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Incipience of quantum chaos in the Jahn-Teller model
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We studied complex spectra of a two-level electron system coupled to two phonon (vibron) modes repre-
sented by the E ® e Jahn-Teller model. For particular rotation quantum numbers we found a coexistence of up
to three regions of the spectra: (i) the dimerized region of long-range-ordered (extended) pairs of oscillating
levels, (ii) the short-range-ordered (localized) “kink lattice” of avoiding levels, and (iii) the intermediate region
of kink nucleation with variable range of ordering. This structure appears above a certain critical line as a
function of interaction strength. The level clustering and level avoiding generic patterns reflect themselves in
several intermittent regions between up to three branches of spectral entropies. Linear scaling behavior of the
widths of level curvature probability distributions provides the conventionally adopted indication for the
presence of quantum chaos. Level spacing probability distributions show peculiarities of the partial (for fixed
quantum angular momentum) as well as of the cumulative (all angular momenta) case. The clustering of levels
with two and three dominant spacings at fixed angular momenta causes notable deviations of the cumulative

distributions from the Poissonian one.
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I. INTRODUCTION

Generally, a multitude of avoided crossings in complex
spectra of a quantum system is considered as the signature of
chaos which appears in a quasiclassical limit of the respec-
tive nonlinear many-body system with repulsive interactions
[1,2]. In solid-state physics, quantum chemistry, or quantum
optics investigations of complex excited energy spectra of
models with two electron levels coupled with one or more
boson modes are of special relevance for understanding
experimental—e.g., optical or transport-properties.

Numerical investigations of the excited spectra of certain
two-level one- and two-boson systems [e.g., exciton [3,4]
and E®e Jahn-Teller (JT) model [5]] show the existence of
level avoidings and related highly excited “exotic” (local-
ized) states. Signatures of chaos in two-level boson systems
remain objects of interest since the early studies by Hamil-
tonian methods [6—11]. Later on statistical methods based on
the random matrix theory—e.g., level spacing and level cur-
vature probability distributions—were applied mostly for
one-phonon-mode models. The level spacing distributions
show irregular behavior between the limiting Poisson (regu-
lar) and Wigner (fully chaotic) distributions [12—15]. Specifi-
cally, among the level spacing distributions of the two-level
one-phonon model [12-14] there appeared M-shaped distri-
butions with two symmetric peaks for two dominant spac-
ings. Such distributions are a signature of level clustering
(dimerization).

The most familiar representative of the two-level two-
phonon models is the E® e JT model [16] with linear cou-
pling to phonon (vibron) modes of different parity against
reflection. This model is a prototype for phonons removing
the degeneracy of electron levels by an interaction with the
antisymmetric phonon mode and funneling between the lev-
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els assisted by the symmetric phonon mode (in the one-
phonon case the tunneling is purely resonant). The presence
of two-phonon modes with equal coupling strengths imposes
additional rotational symmetry to the model. Differences be-
tween the one-mode two-level phonon model and two-mode
JT models become evident when one compares their dimen-
sionality after elimination of the electron (level) degrees of
freedom: while in the first case the reduction results in a
one-dimensional nonlinear (with self-interaction) quantum
oscillator, in the two-mode JT cases the elimination yields a
two-dimensional quantum oscillator with nonlinear coupling
of its components. While in the one-boson-mode case one
finds correlations of two sets of excited states, in the two-
boson-mode case mixing of up to three sets takes place de-
pending on the range of parameters. As we show, this leads
to the appearance of a third peak in the level spacing distri-
bution (trimerization) for the respective range of parameters.

Recently, Yamasaki et al. [17] for the first time investi-
gated the possibility of chaos in spectra of the E®e JT
model. Their analysis was based on the approximation of the
Hamiltonian by the adiabatic “Mexican hat” potential. Addi-
tionally the Hamiltonian was supplemented by an explicit
term with nonlinear mode coupling of a trigonal symmetry in
order to simulate the effects of fluctuations and nonintegra-
bility. Thus, nonlinearity was included via mode coupling in
addition to the mean-field bare part of the Hamiltonian. The
authors concluded that quantum chaos reflects itself in the
Wigner-type level spacing distribution as a consequence of
the said nonlinearity of the Hamiltonian. Meanwhile, for the
linear part an absence of such patterns was stated. Those
conclusions were confirmed at the classical level as well. It is
to be noted here that the way of passing to a semiclassical
approximation in spin-boson systems is not unique and pre-
sents an essential ambiguity from different possible ways of
decoupling [6]. Different ways of performing a semiclassical
approximation are known to lead to different answers con-
cerning the chaotic behavior of the system. This ambiguity
means that a classical analog of such a model is not well
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defined and cannot be a reliable object in exploring the quan-
tum chaos issues.

In this paper we investigate the characteristics of excited
(quasi continuum) spectra of the E® e JT model. The present
approach differs from that by Yamasaki et al. in the follow-
ing: (a) we do nor introduce explicit nonlinearity into the
initial Hamiltonian. However, its SU(2) symmetry involves
an intrinsic nonlinearity which is revealed by exact elimina-
tion of the electronic degrees of freedom [18]. (b) We start
from the E ® (b, +b,) model with different coupling strengths
for both modes. The rotation-symmetric E®e model repre-
sents its particular case with equal coupling constants and
thus with the symmetry of a higher (rotational) symmetry
group (the difference of the coupling constants in realistic
systems is likely to be caused, for example, by spatial aniso-
tropy of crystals). The importance of starting from a more
general situation is evident from a nature of quantum fluc-
tuations. Namely, the variational approach to the E® (b,
+b,) model used for the calculation of the ground state [18]
yielded the largest deviations just for the rotation-symmetric
case. In the ground state the abrupt change of energy at equal
couplings is an artifact of the adiabatic approximation: the
energy region of the quantum E®e model is situated within a
smeared boarder around B/ a@=1 (« and B being the coupling
strengths of the antisymmetric and symmetric modes, respec-
tively) between the “self-trapping” (o> ) and “tunneling”
(@< ) part of the ground state of the model with broken
rotational symmetry. In the smeared transition region both
phases coexist and are quantum correlated (entangled) via
nonlinear correlations between the modes. There the phonon-
assisted (by the symmetric mode) tunneling contribution to
the energy (from an admixture of two reflection-symmetric
levels in the excitation reflection ansatz for the variational
wave function [18]) causes an essential decrease of the
ground-state energy because of changing parity of the wave
function by the reflection operator and results in the vanish-
ing of the Ham factor. The phase transition at a=g to the
rotational symmetry phase provides a representation by the
additional rotational quantum number j. We will show that at
a given j in the E® e model analogous phonon-assisted tun-
neling between adjacent excited levels occurs and is respon-
sible for the flip (kink) between the levels [this mechanism
can be well recognized, e.g., in Fig. 1(b)]. This nonlinear
effect causes a mixture of the adjacent (even and odd) levels
at stronger couplings and leads to nucleation of the new kink
lattice phase when increasing the coupling constant. Natu-
rally, the tunneling mechanism due to short-range quantum
fluctuations at large j is then the origin of the peculiar irregu-
lar behavior of related level-spacing distributions and does
not allow for full development of Wigner chaos. The
phonon-assisted tunneling and nucleation of the kink lattice
phase can also be demonstrated within the formalism of a
Calogero-Moser gas of pseudoparticles with repulsive inter-
action [19,20].

