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Harmonic versus subharmonic patterns in a spatially forced oscillating chemical reaction
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The effects of a spatially periodic forcing on an oscillating chemical reaction as described by the Lengyel-
Epstein model are investigated. We find a surprising competition between two oscillating patterns, where one
is harmonic and the other subharmonic with respect to the spatially periodic forcing. The occurrence of a
subharmonic pattern is remarkable as well as its preference up to rather large values of the modulation
amplitude. For small modulation amplitudes we derive from the model system a generic equation for the
envelope of the oscillating reaction that includes an additional forcing contribution, compared to the amplitude
equations known from previous studies in other systems. The analysis of this amplitude equation allows the
derivation of analytical expressions even for the forcing corrections to the threshold and to the oscillation
frequency, which are in a wide range of parameters in good agreement with the numerical analysis of the
complete reaction equations. In the nonlinear regime beyond threshold, the subharmonic solutions exist in a
finite range of the control parameter that has been determined by solving the reaction equations numerically for

various sets of parameters.
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I. INTRODUCTION

Studying the response of pattern-forming systems with
respect to an external stimulus provides a powerful method
to investigate the inherently nonlinear mechanism of self-
organization in various systems under nonequilibrium condi-
tions. Thermal convection [1] and electroconvection in nem-
atic liquid crystals [2—4] are two systems where the effects of
spatially periodic forcing have been investigated rather early.
Further on, the effects of forcing on stationary bifurcations
have been studied extensively in many different systems
[5-13], and this branch of nonlinear science has also evolved
to forcing studies on oscillatory media and traveling waves
[14-24].

Recently, the response behavior of patterns with respect to
a combination of spatial and temporal forcing has attracted a
great deal of attention because of the development of flexible
forcing techniques using illumination, as for instance in pho-
tosensitive chemical reactions [23-28] or in electroconvec-
tion in nematic liquid crystals [29,30]. For the photosensitive
chlorine dioxide-iodine-malonic acid (CDIMA) reaction, as
described by the so-called Lengyel-Epstein model [31,32],
one finds Turing patterns in a large parameter range. In par-
ticular, their response with respect to a forcing of a traveling
wave type, which is spatially resonant or near resonant with
respect to the characteristic wavelength of the Turing pattern,
exhibits a number of new phenomena and has therefore at-
tracted considerable attention recently [26,28].

The Lengyel-Epstein model also exhibits a spatially ho-
mogeneous and supercritical Hopf bifurcation [31,33,34]
similar to the one found in other chemical reactions. In the
present work, we investigate the response of the Hopf bifur-
cation of this model with respect to a spatially periodic but
time-independent illuminating forcing, which enters the
Lengyel-Epstein model additively. Beyond the instability of
the homogeneous chemical reaction, we find a surprising
competition between a temporally oscillating and spatially
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modulated reaction that is harmonic with respect to the spa-
tially periodic forcing and another one which is subhar-
monic. Besides its occurrence close to the threshold of the
Hopf bifurcation, the preference of the subharmonic pattern
up to large forcing amplitudes is remarkable as well.

From a technical point of view, our analysis is related to a
previous study of a complex Ginzburg-Landau equation cor-
responding to a spatially periodic modulation of a temporally
resonant forcing of a chemical reaction [25]. While the forc-
ing in the previous studies entered the model equation mul-
tiplicatively, the forcing enters the Lengyel-Epstein model
additively. Close to the threshold of the Hopf bifurcation, we
also reduced the Lengyel-Epstein model to a universal equa-
tion for the amplitude of the oscillations by using a multiple
scale perturbation technique [35]. We find that the forcing
contribution occurs also multiplicatively in the resulting am-
plitude equation, but the forcing contribution to the complex
amplitude equation has a different form compared to previ-
ous studies. Nevertheless, as a result of the analysis of this
amplitude equation, we also obtain a competition between
harmonic and subharmonic structures that agree in the limit
of small modulation amplitudes very well with the results of
the full numerical analysis of the Lengyel-Epstein model.

This work is organized as follows. In Sec. II we present
the Lengyel-Epstein model for a spatially modulated illumi-
nation and in Sec. III we determine its stationary basic states
and study their stability against small perturbations for a uni-
form and spatially modulated illumination. Some results of
numerical simulations of the full nonlinear model equations
are presented in Sec. IV. Close to threshold, in the so-called
weakly nonlinear regime, the dynamical behavior of the
Lengyel-Epstein model can be described in terms of an am-
plitude equation as discussed in Sec. V. The effect of the
modulation on the threshold of this amplitude equation is
investigated in Sec. V A by using two different approaches
given by a perturbation calculation and by a fully numerical
solution of the general linear problem. The results are dis-
cussed in detail in Sec. V B, where we also make a compari-
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son with the thresholds obtained from a direct solution of the
Lengyel-Epstein model. The work finishes with a summary
and some concluding remarks in Sec. VI. A detailed deriva-
tion of the amplitude equation from the Lengyel-Epstein
model is given in the Appendix.

II. THE LENGYEL-EPSTEIN MODEL

The starting point of our investigations on the effects of a
spatially periodic modulated control parameter on a chemical
reaction is the Lengyel-Epstein model [31,32]. This model
describes two different instabilities of a spatially homoge-
neous chemical reaction, either a Turing instability to a sta-
tionary and spatially periodic pattern or a Hopf bifurcation to
a spatially homogeneous but temporally oscillating reaction.
Here, we will focus on the Hopf bifurcation, which is pre-
ferred for similar diffusivities of the reacting substances, and
on the effects of a spatial modulated illumination in one spa-
tial dimension. For this purpose, the model for the two di-
mensionless concentrations u(x,) and v(x,?) is extended by
a term describing a spatially varying illumination ¢(x), simi-
lar as in Ref. [33],

du=a—cu—4 uvz—¢+(9§u, (1a)
1+u
&,v:a(cu— w 2+¢+d&iv>. (1b)
1+u

The constants a, ¢, o, and d denote dimensionless parameters
of the reaction diffusion model and the effect of an external
illumination is introduced through the field ¢(x),

P(x) = o + M(x), 2)

which can be identified as the control parameter of the sys-
tem that is composed of a spatially homogeneous contribu-
tion ¢, and a spatially varying part M(x). M(x) breaks the
translational symmetry of the system, and we assume for
reasons of simplicity a spatially periodic modulation as de-
scribed by

M(x) =2G cos(2kx), (3)

with the modulation amplitude 2G and the modulation wave
number 2k.
With the two vectors

the matrix
r (&, +c— 07)% 0 ) )
- —-oc d,— Ud&zx '

and the nonlinear vector

-4
N= lj-vuz(— a')’ (©)

a compact formulation of the two basic equations (1) be-
comes possible,
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Lu=N(u)+V, (7)

which is especially useful for the amplitude expansion as
outlined in the Appendix.

