the coupling range. In Fig. 4�b� we
plot, as an example, the value of gWW� for �0=0.000 55
showing this transition. Equations �4� allow us also to predict
if either standing or traveling waves will be selected in the
supercritical case gWW� �0. If the cross coupling coefficient
hRL�gRL� /gWW� �1, then traveling waves will be selected. Al-
ternatively for 1�hRL�−1, standing waves will be ob-
served. In Fig. 4�c� the value of hRL is plotted as a function
of the inverse coupling range, for �0=0.000 55. In this case,
since hRL�1, a weakly nonlinear analysis predicts that trav-
eling waves are always preferred over standing waves.

V. NUMERICAL SIMULATIONS OF WAVE PATTERNS

To supplement the predictions from the linear stability
analysis and amplitude equations, we have performed direct

FIG. 4. Results obtained from the amplitude equations. In �a�, regions in the �0−
 parameter plane ��=0.090 91� where the wave
instability is supercritical �subcritical� are indicated in middle gray �light gray�. For �0
0.000 505 the homogeneous stationary state
undergoes a supercritical Hopf bifurcation to spatially homogeneous oscillations. This region is indicated in dark gray. In �b� and �c� the
values of the real part of the coefficient gWW and the cross coupling coefficient hRL=gRL� /gWW� are plotted as a function of 
 for �0

=0.000 55 �this value of �0 is indicated with two arrows in �a�, and corresponds to same parameter values as used in Fig. 3�. With increasing

, the character of the wave bifurcation changes from supercritical to subcritical at 
=0.3418.
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numerical simulations of the underlying reaction-diffusion
equations Eq. �1� with nonlocal spatial coupling as defined in
Eqs. �2� and �3�. In all numerical simulations we have used a
finite difference scheme and employed periodic boundary
conditions. The outcome of the linear stability analysis is
fully confirmed by these simulations. Beyond the instability
thresholds, the predictions of the amplitude equations are
confirmed for small amplitude patterns. However, we also
find that, if the amplitude of the patterns is large, the quantity
��x , t� may become negative in some locations and times. A
negative value of the light intensity is physically not pos-
sible. To prohibit values of ��x , t�
0, we have replaced Eq.
�2� by

��x,t� = ��0 + ��
−�

�

K�y��v�x + y,t� − v�x,t��dy
����x,t�� ,

�5�

The introduced cutoff becomes relevant for patterns with
larger amplitudes as will be illustrated by comparison of
simulations with and without the cutoff.

In the previous section, the wave instability was predicted
to be supercritical in a broad region of the parameter space.
Traveling waves were found to be preferred over standing
waves. These predictions are confirmed by the numerical
simulations. Figure 5�a� shows a space-time plot of a right-
traveling wave typically obtained near the instability thresh-
old. Since the amplitude of the traveling wave is small �cf.

Figs. 5�b� and 5�c��, ��x , t� remains always positive, com-
pare the snapshot of ��x� in Fig. 5�c�. In this case, our nu-
merical results agree well with those obtained in the frame-
work of the weakly nonlinear analysis. In Fig. 6�a� the
amplitude of the waves is plotted as a function of the cou-
pling strength �. The wave amplitude increases ����−�W

c �,
as predicted by the amplitude equation.

However, increasing the distance from the instability
threshold, we find a secondary bifurcation for traveling
waves with wave numbers close to kW

c . This secondary bifur-
cation corresponds to a breathing of the waves width and
amplitude �42�. In Fig. 6�b� a space-time plot of a modulated
traveling wave is shown. From the temporal evolution of the
difference between the minimum and maximum values of the
wave amplitude follows �see Fig. 6�c�� that the wave ampli-
tude changes periodically in the modulated wave pattern.

If we increase the coupling strength even further, i.e., de-
crease � towards more negative values, we enter into a re-
gion where � can become negative. In this case we have
performed numerical simulations with the described cutoff

FIG. 5. Wave pattern obtained by a numerical simulation of Eqs.
�1�–�3� for �=−0.031 and 
=0.1 �consequently, �W

c =−0.027 62
and kW

c =0.1349�. In �a� we show a space-time plot of v with dark
�light� areas representing high �low� values. The spatial profiles of
u, v, w, and � are shown in �b� and �c�, at the same time instant
t=16.384 �the total integration time�.

FIG. 6. �a� The full line indicates the amplitude �vmax−vmin�
of traveling waves emerging beyond the wave instability �
=0.1,
�0=0.000 55, k=kW

c =0.1349�. Note a secondary instability leading
to modulated traveling waves. vmax �vmin� denote the maximal
�minimal� value achieved in this modulated wave pattern by the v
field at a given time �dashed lines�. �b� Space-time plot of a modu-
lated traveling wave obtained with a �=−0.033 wave pattern.
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and without it. In the physical meaningful model with the
cutoff, a stable traveling wave develops. The amplitude of
this traveling wave is large and contains extended regions
where ��x , t�=0. An example of such a wave is shown in
Figs. 7�a� and 7�b�. In the simulations without cutoff the
system displays a nonsteady behavior of the waves and their
amplitudes. An example of this behavior is shown in Figs.
7�c� and 7�d�. Initially, the wave amplitude grows until a
threshold is reached where the waves collapse to very small
amplitudes. After a while, new waves appear and collapse
again until the cycle of growth and decay starts again. In this
case, the field � has extended regions where it assumes un-
physical negative values. Consequently, the observed behav-
ior is an artefact of the coupling function in Eq. �2� and
shows the necessity to introduce a cutoff according to
Eq. �5�.