In Sec. II we briefly present an analytical formulation of
the eigenvalue problem in radial coordinates. Since the lit-
erature on one-phonon models is more abundant and certain
similarities between both models appear, it is useful to point
out the essential differences based on a comparison of the
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FIG. 1. Energy spectra for j=19/2,255/2 as a function of a.

relevant integrable models. In the representative one-boson
mode model considered by Cibils er al. [13] the integrable
case was labeled by a pair of quantum numbers w, v where
pm==s,—s+1,...,+s and v=0,1,2.... In our model the inte-
grable case is labeled by three quantum numbers n,,j,p,
where n, is the radial quantum number n,=0,1,2,..., j is
the rotation quantum number j=1/2,3/2,5/2,..., and p is
parity, p=+1 for gerade and ungerade states. Thus, there are
two groups of states which represent a doubly degenerate set
characterized by parity p=+1. Evidently, n, is analogous to
v, p to s=+1/2, and j has no analog because our oscillator is
two dimensional. The Hamiltonian analysis is supported by
numerical evaluations of the excited energy spectra and cor-
responding phonon wave functions in a representation with
definite parity and square of angular momentum. We choose
a representation of the spectra and their probabilistic charac-
teristics (Sec. IV) for definite j because it contains well-
defined physical information. However, the real spectra and
probabilistic distributions are composed of the contributions
of all j’s.

In Sec. III we present approximate analytical approaches
to the E®e JT model for the strong and weak intercluster
coupling in order to elucidate the peculiar features of the
numerical excited spectra and wave functions. In particular,
we find the approximate analytical form of wave functions
for strongly localized (“exotic”) states as well as for ex-
tended states and compare them with respective numerical
results. Special interest is given to identification of the re-
gions of the spectra with different extent of ordering, from
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the long-range-ordered region of linear oscillations (ex-
tended states) to the short-range-ordered region of localized
states with dynamical avoiding (kink lattice). The dynamical
Calogero-Moser approach appears to be capable of describ-
ing all three regions of the spectra: the dimerization region
with pairs of oscillating levels, the kink train lattice, and the
intermediate region of nonlinear fluctuations accounting for
the kink nucleation phase. The intermediate region was
found to exhibit quantum chaotic behavior under certain con-
ditions. Section IV complements the dynamical insight by
that based on statistical properties of the spectra. We con-
sider the nearest level-spacing probability distributions and
probability distributions of level curvatures used as relevant
statistical characteristics of complex spectra [1,2,21]. The
particular level-spacing distributions for fixed rotation quan-
tum numbers are believed to be the most informative, since
they behave very specifically for different parts of the spec-
tra, reflecting their specific dynamic behavior.

II. HAMILTONIAN AND EQUATIONS
FOR EXCITED SPECTRUM

We investigate local spinless double-degenerate electron
states linearly coupled to two intramolecular phonon (vibron)
modes described by the Hamiltonian

H=(blby +biby + DI+ alb] + b)) o, - B(bS + by) o,
(1)

where

(0, 1) .(o, —1> (1, o)
o, = , Oy=1 , O,=
1, 0 Y@ A\1, o 0, -1

are Pauli matrices and 7 is the unit matrix. This pseudospin
notation refers to two-level one-electron (spinless) system.
For general a# B the Hamiltonian possesses a special

SU(2) symmetry with the reflection operator R acting on
phonon and electron subspace:

ﬁzRelRph7 Rel= ag,, Rph=exp(i77bib1), (2)

and R,,0,=-0 R, and R,,,0>,=0,R ;; i.e., phonon 1 is an-
tisymmetric and phonon 2 symmetric against the reflection.
Then, [R,H]=0 and the eigenstates can be cast as eigenfunc-
tions of the reflection operator with eigenvalues =1 which
are good quantum numbers.

If a=p, the Hamiltonian becomes rotationally symmetric
in the plane (Q, X Q,) and there arises another good quantum

number, the eigenvalue of angular momentum J which in
fact is nothing but the infinitesimal generator of the rota-
tional group:

. R 1
J=i(bb}—blb,) - 20 (3)

Therefore, in the vicinity of the symmetric JT case it is
feasible to cast the solutions in a form respecting this rota-
tional symmetry. To account accurately for the group prop-
erties of the Hamiltonian one introduces radial coordinates in

PHYSICAL REVIEW E 73, 066215 (2006)

the Q; X 0, plane: Q,=r cos ¢ and Q,=r sin ¢. The angular
momentum operator (3) is

N d 1
J=—Z£—Ea'y,

and the phonon part R,,, of the reflection operator (2) acts as

R, (r, d)f(r,$)=f(r,m— ) on some f(r,¢) affecting only
the ¢ coordinate. The eigenfunctions of the angular momen-

tum operator with eigenvalue j (i.e., J¥= J¥) can be set as
follows:

W= fi()] ) ()=t (4)

with arbitrary f,(r) and f,(r) to be determined below. Elec-
tronic wave functions are expressed as

11+ 1(1-1i
|+>:_ K |_ =7 o]
2\1 -1 2\1+1i

The angular quantum number j takes on the values j
=+1/2,£3/2,+5/2,.... The operator J does not commute
with the reflection operator Ié, but J2 does, so it is more
convenient to build solutions as joint eigenfunctions of R and

J rather than J.
In order to make use of the reflection property of the
Hamiltonian we perform the custom Fulton-Gouterman

transformation [22] by means of the operator U:

0:#( b ) (5)
V2 1»_Rph

The resulting Hamiltonian is diagonal in electronic space and
is represented in its full form as follows:

. 1 &
H=UHU =H,- 55
2r-dg
= (cos ¢ —sin PR, 0 )
+\2ar .
0 cos ¢+ sin PR,
sin R 0
+ (a—,B)\Er( R . ) (6)
0 - singR,,,
where
1d( 4 1
H,=———(r—>+—r2 (7)
2radr\ dr) 2

is the radial part and R, Eq. (2), is the (highly nonlinear)
phonon reflection operator in the radial coordinates. In Eq.
(6) we extracted explicitly the last term ~(a—8) which
breaks the rotational symmetry of the problem. Just for ref-
erence we mention the corresponding transformation of the
angular momentum and its square:

~ 9 1
]:_ZI;‘J x+50-prh’ (8)
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J = (— i+
d¢?

The transformed electron reflection operator is, of course,

1 J
Z + Ii)(rszh. 9)

trivial per constructionem, R;,:gz.

Although the E®e JT model (a=p) was treated for the
first time by Longuet-Higgins et al. [23] a long time ago, we
present briefly the solution using another representation of
the states. This representation enables us to distinguish the
extended and “exotic” (localized) states, as we explain in
Sec. III. The case a# B can be included on equal footing.
The wave functions we are concerned with have definite par-
ity 1 and square of angular momentum ;2. Let us denote
K=explim(j—1/2)]==1.