III. BASIC STATES AND THEIR STABILITY

The stationary basic state of the Lengyel-Epstein model is
determined for a uniform illumination in Sec. III A and for a
spatially periodic illumination in Sec. III B. In both cases we
also investigate its stability with respect to a bifurcation to an
oscillating chemical reaction.

A. The spatially homogeneous case M(x)=0

In the case of a homogeneous illumination, i.e., for G
=0, the stationary solution of Egs. (1) is given by

_a=5¢
T 5¢

a(l +ud)
Uy s Vo= . (8)
51/{0
It becomes unstable with respect to small oscillating pertur-
bations for an illumination strength ¢, below a critical value
¢, Which is determined by a linear stability analysis.

For this analysis we start with a superposition of the sta-
tionary, homogeneous basic state u, and an infinitesimal per-

turbation wu,(x, 1),
N3
u=u0+u1=<u0>+(m(x )>7 (9)
vg v(x,1)

as a solution of Eq. (7), which is then linearized with respect
to u; and v. The resulting two coupled differential equations

Lu; = Mou, (10)
have the constant coefficient matrix
MO=<—4C1 —4C2), 1)
-oC; —0aC,
with the matrix elements
vo(1 —ul u
C1=(01(+—u(2))02), 2=T°u(2). (12)

Equation (10) may be further reduced by a mode ansatz of
the form

1 .
u=A M 4 e e (13)
Ey

where c.c. denotes the complex conjugate and E, describes
the ratio between the amplitudes of the two perturbations u;
and v,. The resulting two coupled linear equations have only
solutions for a nonvanishing amplitude A # 0, if the solvabil-
ity condition

N+c+q*+4C 4C
det( q 1 2

=0 14
)\+0'dq2+0'C2) (14)

—oc+0C,

is fulfilled. This condition determines the two eigenvalues
N(g) as functions of the wave number ¢,
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FIG. 1. The neutral curves ¢y(g) in part (a) correspond starting
from the top to increasing values of ¢=0.55,0.65,0.75,0,85,0.95.
In part (b) the curves for the Hopf frequency wgy(q) along ¢y(q)
correspond starting from the bottom to increasing values of c¢. The
remaining parameters are a=12, =5, d=0.8.

1
A=+ E\s’[qz(ad +1)+4C, +c+0C, > - 4h(4?)

1
—E[q2(0d+1)+4Cl+c+0'C2], (15)

with
h(q?) = odg* + ¢*[od(c +4C,) + 0C, ] + 50¢C,.

For a positive growth rate Re(\) and a finite imaginary part
Im(\) # 0, the basic state u, becomes unstable with respect
to a Hopf bifurcation. The neutral curve of the wave-
number-dependent illumination strength ¢,(g), which sepa-
rates the stable from the unstable parameter range, is deter-
mined by the neutral stability condition Re[\(g)]=0. It is
shown together with the corresponding Hopf frequency
w(q) for different values of the parameters ¢ in Fig. 1. Since
a strong illumination of the chemical reaction suppresses the
instability, the homogeneous basic state u, is unstable for a
given value of ¢ within the area enclosed by the respective
line in part (a) of Fig. 1. The maximum of each neutral curve
¢do(q) is given at g=0, which determines the critical illumi-
nation strength ¢, below which the chemical reaction be-
comes oscillatory. In this case the eigenvalues in Eq. (15)
may be further simplified to

| 1 .
)\t:_ E[4C1 +c+ (TCz] + E\[4C1 +c+ 0'C2] - 200’CC2.

(16)

Since the parameters ¢, C,, and o are all positive, also the
product ocC, is always positive and, therefore, the eigenval-
ues given by Eq. (16) are either real with the same sign or

PHYSICAL REVIEW E 73, 066211 (2006)

] . I I ] . | .
0.4 0.6 0.8 1.0 1.2 1.4

parameter ¢

FIG. 2. In part (a) the threshold of the Hopf bifurcation ¢,
=¢y(g=0), and in part (b) the critical frequency w.=w(qg=0) are
shown as a function of the parameter ¢ and for three different values
of a. At small values of ¢, the Hopf bifurcation disappears and the
homogeneous state u, becomes unstable with respect to a Turing
instability. The data are determined for o=5, d=1.

complex conjugate. The latter case occurs if the condition

4vo(1 - u%) o
(1+ u(zJ)2

2 200cuy

2
1 +u

<0 17
l+u(2) (17)

is fulfilled and the stability of the ground state u, is then
determined by Re(\,)=7(a,c,0,dy)=—(4C,+c+aC,)/2.
The neutral stability condition {a,c, o, ¢y)=0 for the Hopf
bifurcation is then in its explicit form given by

0=125¢5, +25(a—50) 5.+ 25(5¢% — a® + 20a) gy,
+a(B3a® = 50a-125¢2), (18)

from which the critical illumination ¢,.(a,c,o) may be de-
termined. The Hopf frequency at this critical value is de-
scribed by the expression

— ola—-5d,
o= £ \5ocCy =+ [—TET3%) )
a_sd)OC
1+| ——
5¢

Both the critical illumination ¢, and the Hopf frequency w,,
are plotted in Fig. 2 as functions of the parameter ¢ and for
three different values of a. With increasing values of ¢, the
critical illumination decreases continuously up to the point
¢0.=0. For ¢>c(¢h.=0) the stationary and homogeneous
chemical reaction described by u, is always stable with re-
spect to small perturbations. At small values of ¢, the Hopf
bifurcation disappears and the basic state becomes unstable
with respect to a Turing instability.

B. Basic state in the presence of M(x)

In order to determine, in the case of a spatially periodic
illumination ¢(x)=¢y+M(x) the stationary basic state @
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FIG. 3. The basic solutions # (solid line) and
U (dotted line) of the Lengyel-Epstein model for
a spatially modulated illumination rate ¢(x)= g,
+2G cos(2kx) with wave number k=0.2 are
shown in part (a) for G=0.04 and in part (b) for
G=0.4. Parameters are a=12,¢=0.55,d=0.8, ¢,
=1.5.
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=(ty,0,) of Eq. (7), we use its time-independent part in the
following form:

0=a—-5cu—5¢(x)+ du—4ddv, (20a)

0=af(l +u2)—5uv+(1+u2)(&§u+da§v). (20b)

These inhomogeneously forced differential equations may be
solved by the following Fourier ansatz for the two fields
iip(x) and 0y(x):

M M
120 — 2 UleiIka, 60 — 2 VleiIka (2 1)
I=—M =M

with an appropriate number M and the Fourier amplitudes U,
and V, of the expansion. The magnitude of these amplitudes
for [#0 is essentially determined by the forcing amplitude
G. Since i and 0 are real functions, we assume real ampli-
tudes with U;,=U_; and V,=V_,, respectively. Substituting the
ansatz (21) into Egs. (20) and, after projecting the equations
onto [dx exp(—ij2kx) in order to eliminate the x dependence,
we obtain a set of coupled algebraic equations for the deter-
mination of the unknown Fourier amplitudes,

