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The notion of Granger causality between two time series examines if the prediction of one series could be
improved by incorporating information of the other. In particular, if the prediction error of the first time series
is reduced by including measurements from the second time series, then the second time series is said to have
a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality.
The proposed model is not constrained to be additive in variables from the two time series and can approximate
any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality
is shown in two applications. In the first application, a physiological one, we consider time series of heart rate
and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis
patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time
series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory
neurons: we find that in this system causality measures the combined influence of couplings and membrane
time constants.
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I. INTRODUCTION

Since the seminal paper by Granger �1�, detecting causal-
ity relationships between two simultaneously recorded sig-
nals is one of the most important problems in time series
analysis. Applications arise in many fields, like the economy,
brain studies, physiology, and many others. The causality
between the measured and underground economies in New
Zealand has been studied in �2�. Phase synchronization, in
electroencephalographic and magnetoencephalographic sig-
nals, has been considered in �3�, while generalized syn-
chrony in neuronal ensembles has been studied in �4�. Use of
nonlinear cellular networks on electroencephalograms from
epilepsy patients is proposed in �5�, while the experimental
detection of weak coupling between self-sustained oscillators
has been considered in �6�. The comparison between multi-
variate and bivariate measures of Granger causality has been
presented in �7�; a recent review on applications of multivari-
ate time series analysis to neurophysiological signals is �8�.
The analysis of time series from the human cardiorespiratory
system is described in �9�.

The major approach to causality examines if the predic-
tion of one series could be improved by incorporating infor-
mation of the other, as proposed by Granger. In particular, if
the prediction error of the first time series is reduced by
including measurements from the second time series in the
regression model, then the second time series is said to have
a causal influence on the first time series. As Granger cau-
sality was originally developed for linear systems �1�, re-
cently some attempts to extend this concept to the nonlinear
case have been proposed. In �10� local linear models in re-
duced neighborhoods are considered and the average causal-
ity index, over the whole data set, is proposed as a nonlinear
measure. In �11� a radial basis function �RBF� approach has
been used to model data, while in �12� a nonparametric test
of causality has been proposed, based on the concept of
transfer entropy. A recent paper �13� pointed out that not all

nonlinear prediction schemes are suitable to evaluate causal-
ity between two time series, since they should be invariant if
statistically independent variables are added to the set of in-
put variables. This property guarantees that, at least asymp-
totically, one would be able to recognize variables without
causality relationship. The purpose of this work is to use the
theoretical results found in �13� to find the largest class of
RBF models suitable to evaluate causality, thus extending the
results described in �11�. Moreover, we show the application
of causality to the analysis of cardiocirculatory interactions
and to study the mutual influences in inhibitory and excita-
tory model neurons.

The paper is organized as follows. In the next section the
method is described. In Sec. III the first application, dealing
with heart rate and blood pressure in humans, is described,
while in Sec. IV we report the analysis of coupled model
neurons. Some conclusions are drawn in Sec. V.

II. METHOD

Let �x̄i�i=1,. . .,N and �ȳi�i=1,. . .,N be two time series of N
simultaneously measured quantities. In the following
we will assume that the time series are stationary. We aim
at quantifying how much ȳ is the cause of x̄. For
k=1–M �where M =N−m, m being the order of the
model�, we denote xk= x̄k+m, Xk= �x̄k+m−1 , x̄k+m−2 , . . . , x̄k�, Yk

= �ȳk+m−1 , ȳk+m−2 , . . . , ȳk�, and we treat these quantities as M
realizations of the stochastic variables �x ,X ,Y� �14�. Let us
now consider the general nonlinear model

x = w0 + w1 · ��X� + w2 · ��Y� + w3 · ��X,Y� , �1�

where w0 is the bias term, �w� are real vectors of free param-
eters, �= ��1 , . . . ,�nx

� are nx given nonlinear real functions
of m variables, �= ��1 , . . . ,�ny

� are ny other real functions
of m variables, and �= ��1 , . . . ,�nxy

� are nxy functions of 2m
variables. The parameters w0 and �w� must be fixed to mini-

PHYSICAL REVIEW E 73, 066216 �2006�

1539-3755/2006/73�6�/066216�6� ©2006 The American Physical Society066216-1

http://dx.doi.org/10.1103/PhysRevE.73.066216


mize the prediction error �we assume M �1+nx+ny +nxy�:

�xy =
1

M
�
k=1

M

�xk − w0 − w1 · ��Xk� − w2 · ��Yk�

− w3 · ��Xk,Yk��2. �2�

We also consider the model

x = v0 + v1 · ��X� , �3�

and the corresponding prediction error �x. If the prediction of
x̄ improves by incorporating the past values of �ȳi�, i.e., �xy is
smaller than �x, then y is said to have a causal influence on x.
We must require that, if Y is statistically independent of x
and X, then �xy =�x at least for M→�. This is ensured if, for
each 	� �1, . . . ,nxy�, an index i	 exists such that

�	�X,Y� = �i	
�X�
	�Y� , �4�

where 
	 is an arbitrary function of Y. A complete discus-
sion on this statement may be found in �13�; here we briefly
recall the argument that proves it. As M tends to �, we have

�xy → ��x − w0 − w1 · ��X� − w2 · ��Y� − w3 · ��X,Y��2	 ,

where �·	 means the expectation over the joint probability
distribution of x, X, and Y. If Y is statistically independent
of x and X, one has, for each 	� �1, . . . ,nxy�,

��xy

��w3�	

= �
	�Y�	
��xy

��w1�i	

. �5�

Moreover, for each 	�� �1, . . . ,ny�,

��xy

��w2�	�
= ��	��Y�	

��xy

�w0
. �6�

Now, if w2=0 and w3=0 then

��xy

��w1�	�
=

��x

��v1�	�
�7�

for each 	�� �1, . . . ,nx�, and

��xy

�w0
=

��x

�v0
. �8�

Due to Eqs. �5�–�8�, the minimum of �xy is attained at
�w0=v0

�, w1=v1
�, w2=0, w3=0�, where v0

� and v1
� are the

minimizers of �x: this shows that �xy =�x for statistically in-
dependent Y. As explained in �13�, model �1�, with condition
�4�, is the largest class of nonlinear parametric models suit-
able to evaluate causality. We remark that �xy is equal to �x
also at finite M, for statistically independent Y, if the prob-
ability distribution is replaced by the empirical measure. Ex-
changing the two time series, one may analogously study the
causal influence of x on y.

We choose the functions �, �, and �, in model �1�, in
the frame of RBF methods, thus generalizing the approach in

�11�. We fix nx=ny =nxy =n�M: n centers �X̃� , Ỹ���=1
n , in the

space of �X ,Y� vectors, are determined by a clustering pro-
cedure applied to data ��Xk ,Yk��k=1

M . To find prototypes we
use fuzzy c means �15�, a well-known algorithm which in-

troduces fuzzy memberships to clusters, so that a point may
belong to several clusters with some degree in the range
�0,1�: in calculating a cluster center the coordinates of each
instance are weighted by the value of the membership func-
tion. We then make the following choice for �=1, . . . ,n:

���X� = exp�− 
X − X̃�
2/2
2� ,

���Y� = exp�− 
Y − Ỹ�
2/2
2� ,

���X,Y� = ���X����Y� , �9�


 being a fixed parameter, whose order of magnitude is the
average spacing between the centers. Condition �4� is satis-
fied by construction. The RBF model of �11� is recovered by
setting �=0 in Eq. �1�, i.e., it is constrained to be additive in
variables X and Y; instead the RBF model here proposed can
approximate any function of X and Y. We conclude this
section by stressing that, according to our experience, the
proposed method is insensitive to details of the clustering
procedure used to find prototypes, provided that n is at least
two orders of magnitude smaller than M.