(i) In the case K=+1 (j—1/2=0,2,4,6,...;
the gerade solutions read as

o[22 Ll s )]

—2,-4,..)

(10)

We shall refer to the angular wave functions in Eq. (10) as
|+)= 3 (sin{[j+2(=1)] ¢} F cos{lj+3(=1)14}).

(ii) In the case K=-1 (j—1/2=1,3,5,7,...;-1,-3,...)

we have an expression similar to Eq. (10) but with the + sign
in the square brackets.
The ungerade case can be recovered if one takes the vec-

0
tor

. 1
instead of
1 0

parity that is, in the representation (6) we are to take the
upper row of the matrices.

The secular equations for the vibronic part [functions
f1(r) and f,(r)] in both cases are

). We limit ourselves to the case of gerade

2
H.f;+ <]+ —(- 1))fi+a’\’6rfk=Efi’

i#k ik=1,2, (11)
where the radial part H, is given by Eq. (7).

In the case a=[B=0 the problem is exactly that of two
independent oscillators and its solution in terms of special
functions is well known. Thus, the solutions are grouped
according to the |j| value (j=1/2,3/2,5/2,...; the parity is
+1, as before). Within the same j the functions are divided
into two groups.

(a) States with f,=0 and

fl = q)+(nr7j'r)

—\/—exp( )’ 12 1<—n,,1+ Jj-

]
(12)

where n, (“radial” quantum number) takes on positive inte-
ger values n,=0,1,2,...; |Fi(a,b,z) is a confluent hyper-
geometric function [satisfying equation zy''+(b—z)y’ —ay
=0], and the norm is
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am
(here C) =n!/[m!(n—m)!] is a common combinatorial fac-
tor). We label these states by + as they correspond to the
|+) function of the angular momentum. The product of two
radial functions is defined as [;r®(n,,j,r)®(n,,j,r)dr. The
energy spectrum is E*=2n,+|j—1/2|+1, and the “main”
quantum number is therefore n=2n,+|j—1/2|.

(b) States with f,=0 and f,=®)(n,,j;r) and energy
E~=2n,+|j+%|+1 are given by the same expression as (12)
but with j+1/2 instead of j—1/2. We refer to these states as
|-) states.

The two groups mentioned correspond to two initially de-
generate electron levels; these states are coupled together by
means of the strongly nonlinear transformation involving the
reflection operator R(r, ¢); thus, the situation is similar to the
Foulton-Gouterman treatment in ordinary phonon coordi-
nates, where the nonlinear reflection operator coupled the
phonon states pertaining to the lower and upper electron lev-
els [18].

Writing secular equations for the problem with a# 0 is
straightforward. The solution is sought as fl=§lnraanI>;r, 1

o

=2, b, ®, or, in unified notation, f= X c,®,, where {c,}
n=0
E{ao,bo,al,bl,az,bz,a3, } and
d*(n,.j,r), n=2n,,
@, = 20 (14)
& (n,j,r), n=2n.+1.

The only nonzero off-diagonal elements are

Jan, = \"qu)z(l);rrdrz\r’g\/n +1+ J— , (15)

Jopin, = \Ef (DZHCD;rrrdr: - \rE\rn,+ 1. (16)

Therefore, the secular equation acquires the familiar tridi-
agonal form (E© is “unperturbed” energy for the corre-
sponding n, ),

anf’lO) + Cl/(cn+1fnrnr + Cn—lfn,n,—l) = Ecn’ n= 21’1,, (17)

CnEEzO) + a(cn—lfn,nr + Cn+lfnr+lnr) = EC,,, n= 2}’1,, +1 >
(18)

with off-diagonal coefficients given by Egs. (15) and (16).
The asymmetry of the coefficients with increasing j is crucial
for the appearance of nonlinear effects in spectral properties
of the model. We remark in passing that Egs. (15) and (16)
differ from those given in [23] by the “minus” sign near
Sfur1n- Changing this sign to plus means merely a redefinition
of the base wave functions (every even base function ac-
quires the opposite sign) and does not affect the energy spec-
trum. In the following it will be more convenient to use the +
sign of both expressions (15) and (16).
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n=38

By numerical diagonalization of the system (17) and (18)
we obtain the phonon-excited energy spectrum as a function
of a (we have taken n up to ~1200), as well as the corre-
sponding wave functions. Figure 1 shows examples of
the spectrum as function of a for j=19/2,255/2. The
sample numerical wave functions yx, of a few excited
states of Eq. (1) are shown in Figs. 2 and 3. Figure 2 presents
the wave functions y, in phonon coordinate representation
(in the plane QX Q,), while Fig. 3 shows the projection
Xom=|(Xu| P2Y? of the exact numerical wave functions on
the unperturbed (a=0) states of the radial oscillator (12)
[24]. The right-hand side of Fig. 4 visualizes the whole pic-
ture of wave functions at a given « and j by assigning to

4=19/2

PHYSICAL REVIEW E 73, 066215 (2006)

FIG. 2. (Color online) Numeri-
cal wave functions Y, in the plane
01X 0Q,, a=p=2. States n=61
and 63 are localized (“exotic™).

each state C"={C,,C,,...,C,,,...} the spectral entropy
S =—EmC511n Ci (which gives the width of the wave function
in the representation of Fig. 3).

One remarkable feature of excited states in JT models
(both rotation symmetric and that with broken rotation sym-
metry) are strongly localized (“exotic” [3]) states emerging
abruptly between more extended ones. These states are ex-
emplified in Fig. 2 (n=61,63) and in Fig. 3 (n=58 for j
=19/2). The localization of those states is remarkable in
comparison with neighboring or even lower-lying ones (like
n=38,62 from Fig. 2 compared to n=61,63).

There is an intimate relation between the position of lo-
calized states and spectral picture of levels (Fig. 1). Closer

a=5 n=56

m FIG. 3. (Color online) Projec-
tions of exact symmetric (B=a)
states on the harmonic oscillator

base, )(n,m| =<Xn|q)l(/)n>|2‘

75 100 125 150

a=5 n=58

Xn,m  §=19/2  a=5 n=55 Xn,m
0.035 0.03
0.03 0.025
0..025 0.02
0.02 0.015
0.015
0.01 204
0.005 0.005
m
25 50 75 100 125 150 25 50
Xn,m 4=19/2  a=5 n=57 Anm  §=19/2
0.025 Gsk
0.02 0.08
0.015 0.06
0.01 0.04
0.005 0.02
m [
25 50 75 100 125 150 25 50

75 100 125 150
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FIG. 4. Reduced energies (see
text) and spectral entropies of
wave functions y, for different
couplings « and j.

a=5, 3=255/2

400 600 800

1008

inspection [see the insets of Figs. 1(a) and 1(b)] shows that
each and every energy level taken for a given j is avoided.
Varying the parameter « infinitesimally slowly will cause the
system to follow one and the same adiabatic level. But on a
larger scale the spectra of Fig. 1 show two sets of “diabatic”
lines [2] (directed upwards and downwards) which reflect a
different behavior of the two main wells of the effective
potential [18] when changing «. From the right-handside of
Fig. 4 it is possible to note that the states for large « and j are
grouped into two separated branches and the domain of lo-
calized states with small spectral entropy emerges at a criti-
cal energy corresponding to the appearance of the upper
sheet of the effective potential. If one varies the parameter
fast enough, the system will follow the ‘“diabatic” lines
changing the energy level number so that its wave function
remains almost untouched which means that the system re-
sides on the corresponding sheet of the effective potential.
All “exotic” states appear to pertain to the directed upwards
diabatic lines of the spectrum seen markedly in Fig. 1. The
multitude of avoided crossings (and therefore the domain
referred to as “quantum chaotic”) is thus formed in the
intermediate-energy region where these two ‘“phases”
coexist—that is above the first (lowest) diabatic line. It is
clearly seen in Fig. 1(b) for large values of the angular mo-
mentum number j, while for small values of j these exotic
states, although still existing, do not come into complex in-
terplay with the ordered states. This picture is in agreement

400 500 800

with the semiclassical treatment of the problem where the
classically chaotic region is known to emerge sharply above
some critical energy.