0=(a—5¢y) 80— 5cU;=5G(8;, + 5, ) - (2jk)°U;
+4d(2jk)*V;, (22a)

0=ad+a, UU;_ -5 UV, —(2jk)*U; - d(2jk)*V;
1 l

-2 2 VU U y2mk)* = d 2 2 U UV, (2mk)?,
I m I m

(22b)

with j=—M, ..., M. All sums in Eq. (22b) run from -M to M
and the system of nonlinear equations in the amplitudes U;
and V; can be solved by standard numerical methods. The
basic spatially dependent solutions are then evaluated via Eq.
(21). One should note that, according to Eq. (22a), the Fou-
rier amplitude Uy=(a—5¢,)/(5¢) corresponding to the spa-
tially homogeneous contribution to iy(x) is not changed by
the forcing; cf. Eq. (8).

For a given set of parameters, the two solutions #, and 0
as given by Eq. (21) are plotted in Fig. 3(a) for the modula-
tion amplitude G=0.04 and in part (b) for G=0.4, while the
modulation wave number is given by k=0.2. The field #(x)

is pictured as a solid line and Gy(x) as a dotted line. The

1 it 1 L I
80 100 120

spatial profile of the solutions shown in part (a) is dominated
by the wave number of the forcing M(x) o cos(2kx). For in-
creasing forcing amplitudes G, the weights of the higher har-
monic amplitudes in the expansions given in Eq. (21) are
amplified and the basic state @, becomes fairly anharmonic
as illustrated in part (b). Note the different scales in part (a)
and (b).

C. Threshold of the Hopf bifurcation in the presence of M(x)

The spatially periodic basic state of the Lengyel-Epstein
model as described by d,=[ii(x),0y(x)] becomes unstable
against infinitesimal perturbations w=(w,w,) below a criti-
cal illumination rate ¢y< ¢y.(G,k). In order to determine
this critical value, the basic state is separated from the small
perturbation by the ansatz

u=1a,+w. (23)

After linearizing the basic equation (7) with respect to w, one
obtains the following equation of motion:

Lw=Mw, (24)
with the coefficient matrix
o (-4, -4,
My= R R (25)
- (TC] - O'CZ
and the abbreviations
A A2 A
A U()(] - MO) A Uy
Cilx)=——7, GClx)=—— 26
1(x) (14227 »(x) T+ @ (26)

Equation (24) has formally the same form as for the homo-
geneous case given by Eq. (10). Since Eq. (24) has spatially
varying coefficients with a periodicity given by the forcing
wave number, 2k, the following Floquet-type ansatz for the
small perturbations may be chosen with a complex parameter
A:

N
F\ .
w=eM Y, < e 4 c.c.

(27)
=~ \H,

Substituting the ansatz (27) into Eq. (24) and using addition-
ally the Fourier representation of C,(x) and C,(x),
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M M
él — E C;l)eZilkx’ 62 — E C;Z)eZilkx’ (28)
=M I==M

all terms can be sorted with respect to the linearly indepen-
dent exponential functions. To transfer the linear equation
(24) into an eigenvalue problem for the constant coefficients
F; and H;, one has to eliminate the remaining dependence on
x by projecting the equations onto [dxe~”**. One finally ends
up with the following system of equations:

M M
ANFj=—cF;-4 > C§1)Fj_2, -4 ng)Hj—ﬂ - (jk)sz,
=M =M
(29a)
M M
NHj=ol - > CEZ)Hj—zl—ko)ij"' cFj= )y CEI)FJ—Z’
=M I=-M
(29b)

with j=—N, ...,N. These equations can be written in a more
compact form as two coupled sets of equations,

ANF=AF+7H, (30a)

AH = A,H + T,F, (30b)

where A; and Z;(i=1,2) denote matrices of the dimension
(2N+1) X (2N+1) and F and H include the (2N+1) Fourier
amplitudes of w; and w,, respectively. Additionally, Egs.
(30) can be formally rewritten as an eigenvalue problem

CW =\V, (31)

\1r~—<F> dC-—(A1 Il) 32
Tla/ MY\ o4, ) (32)

The matrix C has the dimension (4N+2)X (4N+2). From
Eqgs. (29) one recognizes that the even and odd indices j are
actually decoupled, giving rise to two independent thresh-
olds. These are the harmonic threshold d)f')(, corresponding to
harmonic perturbations wf-'(x+ 7/ k):w?(x) (i=1,2) with re-
spect to the forcing M(x) and the subharmonic threshold ¢
corresponding to subharmonic perturbations w"(x+ 7r/k)
:—wfh(x). The larger one of these two thresholds determines
whether spatially harmonic or subharmonic patterns emerge
from the basic state @, via a Hopf bifurcation.

Technically we solve the threshold problem as follows:

(i) Besides the illumination ¢, we keep all the other pa-
rameters a,c,d,o,G,k fixed and determine the basic states
il and 0 by solving Egs. (22).

with

(ii) Since the functions C 1(x) and éz(x) depend, accord-
ing to Eq. (26), nonlinearly on the basic state 1, they are
numerically evaluated on a discrete lattice and the Fourier
amplitudes C;l) and C;z), as required in Eq. (31), are obtained
by a numerical Fourier transformation.

(iii) The eigenvalue spectrum of the matrix C determines
whether the basic state W is stable, i.e., if Re(\) <0 for all
eigenvalues, or unstable, i.e., if Re(A\)>0 at least for one
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FIG. 4. In part (a) the threshold qﬁgc of the harmonic instability
(solid line) and the threshold ¢5’; of the subharmonic one (dashed
line) are shown as functions of the forcing amplitude G. Spatially
subharmonic patterns are preferred in a wide range of G with ([)g}.
> ¢h . The dotted line indicates the lower end of the existence
region of subharmonic patterns. The inset (b) displays the behavior
of the thresholds for small values of G in order to enlarge the
crossing region of the two curves ¢SC(G) and gb“o'l(’?(G). The two
crosses in the inset mark the points at which some results of nu-
merical simulations of Egs. (1) will be presented (see Fig. 6). The
Hopf frequency along the two threshold curves is shown in part (c).
Parameters are a=12,¢=0.55,0=5,d=0.8,k=0.2.

eigenvalue . Here, \ denotes the eigenvalue with the largest
growth rate. The illumination ¢, is varied until the neutral

stability condition Re(N\)=0 is satisfied and this specific
value of ¢, determines the critical illumination ¢, while

Im(\) =+ w, gives the Hopf frequency at threshold.