VI. CONCLUSIONS

In this paper we study a modified Oregonator model de-
scribing an experimentally feasible implementation of non-
local spatial coupling in the BZ reaction based on an optical
feedback loop. In order to explore the possible effects of this
nonlocal coupling we have performed a theoretical and nu-
merical analysis of the three-variable Oregonator model in
one spatial dimension extended by an integral term repre-

senting the nonlocal coupling. While neither Turing nor
wave instabilities are present in the standard Oregonator
model, these instabilities can be induced in our generalized
model with nonlocal spatial coupling. The wave instability is
caused by a long-range activation, while the Turing instabil-
ity stems from a long-range inhibition introduced by the non-
local spatial coupling. The Turing instability had already
been reported in a two-variable Oregonator model with a
different type of nonlocal spatial coupling �7�. We demon-
strated here that the wave instability is not reproduced by
such a simpler model approach. Therefore, we have focused
our study on the phenomena related to the wave bifurcation.
We derived coupled equations for the temporal dynamics of
the amplitudes of left- and right traveling waves and found
therein parameter regimes where the wave instability is su-
percritical or subcritical. In the supercritical regime, the am-
plitude equation predicts a selection of traveling waves.
These predictions have been confirmed by a numerical simu-
lation close to the wave instability. Farther away from the
threshold, a secondary instability leading to breathing travel-
ing waves is found in the simulations. At larger distances, the
illumination intensity resulting from the nonlocal spatial cou-
pling in the model may become negative and a cutoff term
has to be introduced. Numerical simulations in this regime
show stable traveling waves with the cutoff and complicated
dynamics without the cutoff. Altogether, our work shows that
it is possible to induce a wave instability by long-range ac-

FIG. 7. Traveling wave patterns calculated numerically far from the instability threshold ��=−0.07� with a cutoff using Eq. �5� in �a� and
�b� and without it using Eq. �2� in �c� and �d�. Left panels in �a� and �c� show a space-time plot of v in a gray-scale coding changing from
dark for high to bright for low v values. Right panels display ��x , t� with black corresponding to ��x�=0 in �a� and ��x��0 in �c� while
positive � values are represented in white. �b� and �d� show typical spatial profiles of u, v, and � obtained without, respectively, with cutoff.
Simulations were both started from same initial conditions, namely a small amplitude wave with wave number k=0.2696 �system size
L=93.2224, total integration time T=65.536, 
=0.1, and �0=0.000 55�.
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tivating nonlocal coupling and may inspire further experi-
mental study and validations.
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APPENDIX A: NONLOCAL COUPLING IN
THE TWO-VARIABLE OREGONATOR MODEL

In this appendix we will shortly show why a wave insta-
bility cannot be induced by a nonlocal spatial coupling in the
two-variable Oregonator model. In Sec. II we pointed out
that the characteristic time scale of w in Eq. �1� is typically
much smaller than that of u �two orders of magnitude smaller
for the value of � considered in this paper�. If we further
assume �=0 neglecting a diffusion of bromide, the equation
for w can be eliminated adiabatically

�tu =
1

�
�u − u2 + ���x,t� + fv�

q − u

q + u
� + �x

2u ,

�tv = u − v ,

where

��x,t� = 	0 + ��
−�

�

K�y��v�x + y,t� − v�x,t��dy

with an arbitrary coupling function K�y�.
The Jacobian of this model around a fixed point is

J�k� = �a − k2 b�k�
1 − 1


 ,

where a��1−2u0−2q��0+ fv0� / �q+u0�2� /� and b�k�
����� 2


k2+
2 − 2



�+ f��q−u0� / �q+u0�� /�. The eigenvalues
��k� can be written as �±= �tr J± ��tr J�2−4 det J�1/2� /2. The
fixed point is stable if det J�k��0 and tr J�k�
0 for any k.
There are two ways in which this fixed point can become
unstable; either det J�k�=0 or tr J�k�=0, for some wave num-
ber k. The first case corresponds to an instability of Turing
type and the second to a Hopf instability. Note that in the
case of a Hopf instability, the wave number with a maximal
growth rate is always at k=0, since tr J�k�=a−1−k2. There-
fore, the spatially homogeneous mode is the first to become
unstable. Consequently, a wave instability is not possible in
the two-variable Oregonator model, regardless from the pa-
rameters of the kinetics chosen or the coupling function �43�.
This instability type can only be achieved with the three-
variable Oregonator as discussed in this paper.
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