III. ANALYTICAL QUANTUM TREATMENT
A. Strong-coupling approximation: “Exotic” states

The peculiarities of the spectra shown in Fig. 1 as well as
their connection to the character of the pertaining wave func-
tions (Figs. 2 and 3) can be understood from merely a rough
approximation to the set of equations (17) and (18) in the
following way. From Egs. (15) and (16), for |j|>>n,, there
holds | f"p"r| > | fu+1.0) and the basis functions in Egs. (17)
and (18) appear to be “clustered” in the sense that the coef-
ficients Con, and Con 41 pertaining to the same n, are coupled
together (through f”w"r) essentially more strongly than to
neighboring elements. [In order to avoid confusion we note
that the terms “strong-" and “weak-coupling approximation”
for this section are not meant in the usual sense of large and
small values of the parameter « but refer to the relative cou-
pling inside and between the “clusters” (C,,,Cs,.1). They
are determined by the relation between f,,, and f,,;,—i.e., by
the relative values of quantum numbers j and n.] Therefore,
for the zeroth approximation of strong coupling f,,,=0 and
the reduced version of Egs. (17) and (18) for each n, gives us
two sets of localized solutions for the energy
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E, (@) =2n,+j = 1/2|+3/2£\2(n,+ 1 +|j - 112])a,
n,=0,1,..., (19)

with corresponding localized eigenvectors Cop41=Coy, (+
sign) and Cy, 4;=-C,, (- sign), the other C, being zero.
From Fig. 1 we can conclude that the slopes of the corre-
sponding lines follow the predictions given by Eq. (19). This
is valid for several lower clusters with small n, which show
up as directed upwards and downwards “diabatic” lines. At
higher n, when j=n, the intercluster f"r”"r and inside-
cluster elements | f"r”r| become comparable and the long-
range correlations yield the extended wavelike solutions seen
in the upper parts of spectra in Figs. 1(a) and 1(b) [cf. the
inset of Fig. 1(a)].

To find the form of localized wave functions along the
diabatic line we proceed by treating terms with f,,;, as a
perturbation to the zeroth-order solution (19). This approxi-
mation is valid far from the points of avoided crossing where
the wave functions are essentially localized and unaffected
by neighbors. Let us denote SE=E-E, where E, is the
zeroth-order strong-coupling solution (19) for a given m and
use the strong-coupling ansatz Cy=Cy,...,C,,=C,,,,. The
sum of Egs. (17) and (18) then yields

\E Iy -
[2(}’! - m) + a(fnn _fmm)]CZn + ?a(\"n + lC2n+2 + VncZn—])

= SEC,,. (20)

Further, let us formally mark the cluster (Cs,, C,,.) as |n)
and introduce formal creation and annihilation boson opera-

tors bt and b acting on these clusters. Since j>>n, the term
Jfun—fmm can be simplified by keeping only the leading-order
term ~(n—m). Then the effective Hamiltonian equation in
the strong-coupling approximation is (n|n) is replaced by
b'b|n))

1 PURIA
Qg;}mm,—aa(bub) In) = (3E, + Qm)[n), (21)
\J

with
O =2+an2j-1. (22)

The resulting system presents a quantum oscillator dis-
placed by the term /2. The effect of nonlinear fluctuations
is reflected in the squeezing of its effective frequency (22)
due to j down to its minimum €);;—2 in the quantum limit
j—>. The term with m in fact labels the ‘“sites” of a
pseudolattice. In this approximation the solutions for differ-
ent m are translation invariant. The subsequent solutions of
Eq. (21) are obtained in a standard fashion applying the dis-
placement operator D(y)=exp[ y(b"-b)], 'y:—a/(\EQE;.;.)
on the clustered pseudostates |n)=(C,,,C,,.), giving the
localized functions on subsequent diabatic lines (for ex-
ample, for j=255/2 and a=2 the lowest states of this ficti-
tious oscillator correspond to wave functions with levels n
=37,39,41,43,45,48,...; such exact wave functions are ex-
emplified in Fig. 3 for n=58). We performed an extended
comparison of the exact wave functions to those found via
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this method in a wide range of parameters « and j. Our
calculations show that the solutions of Eq. (21) yield a very
plausible approximation to the exact solutions of Egs. (17)
and (18) for localized states, especially for big j: for ex-
ample, for several lowest diabatic states the projection
(®| W) of the approximate over the exact state for j=255/2
lies within 0.999—0.995. The same method is also suitable
for approximate solutions found for several strong-coupled
extended states, but there the cluster ansatz is antisymmetric,
C5,+1=—C,,. The corresponding equation differs from Eq.
(20) by the — sign near both terms with a, respectively; there
ap(p)ears the — sign of @ in Eq. (21) and in the definition of
Q

eff

O} =2-an2j-1, (23)

which is now antisqueezed due to nonlinear fluctuations. In
the limit j—oc both oscillators degenerate at frequency 2,
and so the intercluster interaction effectively vanishes. In the
absence of the intercluster interaction the energy lines from
different clusters would regularly cross. The intercluster in-
teraction leads to the spreading of the localized wave func-
tions as described above and to the splitting of levels
(avoided crossings). In the vicinity of an avoiding crossing
we can approximately represent the relevant Hamiltonian as
an effective (2 X 2) matrix:

. [(pT u
Hz(u O)’ @)

where 7=a—q, where ¢ is the point of level collision if
there were no interaction. The matrix (24) accounts for the
collision of two levels, one lying at E=0 (if 7=+%) and the
other moving asymptotically with velocity p with
“pseudotime” 7. In the representation (24) we are in the
frame of reference moving downwards with « so that the
velocity of the nonexotic levels is zero. If the colliding levels
are weakly affected by neighbors, we can consider p and u to
be approximately constants. The minimal avoided crossing at
7=0 is 2|ul. Including other nonexotic levels (thus situated
at distances 1,2,...) leads to an extension of the matrix (24)
to the shape given by Eq. (2) of the paper by Gaspard et al.
[25] and accounting for a single level moving with velocity p
and crossing subsequently parallel energy levels yi,y,,...
with effective interaction strengths u;,u,,.... It was shown
there that for equidistant energies y; and equal strengths u;
this system immediately gives a solution in the form of a
soliton propagating with pseudotime 7 through the “lattice”
v, with natural analytical predictions as to the profile of the
energy eigenvalues x,(7). This soliton like solution corre-
sponds to our diabatic level. The parameter p equals the rela-
tive slope of exotic (diabatic) and ordinary levels and can be
estimated in the strong-coupling approximation using Eq.
(19); for the first diabatic line, it therefore holds that p
=242j. In the same approximation the level splitting (pa-
rameter u) can be estimated as (¥, | H(ap)|®,,), where H is
the exact Hamiltonian and W, and ®,, are wave functions in
the strong-coupling approximation of the localized and ex-
tended states with numbers n and m, n=1,2..., m=n+1,...
taken in the point «, of crossing of the corresponding unper-
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turbed levels. For example, for the first avoided crossmg of
the lowest diabatic line the estimation gives u~2/\j /j. For
large numbers m of subsequent collisions the gap value turns
out to be approximately constant which suggests the appli-
cability of the soliton like solution like those considered by
Gaspard et al. [25].

B. Weak-coupling approximation

This is the case opposite to the previous one and valid for
Jj<n,. Rewrite the system (17) and (18) with coefficients
(15) and (16) with positive signs in the following way (here
we again label by n instead of n,):

ConlES, —~ E) + a[ Cyp1\201+ 1+ Cy\ 2]+ aCayiky = 0,

Con1 (B, = E) + [ Coy\2n + 1+ Cypp\2n 4+ 2] + s k,
=0, (25)

with

[ 2
knE\’2n+1< 1+—2 —1), n=0,1,... (26)

2n+1

(k,~j/V2n+1<k1 if j<n). The whole system (25) is el-
egantly cast as HY=EV¥ with

H=b'b+ a(b*+b)+ 8V =Hy+ &V, (27)

with formal notations C,,— |2n) and C,,,;—|2n+1) and

operators b" and b acting upon our radial functions |n) as
ordinary creation and annihilation operators [in the previous
subsection the corresponding “pseudostates” referred to the

cluster (C,,,Cs,,1)]; the perturbation operator 8V acts ac-

cording to the recipe
.| [2n) [2n + 1),
1% = ak, X (28)
[2n+1) |2n).

The interaction (28) ties together the elements inside the
cluster (C,,,C5,41), and when it becomes considerable we
again recover the strong-coupling approximation of the pre-
vious section.

From Eq. (27) we immediately get a solution of the un-
perturbed problem Hyi=E,i in terms of the displaced Fock
states by applying the generator of coherent states D(7)
=exp[y(b'-b)] on our pseudostates:

W) =ii) = D(= @)|n), (29)

with unperturbed energies E;0)=n— o”. Therefore it is reason-

able to investigate the reduced spectrum from which the
“secular parts” of the energies are subtracted: dx,=FE,—n
+a?~(j—1/2). On the left-hand side of Fig. 4 we plot the
reduced wavelike spectrum Jx,, as a function of n for typical
values of «,j. Examining Fig. 4 we observe that extracting
the secular part reveals patterns which have not been noticed
on the normal scale of the wavelike spectrum. The most
interesting peculiarity is thus a crossover from two twisting
quasisinusoids for large n and/or small « to the pictures
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which curiously resemble chaotic intermittent patterns con-
taining rather characteristic windows of a regular motion.
The cutoffs on the left parts of the spectra (small n) corre-
spond to the first diabatic line below which such a reduction

loses its sense since the perturbation 8V can no longer be
considered as small compared to H,,.

The standard perturbation scheme applied to Eq. (27)
gives up to the first perturbation order an expression for the
spectral energies [the notation 7 merely reminds one of the
fact that the base functions are now “displaced Fock states”
(29) not to be confused with |n)]

Eﬁ=ﬁ—a2+ 5Vﬁﬁ+ e, (30)
with

V= E (@lh)(h| SV]s)(s|)

[

=2a>, 2h+ 1|D(= a)|n)2h|D(- a)|n)k,, (31)
h=0

where k, is defined by (26). The matrix elements (n|7i)
=(n|D(pB)|m) can be calculated directly:

sgn(n —m) - m‘

mm nm (ﬂz)

(32)

(@i =exp( - £ g

vm ! n!

where L’(x) are Laguerre polynomials.

In the scope of the present paper we do not present a
further detailed analysis of Eq. (31), just mentioning now
that it gives essentially the same structure as that presented
in Fig. 4. Moreover, it can be used even for the ground state
(lowest energy for given j), giving a plausible fitting for very
small and very large «, although serious discrepancies occur
for @~ 1, rendering it absolutely unsatisfactory in this re-
gion.

C. Method of level dynamics

The formalism of the generalized Calogero-Moser gas has
been developed [2,19,20] as a useful alternative approach for
Hamiltonians of the type H=H+ aV [the perturbation term
linearly dependent on «; Eq. (6) for a= g is the case with the
first two terms as H,, and the term with a as V] by mapping
the eigenvalue equations on a statistical many-body system
of interacting pseudoparticles. There a is a controlling pa-
rameter considered as a pseudotime, o= 7. The eigenvalues
were defined as dynamic variables E,(a)=x,(7) and
dx,/dr=p,(7). The respective classical dynamic equations
for the pseudoparticles evolving in pseudotime 7 are

% =2 2 anLmn .
dr m(#n) (xm - xn)

E Lm ILln

(33)
dT l#(m n) ( - xl)2

(xm - x1)2 '

where

066215-8



INCIPIENCE OF QUANTUM CHAOS IN THE JAHN-...

pu = n(DVIn(7) = V,,,

Lmn(T) = [-xn(T) - xm(T)]an == an' (34)

The system of differential equations of the form (33) is
equivalent to the initial set (17) and (18) and is represented
as a set of dynamical equations of motion for a gas subject to
a repulsive 1/r% potential (“Calogero-Moser gas”). In our
case from Egs. (15) and (16) we get (we simplify the nota-
tion, n=n,)

ST
L2n2n+l = \"2\’” +1+ |.] - 1/2“:-)(2n+1(7-) —.in(T)],

Loy 12n == 21+ 1[x2,(7) = x5,_1(D]. (35)

The dynamic equations for a pair of even and odd coupled
trajectories are then

L2n2n—1L2n—12n

(Xpp-1 = x2n)3

den _ L2n2n+1L2n+12n
- 3
dr (X2n41 = X20)

dpons1 2L2n+12n+2L2n+22n+1 2L2n+12nL2n2n+1 (36)
= 3 3
dr (Xons2 = X2n41) (X2 = X2041)

For what follows we define a small fluctuation & by x,,.,
X5, =148, and approximate (Xy,,—X»,)"'=1=&,+5,
—5;,[. From Egs. (35) and (36) we get the nonlinear set of
equations

P, 1
(9_7; - U%(ﬁlnﬂ + 52;1—1 - 252n) =f_ 4 j_ E ‘ (52n+l + 52n—1)
- 452n—1 - 4(” + 1)(5§n+1 - 6gn+l) - 47’1(5%,1_1 - 6§n—1)’
(37)

a252n
?ﬂ - U%(52n+2 + 52n - 262n+1)

=—f+4

1
J— 5 ‘ (52n + 62n+2) + 452n+2

- 4(5%n+2 - 5;n+2) -8

1
j_ E ‘ (5§I’l+1 - 5gn+l)’ (38)

where v%=4(n+ 1+[j-1/2]), v%=4(n+ 1),
+8|j-1/2|.