Some results for the harmonic and subharmonic threshold
as well as for the corresponding Hopf frequency are pre-
sented in Fig. 4 as functions of the amplitude G and in Fig. 5
as functions of the wave number k. Here, ¢, " are pictured
as solid lines and ¢}, " as dashed lines. The harmonic
solutions have, according to Fig. 4(a), the higher threshold
for small forcing amplitudes G and from the basic state, a
Hopf bifurcation occurs which is spatially harmonic with
respect to the external modulation. However, the harmonic
threshold drops below the subharmonic one for all values
G>0.077 and the bifurcation from the basic state is changed
to a spatially subharmonic pattern. The upper envelope of
both threshold curves is the instability border below which
the basic state 0, becomes unstable against small oscillating
perturbations. Subharmonic patterns are expected to occur in
numerical simulations with random initial solutions within
the area enclosed by the subharmonic threshold and by the
dotted line in part (a) of the figure. Part (b) displays the two
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FIG. 5. The thresholds for the harmonic instability ¢0c (solid
line) and the subharmonic one ¢oc (dashed line) are shown as func-
tions of the forcing wave number k for a modulation strength G
=0.3. In a small range of k the subharmonic solution is preferred
beyond the instability, ¢‘5’2> q‘xgc. In the limit k—cc the harmonic
threshold converges to ¢,.(G=0)=1.47. In the opposite limit, i.e.,
k— 0, both thresholds coincide and the critical illumination is given
by ¢0.(G=0)+2G. The Hopf frequency is shown in part (b). The
remaining parameters are the same as used in Fig. 4.

thresholds in the range of small values of G in order to
magnify the neighborhood of the intersection between
d)ﬁc(G) and ff;(G). The two crosses in part (b) indicate the
parameter values of ¢, and G, for which some nonlinear
solutions of the Lengyel-Epstein model (1) will be presented
in Fig. 6. The Hopf frequency along the two thresholds in
part (a) is depicted in part (c). As can be seen from Fig. 5(a),
the thresholds for the harmonic and subharmonic solution
differ only slightly for small forcing wave numbers k and in
the limiting case k— 0, where the critical illumination is
given by ¢y.= dy.(G=0)+2G, both thresholds coincide. On
the other hand, for large forcing wave numbers where the
modulation wavelength becomes smaller than the diffusion
length, the system averages over the fast spatial oscillations
~1/k, and the threshold approaches its unmodulated value
¢0.(G=0) from below. The harmonic threshold d)ﬁc(k) has a
pronounced minimum at k=0.4. Here, the bifurcation is al-
most suppressed, i.e., only a very weak illumination forces
an instability of the stationary state @,. For long-wavelength
modulations k<<1, the critical illumination is given by ¢,
> ¢o.(G=0) and, therefore, the Hopf bifurcation already oc-
curs in a range of the illumination ¢, where it does not
appear without modulation. Again, in the k range where the
harmonic threshold drops below the subharmonic one, the
stationary basic state becomes unstable against spatially sub-
harmonic perturbations. The corresponding Hopf frequency
is displayed in part (b).

PHYSICAL REVIEW E 73, 066211 (2006)

time
)
)
]
)
)
]
)
time

\/ \VAVA \J\J \(VAVAVA

Space Space
e
v
Q Q
L rovevewes |
S revevewes ©
VANANNY - AN
space space

FIG. 6. The left column shows harmonic solutions for the fields
wg (top) and v="0+ wg (bottom) and the right column subharmonic
solutions for the same fields, i.e., wih (top) and v =ﬁ0+w§h (bottom).
Solid lines indicate the spatial modulation M (x). The illumination is
given by ¢p=1.42 and the forcing amplitude by G=0.025 in part (a)
and by G=0.15 in part (b). Further parameters are a=12, ¢=0.55,
o=5, d=0.8, k=0.2. The parameter values in the ¢,—G plane are
marked by crosses in Fig. 4(b).

IV. NONLINEAR SOLUTIONS

The determination of the time evolution of the nonlinear
solutions of Egs. (1) for spatially periodic boundary condi-
tions is performed by a pseudospectral method. From a nu-
merical point of view, it has been proven useful to separate
the stationary basic state @, from the oscillatory contribution
w in order to simulate the equations of motion. After insert-
ing the ansatz (23) in the Lengyel-Epstein model (1), one
obtains the following governing equations for the two fields
w; and w,:

(it +w) (D + wy) 3 N
1+ (g +wy)? 1+
(33a)

dw;=—cw + &fwl —4|:

dwy = olew, +ddw,) — o

F%+WM%+Wﬁ_ﬁwo]
1+ (lig+w)? 1+ag ]|
(33b)

The effect of the modulation M (x) enters these equations via
the basic states i, and 0. A great deal of simulations with
random initial conditions were performed in order to verify
the onset of the Hopf bifurcation numerically. The results are
in excellent agreement with the threshold curves for ¢{.(G)
and f)’é(G), respectively, in Fig. 4(a).

Two types of nonlinear solutions obtained by numerical
simulations are presented in Fig. 6, where the left column
shows the time evolution of a spatially harmonic solution for
the field w” (top) as well as for the superposition v==0+w"
(bottom) occurring at ¢y=1.42 and G=0.025. The same
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fields are shown in the right column, i.e., w§h (top) and v
=ﬁo+w§h (bottom), in the case of subharmonic solutions oc-
curring at G=0.15. The parameters for these simulations in
the ¢y—G }’Jlane are marked by the crosses in Fig. 4(b). The
solution w5(x,7) describes spatially modulated oscillations
whose spatial profile becomes more pronounced when the
basic solution 9 is included. The time evolution of the field
w3 resembles that of a standing wave with twice the wave-
length of the forcing and, indeed, it is well described by
a superposition of three standing waves w3'(x,?)
=2J3~lej sin(w!"t+ @;)sin[(2j—1)kx] with real amplitudes B;
and phases ¢;. On the bottom right the full solution v=70,
+w§h of the Lengyel-Epstein model is shown. Note, the basic
solutions 0, i, have the same periodicity as the spatial
modulation. The nonlinear solutions for the other fields w,
and u=1,+w; look very much like the ones shown in Fig. 6
and they are therefore not presented here. Starting the simu-
lations with spatially subharmonic states and decreasing the
illumination ¢, continuously, the subharmonic pattern is
stable against small perturbations up to the dotted line in Fig.
4(a). On exceeding this border line, the subharmonic solution
becomes unstable and spatially harmonic patterns emerge.

Close to the threshold of the Hopf bifurcation, where the
amplitude of the oscillations is small, the dynamics of the
Lengyel-Epstein model may be described by a so-called am-
plitude equation as discussed in the next section.