III. APPLICATION 1: HEART RATE AND BLOOD
PRESSURE

Now we describe the application to time series of heart
rate and blood pressure from patients from an intensive care
unit, contained in the MIMIC database �16�. In a healthy
subject the heart rate variability �HRV�, the pattern of time
intervals between heartbeats, and the systolic blood pressure
�SBP�, the �maximal� pressure within the cardiovascular sys-
tem as the heart pumps blood into the arteries, are interde-
pendent. Two mechanisms determine the mechanical influ-
ence of HRV on SBP. First the Starling law, stating that when
the diastolic filling of the heart is increased or decreased by a
given volume, the volume of blood which is then ejected
from the heart increases or decreases by the same amount:
more blood in, more blood out. The second mechanism is
diastolic decay, described by the Windkessel model of the
capacitative property of arteries �17�. The baroreflex regula-
tion mainly determines the influence of SBP on HRV: it is
one of the body’s homeostatic mechanisms for maintaining
blood pressure. It provides a negative feedback loop in
which an elevated blood pressure reflexively causes blood
pressure to decrease; similarly, decreased blood pressure de-
presses the baroreflex, causing blood pressure to rise. This
mechanism relies on specialized neurons �baroreceptors� in
the aortic arch, carotid sinuses, and elsewhere to monitor
changes in blood pressure and relay them to the brainstem.
Subsequent changes in blood pressure are mediated by the
autonomic nervous system. In healthy subjects the mutual
regulation of HRV and SBP is balanced, whilst it is well
known that congestive heart failure �CHF� patients show un-
balanced HRV-SBP regulatory mechanism, the feedforward
HRV→SBP coupling being prevalent over baroreflex sensi-
tivity �18�.

We consider signals from six CHF patients affected by
pulmonary edema, i.e., swelling and/or fluid accumulation in
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the lungs leading to impaired gas exchange �patients 212,
213, 214, 225, 230, and 245� and six patients whose primary
pathology was sepsis, a condition in which the body is fight-
ing a severe infection and that can lead to shock, a reaction
caused by lack of blood flow in the body �patients 222, 224,
269, 291, 410, and 422�. HRV and SBP time series are ex-
tracted from raw data and resampled at 2 Hz. We denote by
x the HRV time series, and by y the SBP time series: Fig. 1
shows the two raw time series for a typical subject. We fix
n=20 and, at m=1, we tune 
 to minimize the prediction
errors �x and �y. 
=2.5 turns out to be nearly optimal for
both time series. We then vary m from 1 to 20, choosing a
scaling with the inverse root of m, i.e., 
�m�=2.5/�m. Figure
2 shows the behavior of �x and �y as a function of m, for the
same subject as in Fig. 1. The optimal value of m corre-
sponds to the knee of the curves, m=5; increasing m would
increase the complexity of the model without a significant
improvement of the fit. In terms of frequency, m=5 corre-
sponds to the respiratory band.

In Fig. 3 we depict �1= ��x−�xy� /�x �measuring the influ-
ence of SBP on HRV� and �2= ��y −�yx� /�y �measuring the
influence of HRV on SBP�, as a function of m, for CHF and
sepsis patients. In the case of sepsis patients, the curves show
a symmetric HRV-SBP interdependence, while in CHF pa-
tients the HRV→SBP influence seems to be dominant, as �2

shows a peak at m=5. The probability that the 12 �2 values,
from all subjects and corresponding to m=5, were drawn
from the same population has been estimated by Wilcoxon
test to be less than 10−2. The average directionality index D
�11�, at m=5, is equal to 0.82 for CHF patients and to −0.019
for sepsis patients. These results show, on one side, that sep-
sis condition is not characterized by unbalanced HRV-SBP
loop interaction. On the other hand, our findings show that
the unbalanced HRV-SBP regulatory mechanism in CHF pa-
tients may be also described in terms of Granger causality
between HRV and SBP time series. We checked that these
results do not depend on our choice of 
�m�: varying the
dependence of 
 on m do not change the location of the
maximum of the curve �2�m� �only the height of the
maximum shows a slight variation�. Now we compare
our results with those from the previous method. In Fig. 4 we
depict the quantities � as evaluated according to the additive
RBF model of �11�: the peak of �2, for CHF patients, is now
almost absent. It is also worth noting that these causal

FIG. 1. Time series of heartbeat intervals �above� and systolic
blood pressure �below�, for a typical patient.

FIG. 2. The prediction errors �x and �y �indistinguishable� are
plotted vs m, the order of the model, for a typical patient.

FIG. 3. The directionality indices �1 �full line, characterizing the
influence of systolic blood pressure on heart rate� and �2 �dashed
line, characterizing the influence of heart rate on systolic blood
pressure�, are plotted vs m, averaged over congestive heart failure
patients �above�, and averaged over sepsis patients �below�.