For large n>>|j| and v}=~v3, Eqgs. (37) and (38) exhibit
wavelike character in n. The linear approximation to Eq. (38)
bears the solution &,,;=~Jy(2V|2j—1|n) where Jy(z) is the
Bessel function. This behavior can be recognized in the up-
per part of the spectra in Figs. 1(a) and 4(a). It is equivalent
to the weak-coupling limit of the preceding subsection. The
level avoidings in this linear part are kinematical and lead to
clustering (dimerization) visualized in the level-spacing
probability distributions (Sec. IV).

Equations (37) and (38) allow a useful insight into the
effects of nonlinearities on the level dynamics involved. Ex-
ploiting their wavelike character we define the phase variable
{=n—-v7 (v being an arbitrary constant velocity) and write an

and f=4

approximate equation for &,,;=8,,;—1 at |j| >n:

PHYSICAL REVIEW E 73, 066215 (2006)

>3y, .
— (v —4|jl)ﬁ +16[j](8yps1 + &,0) = 0. (39)

If 4|j| <v?, then

_ 3 ~ (4| -|)1/2
S ({= &) =~ 5 cosh 2(W(§— §0)>~ (40)

There {,=ny—v T, is a constant restoring the translational in-
variance of the solution; identifying dx,,,/dn=1+6,,,; we
recover a soliton-shaped (kink) solution

S ()

Xope1 =20 — E (4|j|)1/2 (U2 _ 4|j|)1/2(§_ &)

{=lo=n-ny—v(T-17)), (41)

corresponding to the tunneling between two adjacent levels.
There, a multitude of true dynamical level avoidings results
in a system of kink trains between subsequent pairs of levels.
The limiting velocity |[v|=2Vj corresponds to the limit of
vanishing fluctuations &,,,; and thus to suppressing the tun-
neling.

To consider now a situation interpolating between the two
previous situations we take &,=,+x in Eq. (38) for &,
therefore choosing x so as to eliminate the quadratic terms in
Eq. (37). Let us take approximately &,.;= &,_;=—0,.
Then we arrive at the equation
P, (2 - 4

. 3 .
— - gn_2|]| 52n+2n82n= §(2|J| —n/9)

1(5'232,1
407 "o
(42)

If the oscillations in n can be neglected, under conditions for
the coefficients of Eq. (42), B=2n/3-2|j|>0 and F
=(4/3)(2]j|-n/9)>0 (or n>3]|j|>n/6), there exists an
exact solution [26] to (42) of periodic nonsinusoidal form
spanned by F which describes the kink nucleation fluctua-
tion. Increasing j causes the growth of the energy of the
nucleus until a new kink generates. The respective solution
reads

n; +cos(2wr)

5,(N=a , 43
2(7) n, + cos(2wr) (43)
where a, w, ny, and n, are given as
B n? ni-1
n =(2—n§)/n2, at=——2 , 4w?=2B g ,
2n2+n; ny+2
F 2
a=- £(2+n2). (44)

From the relation F=a(2na’-B) it is evident that the ampli-

tude a of the fluctuation &, is spanned by the driving field F,
growing with |j| until the energy of the fluctuation reaches
the energy of the kink.

Equations (37) and (38) also admit a chaotic regime for
sufficiently large j and n under the conditions ¢&8,,/d7
=8|j—1/2|+c, and #6y,,1/IT=-8|j—1/2|+c,, where ¢,
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=c¢,=0, if the oscillations in n can be neglected—i.e., J,,,;
+ 651 =28, =~ & &,/ In*=0 and the same for 5,,;. One ob-

tains  then &+ 840 =217841 (1= 8,0 /[|j=1/2] (n+

—1/2)], where 6y, =|j—1/2| 851 /0. Since 8,5, = &5, the
famous logistic equation is recovered

52n+2 = ASZ;H](1 - 32n+1)’ (45)

where A=n?/[|j—1/2|(n+j—-1/2)]. Equation (45) assumes
the transition to the chaotic regime for A=A_,;,=3.569%4. ..,
i.e., for

4
):2.1921 X [2j-1].
crit

. Acril
ncri,=|]—1/2|7 1+/1+

(46)

The condition n > n,,;, specifies the values of n=n, from the
nonlinear region above the kink nucleation threshold n
>3|j| as estimated above. On the other side the maximum
value of A, A=4, implies, n,=(2j—1)(1+12), which deter-
mines the upper limit for n, n<nj,.

Traditionally the term “quantum chaos” is used to denote
the traces of classical chaotic behavior at a quantum level.
As already mentioned in the Introduction, the classical coun-
terpart of the system under consideration cannot be defined
uniquely. The semiclassical approximation in two-level sys-
tems generically leads to classical chaotic patterns as a result
of the nonlinear coupling between two subsystems, boson
and electron, considered, respectively, as classical and quan-
tum. The onset of classical chaos corresponds to energies
above the first diabatic line. Referring to Eq. (46) it is to be
emphasized that the chaotic behavior refers to mentioned a
purely quantum regime of medium values of j and n, be-
tween the weak coupling with j<n, (dimerized pairs of os-
cillators) and strong coupling with j>>n, (kink lattice) do-
mains. Thus, this chaotic behavior can be regarded as being
of essentially quantum nature. One can conclude that the
mapping of a quantum system onto the classical Calogero-
Moser gas with repulsive interactions enables one to use the
classical formalism for describing the system via its quantum
numbers. So a promising feature of this approach is its abil-
ity to represent quantum chaos by means of classical equa-
tions.

IV. LEVEL STATISTICS

Statistical methods of investigation of the complex spec-
tra are based on evaluation of various “chaoticity degrees” of
quantum systems—i.e., the density of levels, distribution of
nearest-neighbor spacings (NNS’s), and statistics of distribu-
tion of “curvatures” accounting for avoided crossings as well
as more complicated measures of the distribution of avoided
crossings [20,27,28]. Most of these characteristics can be
obtained within the framework of random-matrix theory
(RMT) [27,29-31], whose predictions are supposed to ad-
equately describe quantum systems with generically chaotic
classical analogs. However, the predictions of RMT cover in
a satisfactory fashion only the “chaotic” limit of these sys-
tems, classifying them into three universality classes accord-
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ing to the time reversibility of the underlying Hamiltonian
[27,29,31] (that is, Gaussian orthogonal GOE, unitary GUE,
and symplectic GSE ensembles). The fourth universality
class is sometimes marked as corresponding to regular
dynamics—for example, if the classical analog of the system
for some values of the controlling parameters exhibits mostly
regular Kolmogorov-Arnold-Moser (KAM) trajectories.