V. AMPLITUDE EQUATION

Below the critical value ¢, of the control parameter ¢,
the basic state uy=(uy,v,) of the Lengyel-Epstein model (1)
becomes linearly unstable against small oscillatory perturba-
tions u; as described in Sec. III A. The magnitude of u,
beyond threshold is restricted by nonlinear terms in u; which
are of cubic order for a supercritical bifurcation. In this case
one may derive a universal amplitude equation for the slowly
varying amplitude A(x,7) in order to describe the dynamics
close to the threshold [35]. The technique for this derivation
is a multiple scale analysis where the full solution u, is de-
composed into a fast-varying oscillation «cexp(iw, f) with the
frequency w. and a spatially and temporally slowly varying
amplitude A(x,7):u;=A(x,)u, exp(iw 1) +c.c.

The usage of amplitude equations is a well-established
method to characterize the universal properties of a pattern at
small amplitudes close to its threshold. A particularly well-
known amplitude equation is found for a spatially homoge-
neous Hopf bifurcation, which has been investigated very
intensively over the recent decades; a recent review of this
subject is given by Ref. [38].

For the derivation of the amplitude equation, one intro-
duces as an expansion parameter the small distance to the
threshold &= %q";ﬁo and the expansion holds in the range A
gl Here, we assume additionally that the modulation
M (x) is also of the order €. For this case we generalize the
amplitude equation for an oscillatory bifurcation by includ-
ing the spatial modulation M (x),

700A = (1 +ic))A + E(1 +ib)PA +5,(1 + is)) MA
—g(1+icy)|A]A. (34)

An explicit derivation of this equation from the basic Egs.
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(1) is given in the Appendix and a special case of it is given
in Ref. [9]. All coefficients in Eq. (34) describe physical
quantities, such as the relaxation time 7, the linear and non-
linear frequency shift ¢; and c,, respectively, the coherence
length &), and the linear frequency dispersion f%b. For g
>0 the bifurcation is supercritical and otherwise subcritical.
The analytical expressions for all these coefficients in terms
of the parameters of the basic equations (1) are rather lengthy
and, instead of giving their analytical forms, we have plotted
them in Fig. 7 as functions of the parameter ¢ and for three
different values of a.

It is worthwhile mentioning that, apart from the coeffi-
cients s; and s,, all the other linear coefficients can be cal-
culated from the dispersion relation A(¢y.q°,...)
=Re(N) =i Im(\) of the Lengyel-Epstein model given in Eq.
(15) by the following expressions [38,39]:

1

w
=, = cTO > 35
0 gdReNady 1T P g 35
1 # 7 P
G TR po- T8 Gy
20 0 28 g

Here, w=Im(\) and the derivatives are evaluated at the criti-
cal values ¢y.,q.,w.. For a vanishing modulation these co-
efficients describe the linear properties of the Lengyel-
Epstein model near threshold. It is however essential to carry
out the perturbation expansion in order to determine the lin-
ear coefficients s; and s, as well as the nonlinear coefficients
g and ¢, as functions of the parameters of the basic equa-
tions.

The term iec A in Eq. (34) can be removed by the trans-

formation A=e~*“1’/A. For convenience we can scale out the
coefﬁciegts 79, &0,51,8 by a suitable choice of time, space,
and amplitude scales

t'=tlt, x' =x/&,

A'=g'PA, G'=s5,G, (36)
and one obtains the following rescaled amplitude equation:

dA =eA+ (1 +ib)FA + (1 +is))MA — (1 +ic,)|A]’A,
(37)

where we have kept for simplicity the same symbols for the
scaled quantities. The amplitude equation is invariant under
an arbitrary phase transformation as A— A exp(i).

A. Determination of the threshold

We investigate in this section how the spatial modulation
M (x) changes the bifurcation scenario from the basic state
A=0 of Eq. (37) into a spatial pattern. In the absence of the
modulation, i.e., G=0, the linear part of Eq. (37) is solved by
A=FeMN*ia¥ and this ansatz leads in the neutrally stable case
Re(N\)=0 to an expression for the neutral curve g4(g) and the
frequency dispersion wy(g)=Im(\),
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FIG. 7. The coefficients of the amplitude
equation (34) are plotted as functions of the pa-
rameter ¢ of the Lengyel-Epstein model and for

three different values a: a=14 (solid lines), a
=12 (dashed lines), and a=10 (dotted lines). The
critical illumination ¢, and the Hopf frequency
w, along these curves are shown in Fig. 2. Fur-
ther parameters are o=5, d=1.
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eolq) =q*  wolq) =-bq". (38)

Minimizing &((¢g) determines the threshold &.=0, the critical
wave number ¢g,.=0, and the frequency w,.=0. In the presence
of M(x) the bifurcation properties of Eq. (37) are changed, as
illustrated in the following by a perturbation calculation for
small modulation amplitudes.

1. Perturbation method for small amplitudes of M(x)

For small forcing amplitudes G<<1 we introduce a small
expansion parameter <1 with M(x)=7M(x). Since the am-
plitude equation (37) is of first order with respect to time, the
solution of its linear part has an exponential time dependence

and for small values of the modulation amplitude, G= 7](_},
the linear solution may be expanded in powers of the modu-
lation strength 7,

A=eMAg+ pA + PAL + ). (39)

Applying the neutral stability condition Re(\)=0, the pertur-
bation in Eq. (39) neither grows nor decays, which separates
the parameter regime where the basic state A=0 is stable
from the range where A=0 is unstable.

The threshold is shifted due to the modulation and, there-
fore, the control parameter g, and the frequency w.=Im(\)
are also expanded with respect to 7

£.= s(co) + 7]851) + 7728(62) + e, (40a)
w, = wi.o) + 770)5.1) + 7]2w£.2) + e (40Db)

The expansions given in Egs. (39) and (40) provide the fol-
lowing hierarchy of equations defining the neutral stability of
the basic state A=0:

7’ LoAg=0, (41a)

L 1 1 1 L 1 L
02 04 06 08 1.

7' LA =[eV +i0V) + (1 +is))M]A,,  (41b)
7 LoAr=[eV + iV + (1 +is,)MIA, + [ + i0?']A,,
(41c)

with the linear operator £0=ﬂ,—iw20)—s£0)—(1 +ib)d. These
equations may be solved by a spatial dependence which is

either harmonic

A() = Fo, (423.)
Al = erZikX + F_2e_2ikx, (42b)
or subharmonic
A0=F1€ikx+F_1€_ikx, (42C)
Ay =F3e™ 4+ F_ye7™, (42d)

with respect to M(x). In order to distinguish between the
harmonic and subharmonic results we introduce g, w, for
the harmonic case and &g, wy for the subharmonic one.
From a solvability condition on the right-hand side of Egs.
(41b) and (41c), the corrections to e, and w, may be calcu-
lated. The solution A, of Eq. (41b) is given for the harmonic
ansatz by

G(l + iSz)FO

2ikx —2ikx
= + s
=l & T

(43)

and in the case of the subharmonic ansatz by
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G(1 +is,) . .
= ——(F,¥ + F_je7 %), 44
i 8k2(1+ib)( 1 e™) (44)
whereas the solution A, of Eq. (41c) is not needed explicitly
to determine the corrections 82_2) and wiz), respectively. The
expansions of the threshold &, and the frequency w, up to
order O(7) are given for the harmonic case by

G*(1 =53 + 2bs,)

=— , 45
ST ) (45a)
G[b(1 - s%) —25,]
= , 45b
Wy 772 2](2(1 +b2) ( )
and for the subharmonic case by
_ G*(1 - 53+ 2bs,)
=k2- 96 - Pp— 2, 46
Esh 7 772 8k2(1 + bz) (46a)
_ L Gb(1-s3)-2
vy = bl — g, G o+ O =25 o

8k%(1 + b?)