FIG. 4. The directionality indices �1 �full line, characterizing the
influence of systolic blood pressure on heart rate� and �2 �dashed
line, characterizing the influence of heart rate on systolic blood
pressure�, evaluated by the method proposed in �11�, are plotted vs
m, averaged over congestive heart failure patients �above�, and av-
eraged over sepsis patients �below�.
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relationships are not evident in terms of cross correlation.
The quantities c1���= �x�t+��y�t�	− �x	�y	 and c2���
= �x�t�y�t+��	− �x	�y	, depicted in Fig. 5 both for CHF pa-
tients and sepsis patients, do not show interesting patterns.

IV. APPLICATION 2: MODEL OF EXCITATORY AND
INHIBITORY NEURONS

As a second application, we consider the interactions in a
model of inhibitory and excitatory neurons, which has been
studied from different points of view, and with different
aims. Many studies have been dedicated to the mechanisms
underlying modulation of visual processing by means of at-
tention �19�. Evidence has been reported that in visual area
V4 of the brain, the spiking behavior of neurons changes as
attention to a particular stimulus is focused inside or outside
the neuron’s response fields. In particular, increased gamma-
frequency synchronization and reduced low-frequency syn-
chronization have been shown when the neurons were acti-
vated by attended stimuli, and not by distracters. This
mechanism of biased attention reveals that some feedback
path is present between the retinal neurons and the neurons
in deeper layers of visual cortex �20�. In a previous study
�21�, it has been reported that inhibitory feedback is a way
for the neurons to distinguish between spatially correlated
and uncorrelated input. So it is important to study causal
influences in a closed feedback-feedforward loop, and to un-
derstand how the inhibitory feedback, responsible for the se-
lectivity of the attention, modifies the causal relationships
between the neurons in the excitatory population. Here we
consider the following question: what does causality measure
in the case of coupled firing neurons? We show that it mea-
sures not merely coupling constants, but the combined influ-
ence of couplings and membrane time constants. We con-
sider a model of interacting neurons, two excitatory and one
inhibitory, as illustrated in Fig. 6. This is a simplified case of
the models in �21–23�. All neurons are leaky integrate-and-
fire �LIF� neurons with a membrane potential V and an input
current I satisfying

�mV̇ = − V + I , �10�

where �m is the membrane time constant and the membrane
resistance is set to 1. We denote by �E ��I� the membrane

time constant of excitatory �inhibitory� neurons. Every time
the potential of a neuron reaches the threshold value Vth, a
spike is fired. This resets the potential to the value VR; it
remains bound to this value for an absolute refractory period
�R. Furthermore we normalize the reset value VR to zero and
the threshold value Vth to 1. The series of spikes Sj

E�t�
�j=1,2� from excitatory neurons provide the input current II

to the inhibitory LIF neuron, given by the convolution of the
sum of the spike trains of the excitatory neurons and a stan-
dard 	 function, which mimics an excitatory postsynaptic
potential �EPSP�. As a consequence of the excitatory input,
the inhibitory neuron fires action potentials. As in the case of
the excitatory current, the action potential SI�t� of the inhibi-
tory neuron provides the input currents IE,j to the excitatory
neurons by convolution of the spike train from the inhibitory
neuron and an inhibitory postsynaptic potential �IPSP�, given
by the same 	 function used to represent the EPSP, but re-
versed in sign. This inhibitory feedback is characterized by a
gain g, and it is delivered after a delay time �D. Summariz-
ing, for each excitatory neuron j=1,2 the total input current
IE,j is given by

IE,j�t� = � + � j�t� − g�
0

�

d� SI�t − � − �D�	2�e−	�, �11�

while the input current for the inhibitory neuron is

II�t� = � + �
0

�

d��S1
E�t − �� + S2

E�t − ���	2�e−	�, �12�

where � is a constant base current and � j�t� represents inter-
nal Gaussian white noise with intensity K. Note that here we
add noise to the excitatory neurons so that they can also fire
independently; however, the addition of a small amount of
noise also to the input current of the inhibitory neuron would
not affect the results. We use �=0.5, K=0.08, 	−1=18 ms,
and �D=18 ms. �R is set to 3 ms, while �E=�I=6 ms. Note
that the base current is below threshold; therefore the inhibi-
tory neuron only fires in response to excitatory spike input.
Moreover, using these parameters, the feedback model is a
very stable one, resulting in firing rates from all neurons
being almost independent of the values of membrane time

FIG. 5. The cross correlations c1���= �x�t+��y�t�	− �x	�y	 �full
line� and c2���= �x�t�y�t+��	− �x	�y	 �dashed line� are plotted vs �,
after averaging over congestive heart failure patients �above�, and
over sepsis patients �below�.