In recent years, however, there came an understanding
that chaotic patterns are to be sought not only from the
energy-level distributions themselves but rather from pic-
tures of their changing with the change of controlling param-
eters in the Hamiltonian (). Thus, an alternative statistical
approach is based on the concept of a fully integrable de-
scription of the spectra by the dynamical model of a
Calogero-Moser gas of interacting (repulsing) pseudopar-
ticles [19,20] where the controlling parameter is considered a
pseudotime (Sec. III C). The dynamical equations for the
eigenfunctions |x(7)) of this Hamiltonian bring, for example,
to the notion of level curvature x(7) [20,28] and several con-
jectures about its relation to the nature of the underlying
RMT ensemble. Various characteristics of the level curvature
distributions were reported as handy indicators of quantum
chaos traces in a system. In particular, it was suggested [21]
that for energy regions with quantum chaos there holds the
scaling AK~ j¥ with positive v; meanwhile, for nonchaotic
regions v is rather negative or close to zero. We investigated
the widths AK of the distributions of the level curvatures
P(K) displayed as functions of j and a [Figs. 5(a) and 5(b)].
The level statistics of Fig. 5 (and of the following Figs. 6 and
7) was taken from the energy intervals above the first diaba-
tic line where multiple avoided crossings come into being.
For the improvement of statistics we used the standard recipe
of collecting the level sequences from a number of « values
lying in the neighborhood. Figure 5(a) apparently shows the
scaling behavior AK~j” with the scaling coefficient v
€ (0.99-1.01) for all a. In Fig. 5(b) we observe an another
interesting regularity: namely, the scaling law AK ~ a* with
m=0.5+0.05. This latter observation opens a challenging
suggestion about the diffusive character of spreading the
probability function P(K) in pseudotime «. From a closer
inspection of these distribution functions one can even an-
ticipate that the resulting diffusive equation would have a
telegraph term and possibly is capable of bearing anomalous
diffusion patterns. We are going to return to this point else-
where.

The realm of the symmetric JT model with a definite j
value is that of an effectively two-dimensional oscillator (or
rather two oscillators pertaining to two electron levels); thus,
the level-spacing picture for the unperturbed problem a=0 is
trivial: all levels of a quantum harmonic oscillator are equi-
distant, so P(S)=48(S—1). The nontrivial behavior of the
NNS distribution appears to be consequence of the effective
coupling of two oscillators through «. In Fig. 6 we show the
level-spacing distributions P(S) for a set of j with different
a. Our results indicate that the most close to RMT prediction
situations [RMT would yield a Wigner distribution of NNS’s
in the form P(S)~ S exp(-S?)] are located at intermediate
values of j and « as is seen for pictures with j=63/2. Mean-
while, the extreme values of j and « do not fit RMT at all.
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FIG. 5. The widths of curvature distributions AK=(A’K) as
function of j (a) and « (b). The scaling laws AK~j” and AK
~ a* are seen.

However, one can notice a crossover between two distinctly
different types of behavior seen, for example, at j=63/2, «
=2, and j=255/2. Such a behavior can be semiquantitatively
explained on the basis of the conception of effective poten-
tial wells—for example, built on the semiclassical coherent
probe function in the space of their parameters (see [18]; this
variant of building an effective potential is in fact the Husimi
representation of the Hamiltonian operator taken for zero
values of classical momenta). Namely, the characteristic for
big j is the presence of two almost noninteracting wells
which are seen from the right-hand of Fig. 4 showing spec-
tral entropies. We can assume that each of the wells refers to
a separate quantum oscillator having level spacings a and b
(let a<<b). The superposition of the distribution for two in-
dependent sets of levels is found to be in the form (see for
details, e.g., Berry and Robnik [32])

P(S) = %0(0 -8)+ S -a), (47)

0 being step function [we considered a < b; if they are com-
parable, a refinement to (47) is straightforward]. Conformity
of Fig. 6 to the prediction (47) with a=1.7 and b=4 for
large j and « (for j=255/2, a=15) is perceivable. From the

PHYSICAL REVIEW E 73, 066215 (2006)

“adiabatic sheet” treatment in [18] one can even define the
parameters of both effective potential wells. The opposite
case of small j () apparently indicates a dimerized structure
with two dominating spacings, with increasing extent of cor-
relation when decreasing j and «. The graphs of the
M-shaped probability distributions for fixed j in Fig. 6(a) for
small j and large n are similar to those by Cibils et al. [13]
for s=1/2 which corresponds to our parity p=1. There, the
asymmetry between the matrix elements f,,, and £, , is neg-
ligible and the weak-coupling approach is satisfactory. How-
ever, for large j with large asymmetry of the matrix elements
the strong-coupling limit of the kink lattice is valid. There
the relief of the three-minimum ground-state potential un-
folds (Fig. 4) and the three-peak picture arises [Figs. 6(b) and
6(c)].

The level-spacing statistics taken separately for particular
values of j is the basis of a more realistic investigation of the
level statistics of the whole spectrum of the system whose
Hamiltonian in this representation is a block matrix of blocks
on the diagonal corresponding to definite j and off-diagonal
blocks coupling [in the generalized EQ(b,+b,) JT model]
for different j’s. The peculiarity of the symmetric Jahn-Teller
system is that the interblock coupling is exactly zero, and as
was shown already in [33] with a variant of the central limit
theorem, the superposition of (infinite or very large number)
independent blocks will give a cumulative distribution which
must be of Poissonian character, P(S)=exp(—S). This result
is exactly that obtained by Yamasaki er al. [17] for the ab-
sence of (trigonal) nonlinearity and which was claimed to be
testimony of the absence of any traces of quantum chaos in
this case. The detailed account for the level statistics for the
generalized JT model including the symmetric JT as its par-
tial case is reported by us elsewhere [34]. For the sake of the
present paper we just mention the serious deviations of the
expected Poisson result in the symmetric case in the domain
of dominating quantum fluctuations [1>(«, 8)]. Indeed, the
P(S) distribution shown for &=8=0.5 exhibits considerable
deviations from the expected Poisson shape, showing
anomalously large variance >4 (for a=8=1 this dispersion
is =1.17, and for the domain 1 <e it is rather rigid, falling
normally within 0.7-0.8 irrespective of the values of «).
These anomalies are apparently due to the high nonunifor-
mity of the spectral statistics in this case for different energy
intervals. In Fig. 7 we show the level-spacing distributions
for a=B=0.5 taken for separate level intervals (100500,
500-1000, 1000—-1500, and 1500-2000) from which this
difference is apparent. The distributions with «,8>1, in
contrast, are rather robust with respect to changing energy
intervals.

V. CONCLUSION

The energy spectrum of a long but finite chain of corre-
lated clusters is governed by the interplay (competition) of
intracluster and intercluster interactions (repulsions) deter-
mined by two quantum numbers; rotational j and radial n,.
At small |j|, |j| <n,, the excited spectrum is long-range-
ordered and the broad dimerized region is a sample of pair-
wise oscillating levels. Respective level avoidings in the up-

s
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per part of the spectra [the inset in Fig. 1(a)] result from the
oscillations due to comparable intracluster and intercluster
interactions in this part of the spectra. Such a regular wave-
like spectrum is known to be characteristic for one-boson
two-level systems since long time ago [35] and is a signature
of the dimerization. The similarity of this part of the E®Qe
spectra with two bosons to the spectra of one-boson systems
was discussed in a more detail in the Introduction.