If one increases the control parameter in Eq. (37) from
below, the lowest of the two thresholds €, and &, determines
whether the basic state A=0 is unstable against spatially har-
monic solutions, i.e., if g,<egg, or spatially subharmonic
solutions, i.e., if &,<e, By replacing k— &k and G
—5,G in the expressions (45) and (46), the thresholds &, ,
and the frequencies w,,, for the amplitude equation (34)
follow.

2. Numerical determination of the threshold

Because of the periodically varying coefficient M(x) in
Eq. (37), the general linear solution may be represented,
similar as in Sec. Il C, by a Floquet-Bloch expansion,

N

A1) =MD Fel? (with 0< g <2k), (47)
j=-N

up to an appropriate number N. Without spatial forcing all
coefficients but F|, vanish. The perturbation in Eq. (47)
grows for a chosen parameter combination if Re(\) >0 and
decays if Re(\) <0. We are again primarily interested in the
neutrally stable case Re(N\)=0, separating the stable from
the unstable regime. After inserting the ansatz for A into
the linear part of Eq. (37), the explicit x dependence is
removed by multiplying the equation with exp(—il2kx)
(I==N,...,N) and integrating with respect to x. From this
procedure the eigenvalue problem

AF=pF [F=(F_y,...,Fy)] (48)

follows, where the matrix A is a band matrix of width (2N
+1) with the coefficients

A= (1 +ib)(q +21k)%, (49a)

Al,l—Z =- (1 + iSz)G, (49b)

PHYSICAL REVIEW E 73, 066211 (2006)

A=A (49¢)

From a solvability condition for the homogeneous system of
equations (48),

det(A - pZ) = f(G,k,q, ...

(Z is the unity matrix), the eigenvalues p; are determined as
functions of the parameters and can be sorted in ascending
order with respect to their real parts Re(p;). Keeping all pa-
rameters besides ¢ fixed, the neutral curve gy(g) and the
frequency wy(g) can be determined from the eigenvalue with
the lowest real part p=min[Re(p;)]. Minimizing &,(gq) gives
then the threshold e, the critical wave number ¢, and the
critical frequency w,=wy(g=¢.). In this way, we found that
the minimum of the neutral curve is either given at ¢g.=0
determining the harmonic threshold ¢, or at g.=k determin-
ing the subharmonic threshold &;,. The harmonic and subhar-
monic contributions of the ansatz in Eq. (47) with respect to
M(x) separate for the linear part of Eq. (37), and the two
thresholds ¢, and &, may be calculated independently.

In order to obtain the analogous eigenvalue equation with
respect to the unscaled amplitude equation given in Eq. (34),
one has to replace in Egs. (49) the wave numbers ¢ and k by
&g and &k, respectively, as well as the amplitude G by s,G.

)=0 (50)

B. Results

One interesting question is the location of the border
separating the parameter range where the harmonic pattern is
preferred at threshold from that range where the subharmonic
pattern is favored, whereby the borderline is determined by
the condition g,=¢gg,. In terms of our perturbational results as
given in Sec. V A 1, this condition leads to a second-order
polynomial in the modulation amplitude G with its two so-
lutions

4k (1 + b?) 2K%(1 + b?)
L= *
=T 3(1-s3+2bsy) ~ 3(1 - 53+ 2bs,)

1 — 53+ 2bs,
X A\[4-6——F. 51
\/ 1+b? 51

There is a finite range in G where subharmonic solutions are
preferred, namely if the following inequality

4(1 +b%) = 6(1 — 55+ 2bs,) >0 (52)

is fulfilled. The harmonic threshold is the lowest one for
modulation amplitudes G<G_ and G>G,. In the finite
range G_<G <G, the subharmonic threshold &, drops be-
low the harmonic one. The two amplitudes G, and G_ ac-
cording to the formula (51) are plotted in Fig. 8 as functions
of the coefficient s,. The ranges in which subharmonic or
harmonic solutions are preferred are marked by s and h,
respectively. o o

In the parameter range s,>b+\1+b% and 5, <b—\1+b>
the harmonic threshold has a positive curvature as a function
of G, é*e,/ dG*>>0, which can be readily verified from Eq.
(45a). Consequently, at small values of G the threshold g, is
shifted upwards while the subharmonic threshold is domi-
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FIG. 8. The two solutions G, (solid lines) and G_ (dotted lines),
as given by Eq. (51), are shown as a function of the coefficient s,
and for the parameters k=0.25,b=1.5. The areas with pure har-
monic and subharmonic solutions at threshold are marked by 4 and
s, respectively.

nated by the linear decrease &,,%k*~G. These trends of the
two thresholds apparently promote the appearance of subhar-
monic patterns.

For arbitrary values of the modulation amplitude G and
wave number £, the linear stability of the basic state A=0 of
Eq. (37) has to be determined numerically by solving the
eigenvalue problem (48). The harmonic threshold €, and the
subharmonic threshold &, are calculated separately and
some results for them as well as for the corresponding criti-
cal frequencies w, and wg,, respectively, are shown in Fig. 9
for two sets of parameters. The harmonic branches g, w,
(solid lines) and subharmonic branches e,y (dashed
lines) have been calculated for N=32 Fourier modes, which
has been proven to be a reasonable approximation. The sym-
bols in part (a) indicate the results of the perturbation calcu-
lation as given in Egs. (45) and (46), which are in good
agreement with the numerical results for small forcing am-
plitudes G. The points of intersection between the branches
g, and g, are roughly given by G_=0.068, G, =1.53 in part
(a) and by G_=0.028, G, =0.12 in part (b). For comparison,
the perturbation calculation yields G_=0.068, G, =0.68 for
the parameters in part (a) and G_=-0.048, G,=0.027 for
the ones in part (b). As mentioned above, the sign of the
curvature #g;,/dG* at small amplitudes G may be changed
by varying the coefficients b and s,, which can be recognized
by comparing the course of g, in part (a) given for (b,s,)
=(5,0.5) and in part (b) given for (b,s,)=(0.01,3).