FIG. 6. Neural model architecture.
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constants and inhibitory feedback gain g used in this study.
The firing rates of all the three neurons are always between
40 and 60 Hz. The model equations have been numerically
solved by Euler integration using a time step of 0.1 ms. The
causal relationships between the time series of membrane
potentials from neurons are then evaluated using the pro-
posed RBF approach with n=20 and 
=2.5/�m,
m� �1,600�. In the absence of inhibitory feedback, i.e.,
g=0, there is a dominant causal influence of the excitatory
input on the inhibitory one. On the other hand, when the
feedback is switched on �g=1.2�, the causal influence is re-
versed �see Fig. 7�, and the inhibitory neuron has more
causal influence on the excitatory neuron than vice versa.
This is due to the fact that each excitatory neuron sees the
same input from the inhibitory neuron, and this tends to syn-
chronize the dynamics of the two excitatory neurons.

It is worth stressing, however, that in this context the mea-
sure of causality is not simply related to coupling g. Indeed,
if we consider the same situation, but with a longer mem-
brane time constant of the inhibitory neuron �I, the influence
of the latter on the excitatory ones is notably reduced �see
Fig. 7�. This can be explained in the following way. When
the time constant is short, the inhibitory neuron behaves as a
coincidence detector and inhibitory feedback has the effect

of synchronizing the excitatory neurons �23�, which thus
tend to fire at the same time. For a longer membrane time
constant, the inhibitory neuron acts as an integrator and does
not discriminate between two temporally close spikes; the
inhibitory neuron then reacts to a smaller number of input
spikes, resulting in a decreased causal influence on the two
excitatory neurons.

Another interesting situation corresponds to only one, out
of the two, excitatory neuron receiving inhibitory feedback:
we then investigate the causal relationships between the two
excitatory neurons, as mediated by the inhibitory one. In
absence of inhibitory feedback there is no causality involved.
As the feedback is switched on, as is clear in Fig. 8, a sig-
nificant causal influence, of the neuron which does not re-
ceive the feedback on the other, is observed. Even in this
case, the causal influence depends also on the membrane
time constant of the inhibitory neuron, which may act as a
coincidence detector or as an integrator, thus considering two
successive spikes from the two excitatory neurons as two
separates spikes, or as one, respectively.

Finally, we report the analysis of this system by standard
cross correlations c1��� and c2��� �see the previous section�.
In Fig. 9 these quantities are plotted, versus �, for
�I=�E=6 ms and g=1.2. c1 shows a peak at �
20 ms �the
same delay at which �1 shows its peak�, while c2 is higher
than c1 for low values of �.

V. CONCLUSIONS

We have generalized a previous RBF approach to Granger
causality: the proposed model is not constrained to be addi-
tive in variables from the two time series and can approxi-
mate any function of these variables, still being suitable to
evaluate causality. We have considered here two interesting
applications. In the first one, we have studied time series of
heart rate and blood pressure in congestive heart failure pa-
tients and patients affected by sepsis. Congestive heart fail-
ure patients show an unbalanced HRV-SBP regulatory
mechanism, while sepsis patients have shown symmetric
causal relationships between the two time series. As a second
application, we have considered the feedback loop in a
model of excitatory and inhibitory neurons and pointed out
that in this class of systems Granger causality is not only

FIG. 7. �1 �full line, I→E� and �2 �dashed line, E→ I� are
plotted vs m, for �I=�E=6 ms �left�, and �I=18 ms, �E=6 ms
�right�. Above, no feedback. Below, with feedback.

FIG. 8. �1 �full line, influence of the excitatory neuron without
feedback on the one with feedback� and �2 �dashed line, influence
of the excitatory neuron with feedback on the one without feed-
back� are plotted vs m, for g=1.2. �I=�E=6 ms �top�; �I=18 ms,
�E=6 ms �bottom�.

FIG. 9. The cross correlations c1 �full line, I→E� and c2

�dashed line, E→ I� are plotted vs �, for g=1.2, �I=�E=6 ms.
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related to couplings, but measures the combined influence of
couplings and membrane time constants. The two applica-
tions here considered show the usefulness of the proposed
approach.
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