In the strong-coupling limit of large j, |j| > n, (the inter-
cluster interaction is small or negligible when compared to
the intracluster one), there appears a kink lattice—i.e., the
regular lattice of oscillating level clusters. There the levels
are bridged by a flip (kink) up to a higher level due to the
tunneling [Fig. 1(b) above the diabatic line and inset therein].
At moderate values of |j| and « there appears an intermediate
region of strong nonlinear fluctuations responsible for the
nucleation of the kinks [Figs. 1, 4(c), and 4(d)].

ui il
0.25 0.5 0.75
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FIG. 6. (Color online) Level-
spacing distributions for particular
Jj. Dimerization clustering related
to two dominating level spacings
is evident for @=2 and j=63/2.
The third peak from localized
states occurs at large j and «,
dominating close to the semiclas-
sical limit (compare with Fig. 4).
The crossover from the dimerized
regime to the localized regime
with increasing j and a is evident.

4=255/2

L L5

By an approximate quantum treatment of both the strong-
and weak-coupling limits in Sec. III we have found analyti-
cally the respective wavefunctions and energies of localized
exotic and extended states in the form of modified coherent
oscillators: at strong coupling we showed the appearance of
two branches of coherent oscillators with effective frequen-
cies QE?;E 2+a/V2j-1 squeezed or antisqueezed by j to the
degenerate quantum limit 1=2 at j— 0. An excellent agree-
ment of these solutions to the exact numerical wave func-
tions for large j (=63/2) was marked. In the weak-coupling
limit of small j<n, the first order of perturbation theory
yields satisfactory agreement with exact results for the wave
functions except for a@~1 (Q1~1). Therefore simple ap-
proximate analytical solutions for wave functions are avail-
able in both the strong- and weak-coupling limits corre-
sponding to the soliton (kink) and wavelike lattice (in the
plane energy-coupling parameter).

P(S) a) a=B=0.5 100-500 P(S) b) a=B=0.5 500-1000
1.4 1.4
1.2 1.2
1 1
0.8 0.8
i 0B F.IG. 7.. (C.010.r online) Level-
0.2 6ol spacing distributions for subse-
' ’ quent segments of the cumulative
ot 0.2 energy spectrum for small a<<1.
2 Dimerization clustering peaks as
remnants of the distributions in
P(S) ¢) a=Bf=0.5 1000-1500 P(S) d) a=p=0.5 1500-2000 Fig. 6 are evident. The reference
1 all curves pertain to Wigner (solid
1 i 5 line), semi-Poisson (dotted line),
0.8 i and  Poisson  (dashed line)
I distributions.
0.6 0. 8[l{Mty
. 0.6
0. 4](H
0.2 0.2
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INCIPIENCE OF QUANTUM CHAOS IN THE JAHN-...

The mapping of our model on the Calogero-Moser gas of
classical pseudoparticles with repulsive interactions enabled
us to describe (Sec. IIT C) all regions of the spectra by a set
of classical equations in terms of its quantum numbers. In the
intermediate region the equations under certain conditions
implied a logistic equation route to chaos in terms of quan-
tum numbers.

On the other hand, the qualitative features of the excited
spectra of the E®e Jahn-Teller model can be understood
from the outline of the shape of the effective potential used
for investigating the ground state of the model [18,36]. With
increasing j and « up to the semiclassical limit there emerge
up to three effective potential minima. In accordance with
this we identify the above-mentioned three phases in the
spectra: for small coupling « the dimerized phase is related
to two broad minima of the potential. Increasing a opens one
additional narrow minimum (for the ground state its counter-
part was responsible for emerging the “tunneling phase” or
light polaron [36]). The complex interplay of wave functions
located over three minima corresponds to our intermediate
region [Figs. 4(c) and 4(d)] where the level statistics (Fig. 6)
exhibits chaotic patterns close below the limit expected for
fully chaotic RMT statistics [29]. Next, subsequently in-
creasing « and j brings a suppression of the initial two
“weak-coupling” wide minima in the quantum limit of large
j. Thus there persist two almost noninteracting potential
wells: a narrow and a wide one. Two remaining noninteract-
ing branches of the spectra are markedly seen in Fig. 4(f).
The lowest branch of the spectral entropy in Fig. 4(f) is
related to the (third) narrow minimum of the effective poten-
tial responsible for the kink lattice phase of avoided cross-
ings (localized states) in energy spectra. This behavior is also
supported by the shape of the level-spacing distribution [Fig.
6(d) and Eq. (47)] which has the marked character of super-
imposing two almost noninteracting effective oscillators with
different frequencies.

The statistical level-spacing probability distributions in-
vestigated in Sec. IV were numerically calculated for par-
ticular j’s. Their features are in agreement with the above
conclusions based on the shape of the effective potential:
They are shown to exhibit up to three maxima (Fig. 6) de-
pending on j and «. For moderate j and « a pair of almost
symmetric prominent peaks of P(s) are related to two domi-
nating strongly correlated potential wells which are getting
closer at small « and j. The two dominating peaks of level

PHYSICAL REVIEW E 73, 066215 (2006)

spacings refer to the dimerization clustering of subsequent
even and odd levels. At large j and « the NNS distributions
are strictly determined by the shape of the ground-state ef-
fective potential (Fig. 6(d)]. The analysis of the cumulative
statistical distributions of level spacings shows a strongly
changing picture of different segments of spectra especially
at weak couplings (Fig. 7). The dimerized phase is pro-
nounced in the lowest part of spectra where a strong cluster-
ing is apparent from two peaks of the level-spacing distribu-
tion P(S). In the middle part of the spectra some patterns of
the Wigner distribution at least at large S are perceivable.
The widths of the level curvature distributions were found
(Fig. 5) to be scaled as AK o j”,vec1, and thus satisfying the
criterion suggested [21] for indicating chaotic patterns in our
quantum system. Additionally, the scaling behavior AK
= % was revealed which traces a possible bridge between
mechanical and statistical points of understanding the com-
plexity in the system referring to a possibility of reformulat-
ing the level curvature statistics stochastically, as a Calogero-
Moser gas diffusing with “time” « [37].

Since the sets of levels with j# j’ for the symmetric JT
system are uncorrelated (matrix elements between the states
are zero), the respective levels intersect (Sec. IT). The cumu-
lative level-spacing probability distributions consist of inde-
pendent contributions of all j’s and, consequently, the Pois-
sonian distribution should supercede the above-described
partial distributions. The cumulative level-spacing distribu-
tions, however, are found to exhibit enormously large disper-
sions >>1 at small =1 (Fig. 7) which can be evidence for
the overlapping of distributions of two kinds: a Poissonian
one from the crossing of uncorrelated levels j# j’ and two-
peak ones for the particular j’s described above. In the quan-
tum limit j— o0 the spectrum tends to a continuum and the
respective levels at j— j’ will tend to avoiding levels.
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