Harmonic solutions are preferred for large modulation
wave numbers k, and in the limiting case k— o0, the har-
monic threshold approaches e,=0 while the subharmonic
threshold diverges in this limit, being in agreement with the
expressions given in Egs. (45a) and (46a). In the opposite
limit, i.e., k—0, the thresholds g, and &y tend to g,
=-2G, which has to be computed numerically. We remind
the reader that the thresholds ¢{'.(k) and ¢ (k), as obtained
for the Lengyel-Epstein model, exhibit qualitatively the same
behavior as a function of k; cf. Fig. 5(a).

In Fig. 10 the harmonic threshold ¢, (solid line) and the
subharmonic threshold e, (dashed line) are plotted as func-
tions of the linear coefficient s, (top) and b (bottom). For
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FIG. 9. The harmonic (solid lines) and subharmonic (dashed
lines) threshold as well as the corresponding frequencies are plotted
as functions of the forcing amplitude G for two sets of parameters,
in part (a) for k=0.25,b=5,5,=0.5 and in part (b) for k=0.25,b
=0.01,5,=3. In order to generate the numerical results N=32
modes in the Floquet expansion (47) have been used. Subharmonic
patterns occur in the G range where g, <g;,. The second point of
intersection between the harmonic and subharmonic branch is lo-
cated at G=1.53 in part (a) and at G=0.12 in part (b). For com-
parison, the symbols in part (a) are obtained by the analytical ex-
pressions given in Egs. (45) and (46).

large values of the modulus [s,| the subharmonic threshold
drops below the harmonic one and spatially subharmonic
solutions appear at threshold of the Hopf bifurcation. Re-
gions solely supporting harmonic or subharmonic patterns
are found in the range s and h, respectively. The points of
intersection between both thresholds are roughly given by
s,==+2. For comparison, s,==*1.84 is obtained from the
perturbation calculation. According to the bottom part of the
figure, subharmonic solutions are preferred in a finite range
of the parameter b similar as the G range in Fig. 9. Again,
within the regions marked by s and & only subharmonic or
harmonic patterns are found.
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FIG. 10. The dependence of the harmonic (solid line) and sub-
harmonic (dashed line) threshold on the coefficient s, is shown in
the top part for a set of parameters given by G=0.04,k=0.25,b
=0.01. The bottom part shows both thresholds as function of the
coefficient b and for the parameters G=0.05,k=0.24,5,=3. The
range where harmonic solutions are preferred is marked by 4 and
that of subharmonic ones by s.

From the inequality given in Eq. (52) one may easily
deduce the following limiting cases. For b=0 subharmonic
solutions are favored in the range s3> 1/3 and for s,=0 in
the range b*>>1/2, while b=s5,=0 seems to lead to a contra-
diction. Therefore, one of the two linear coefficients b and s,
is necessary for the occurrence of spatially subharmonic pat-
terns.

1. Comparison with the Lengyel-Epstein model

In order to be able to compare the results for the harmonic
and subharmonic thresholds directly with those obtained
from the basic equations (1), we have to consider the linear
part of the unscaled amplitude equation (34), which reflects
the typical length scale, &), time scale, 7;, and amplitude
scale, s, of the Lengyel-Epstein model. In this context one
may raise the question, under which conditions are the
thresholds ¢, &, determined by the amplitude-equation ap-
proach, and the thresholds (., ). determined by the
Lengyel-Epstein model, in (good) agreement? Such a com-
parison of the thresholds, e.g., as a function of the modula-
tion amplitude G, gives also some insight into the validity
range of the amplitude equation which is a priori unknown.

For this comparison, we have to replace in the eigenvalue
problem in Eq. (48) the wave numbers ¢ and k by &,q and
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1 L L L 1 L 1 1
0 0.01 002 003 004 005 006
amplitude G

FIG. 11. Comparison between the harmonic (k) and subhar-
monic (s) thresholds, which have been calculated for the Lengyel-
Epstein model (symbols) by solving the eigenvalue equation (31)
and for the amplitude equation (lines) by solving the eigenvalue
equation (48). For the latter one, we have replaced the wave num-
bers ¢ and k by &yg and &yk as well as the amplitude G by s;G. The
modulation wave number is k=0.05. The other parameters are given
by a=10,¢=0.55,0=5,d=1, leading to the coefficients of the am-
plitude equation (34) as given in Fig. 7 (dotted line).

&k as well as the amplitude G by s,G. Furthermore, the
values of the linear coefficients 7,c;,&),b,s;, and s, are
determined by the parameters of the Lengyel-Epstein model
as shown, for instance, in Fig. 7.

Figure 11 shows the harmonic threshold (triangles) and
the subharmonic one (squares) as given for the Lengyel-
Epstein model as well as the related thresholds obtained from
the amplitude equation (lines). The latter ones are calculated
with respect to the illumination rate by using the formula
bo.= bo.(G=0)(1-g,). According to this figure, one finds a
qualitatively similar behavior of the associated thresholds.
For comparison, the relative error between the harmonic
thresholds is roughly given by 5% and between the subhar-
monic thresholds by 6% calculated for G=0.06. These devia-
tions become smaller for decreasing values of the wave num-
bers k or by decreasing the modulation amplitude G.
Moreover, the finite G range in which the subharmonic so-
lution has the higher threshold is also in good agreement
with the range given by the amplitude approach.

Another interesting comparison between both models is
the change of the sign of the curvature of the harmonic
threshold, which has been found for the amplitude equation;
cf. Eq. (45a). This significant behavior of the threshold has
also been observed for the Lengyel-Epstein model in a pa-
rameter regime determined by the amplitude equation. If the
curvature of ¢ (G) is positive the Hopf bifurcation also oc-
curs for larger illuminations ¢, in contrast to the situation
shown in Fig. 4(a) or Fig. 11.

VI. SUMMARY AND CONCLUSIONS

We have investigated the effects of a spatially periodic
modulated control parameter on an oscillating chemical re-
action described by the Lengyel-Epstein model. This reaction
exhibits a supercritical Hopf bifurcation and it provides due
to its photosensitivity a simple approach to study the re-
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sponse of the reaction with respect to a spatially modulated
illumination.

We find that in the range of intermediate values of the
modulation amplitude G the bifurcation to the oscillatory
chemical reaction is subharmonic with respect to the external
modulation, whereas for small and large modulation ampli-
tudes the bifurcation is harmonic. Beyond the bifurcation
point the subharmonic solution is preferred in a finite range
of the control parameter before a transition to the harmonic
pattern takes place at larger values. The related results of the
stability calculations of the basic state with respect to small
perturbations are summarized in Figs. 4 and 5.

Close to the threshold of the Hopf bifurcation, an ampli-
tude equation is presented which is an extension of the well-
known complex Ginzburg-Landau equation for spatially ho-
mogeneous, oscillatory bifurcations. This equation is generic
for oscillatory systems near threshold underlying a spatially
varying control parameter, and it may therefore also be found
for other systems having the same symmetry properties as
the considered Lengyel-Epstein model.

The stability limit of the basic state of the amplitude equa-
tion has been determined by a perturbation calculation and
by solving the general linear problem numerically. Good
agreement of the two approaches is found for small forcing
amplitudes. It has been shown that intermediate forcing am-
plitudes lead also to subharmonic solutions, while weak and
strong forcing amplitudes favor harmonic solutions. A rough
estimation of the validity range of the amplitude equation has
been given by comparing the harmonic and subharmonic
thresholds with those obtained for the Lengyel-Epstein
model itself. We have found that the amplitude equation de-
scribes the linear properties of the Lengyel-Epstein model to
a great extent for long-wavelength modulations and small
forcing amplitudes.

According to our results we expect, in experiments on
chemical reactions that are described by the Lengyel-Epstein
model, also a transition to subharmonic patterns induced by a
spatially periodic illumination.

Instead of considering stationary forcing, the effect of
spatiotemporal forcing on an oscillating chemical system
may also be investigated. Here, the forcing has the form of a
traveling wave similar as introduced recently to study the
effects of spatiotemporal forcing on stationary Turing pat-
terns [26,28,36,37] as well as on oblique stripe patterns in
anisotropic systems [30]. This special type of forcing breaks
a further symmetry of the system, the reflection symmetry,
which may induce a more complex spatiotemporal behavior,
to which forthcoming work is devoted.

APPENDIX: SCHEME FOR THE DERIVATION
OF THE AMPLITUDE EQUATION

For the derivation of the amplitude equation (34), a small
reduced control parameter is introduced,

¢Oc - ¢0

¢OC |

which is a measure for the distance from the threshold of the
Hopf bifurcation. At threshold the linear solutions of the
Lengyel-Epstein model may be written as

(A1)
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iwt

u; =Au,e' ' +c.c., (A2)

where A describes the common amplitude of the two fields
u;,v; and the eigenvector u,=(1,E,)” describes their ampli-
tude ratio; cf. Eq. (13).

For the perturbation expansion we introduce slow time
and space variables [37]

X=e"x, T,=&", T=et (A3)

and the solution u; may be written as a product of a slowly
varying amplitude and a fast oscillating exponential function,

u, =AX,T,T))u,e +c.c. (A4)

According to the chain rule, one may replace time and space
derivatives by the following expressions:

& — o+ %0 +edy, 9, — d+e'x.  (AS)
Note that d, and d, on the right-hand side only act on the
rapid dependences. We further assume small modulation am-

plitudes M(x)=eM(x) with M(x)>O(1) and wave numbers

k=g"?k with ko< O(1). An attribute of the + symmetry of a
supercritical oscillatory biflgcation is the power law for the
oscillation amplitude A~ Ve. Accordingly, the solutions of
the basic equation (7) are expanded near threshold with re-

spect to powers of &'/2,

/ 3/

u=uy+ e +euy+ & uy+ - (A6)

The components of u, describe the stationary solutions as
given in Eq. (8) and the components of u;=A,u, exp(iw.f)
+c.c. provide the linear oscillatory solutions at threshold as
discussed in Sec. III A. Note that the amplitude A; and the
amplitude A in Eq. (A4) only differ by a factor of &'2. The
expansions for £,N, and V in Eq. (7) are given by

L=Ly+e"’L,+€L,, (A7a)
N=Ny+L+&N,+ &N+ -, (A7b)

with L = > Mou, + eMgu, + 8> Mous + -,
V=V,+eV,, (A7c¢)

and with the explicit expressions of the linear operators
Loy, L, as well as L,,

<@+c 0)
‘CO = .
—-oc 0,

. Iy, — 20,9 0
' 0 dr, = 20dd,05 )’

£2=<aT_a)2( 0 )

0  dr—oddy (48)

The nonlinear vectors in the expansions (A7b) and (A7c) are
given by
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Uy (—4
NO: 2( )’
l+ug\—o

4 2
N,=- . (Equyvy + Eyuy),

4
Na=- (U)NS’

with
2 3
./\/.3 = [RI(M1U2 + MQUI) + R2M1M2 + R301”1 + R4M1]

and

VO:<G_¢OC>, V2=< ¢OC_M_)’ (Ag)
O-¢OC - 0¢OC+ oM

where the abbreviations

_1-u _ vo(ug — 3up)
aswd)Y T (1 +ud)?
_1+u% ug — u _—2uovo(3+2u%—ug)
oa+ddt (1+ud)* ’

61431)0 - ugvo -0
b 4 =" 5,4
N (1 +up)*
(A10)

have been introduced. Inserting all expressions into Eq. (7)

yields at successive orders of &!/2,

e’ Louyg=Ny+V,, (Alla)

e Lou; = Mou,, (A11b)
gl:Lou, = Mguy — Liu; + N, + V,, (Allc)
% Louy = Mouy + N3 - Louy, (A11d)
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Equation (Alla) determines the basic state as given by Eq.
(8), while Eq. (Allb) reproduces the threshold condition
(14) with the solution known already from Eq. (15). Since
(Ly—M)u;=0 holds due to Eq. (Allb), the contribution
Lyu; on the right-hand side of Eq. (Allc) has to vanish,
leading to the constraint &TIAI =0. In order to solve the inho-
mogeneous equation (Allc), we choose the following an-

satz:
u A A .
u2=( 2):( °)+( 2)e2’wc-'+c.c. (A12)
Uy By B,

For the four unknown amplitudes we obtain

2

B Ci(o.— M) _ E\(Ey+ Ey) +2E, n

By =
0 Coe C A,

s

_ - SiwC(E1E0+E2) 2
27 500C, — 40 + 2iw(c +4C, + 0Cy)

U(5C+2iwc)(E1E0+E2) >

B, = A7. (A13
: 50'CC2—4L0?+2iwc(c+4C1+0'C2)1 (A13)

After inserting u; and u, into Eq. (A11d), there is no need to
solve this equation explicitly. Projecting instead the whole
equation onto u], where u] is the solution to the adjoint
equation of (A11b), the inhomogeneity on the right-hand side
of Eq. (Alld) yields a solvability condition. By rescaling
back to the original units of the space and time variables and

also to the amplitudes M=eM and A=g'?A,, this solvability

condition provides the final form of the amplitude equation
for A,

700,A = e(1 +ic))A + &(1 + ib) A + 5,(1 + is,) MA
—g(1+ic,)|APA. (A14)

All coefficients are given in terms of the parameters of the
basic equations (1) and we have plotted them in Fig. 7 as
functions of the parameter ¢ and for three different values
of a.
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