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Limitations of observer-based synchronization systems under information constraints �limited information
capacity of the coupling channel� are evaluated. We give theoretical analysis for multidimensional drive-
response systems represented in the Lurie form �linear part plus nonlinearity depending only on measurable
outputs�. It is shown that the upper bound of the limit synchronization error �LSE� is proportional to the upper
bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the
maximum rate of the coupling signal and inversely proportional to the information transmission rate �channel
capacity�. Optimality of the binary coding for coders with one-step memory is established. The results are
applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.
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I. INTRODUCTION

Chaotic synchronization has attracted the attention of re-
searchers since the 1980s �1–4� and is still an area of active
research �5–9�. Recently information-theoretic concepts were
applied to analyze and quantify synchronization �10–14�. In
�11,12� mutual information measures were introduced for
evaluating the degree of chaotic synchronization. In �10,13�
the methods of symbolic dynamics were used to relate syn-
chronization precision to capacity of the information channel
and to the entropy of the drive system. Baptista and Kurths
�14� introduced the concept of a chaotic channel as a me-
dium formed by a network of chaotic systems that enables
information from a source to pass from one system �trans-
mitter� to another system �receiver�. They characterized a
chaotic channel by the mutual information �difference be-
tween the sum of the positive Lyapunov exponents corre-
sponding to the synchronization manifold and the sum of
positive exponents corresponding to the transverse mani-
fold�. However, in existing papers limit possibilities for the
precision of controlled synchronization have not been ana-
lyzed.

Recently the limitations of control under constraints im-
posed by a finite capacity information channel have been
investigated in detail in the control theoretic literature, see
�15–20�, and references therein. It was shown that stabiliza-
tion under information constraints is possible if and only if
the capacity of the information channel exceeds the entropy
production of the system at the equilibrium �17–19�. In
�21,22� a general statement was proposed, claiming that the
difference between the entropies of the open loop and the
closed loop systems cannot exceed the information intro-
duced by the controller, including the transmission rate of the
information channel. However, results of the previous works

on control system analysis under information constraints do
not apply to synchronization systems since in a synchroniza-
tion problem trajectories in the phase space converge to a set
�a manifold� rather than to a point, i.e., the problem cannot
be reduced to simple stabilization.

In this paper we establish limit possibilities of observer-
based synchronization systems under information con-
straints. Observer-based synchronization systems are used
when only one phase variable is available for measurement
and coupling. Such systems are well studied without infor-
mation constraints �23–25�. Here we present a theoretical
analysis for n-dimensional drive-response systems repre-
sented in the so-called Lurie form �linear part plus nonlin-
earity, depending only on measurable outputs�. It is shown
that the upper bound of the limit synchronization error �LSE�
is proportional to the upper bound of the transmission error.
As a consequence, the upper and lower bounds of LSE are
proportional to the maximum rate of the coupling signal and
inversely proportional to the information transmission rate
�channel capacity�. Optimality of the binary coding for cod-
ers with one-step memory is established.

Note also that it was claimed in some papers, see, e.g.
�10�, that if the capacity of the channel is larger than the
Kolmogorov-Sinai entropy of the driving system, then the
synchronization error can be made arbitrarily small. Such a
claim is based upon the noisy channel theorem of Shannon
information theory stating that, if the source entropy is
smaller than the channel capacity, then the data generated by
the source can be transmitted over the channel with negli-
gible probability of error. However, according to the Shan-
non theory �26� in order to transmit data with a sufficiently
small error a sufficiently long codeword and a long transmis-
sion time is needed. During such a long time an unstable
chaotic trajectory may go far from its predicted value and
synchronization may fail. Therefore analysis of the system
precision under information constraints requires more subtle
arguments which are provided in this paper for synchroniza-
tion systems based on Lyapunov functions and coding analy-
sis. Such an argument provides a motivation for development
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new Shannon-type theorems taking into account the system
dynamics �15–18,20�.

II. DESCRIPTION OF OBSERVED-BASED
SYNCHRONIZATION SYSTEM

A block diagram for implementing drive-response syn-
chronization of two unidirectionally coupled oscillators via a
discrete communication channel is shown in Fig. 1. To sim-
plify exposition we will consider coupled systems in the so-
called Lurie form; right-hand sides are split into a linear part
and a nonlinearity vector depending only on the measured
output. Then the drive �master, entraining� system is mod-
elled as follows:

ẋ = Ax + ��y�, y = Cx , �1�

where x is an n-dimensional �column� vector of state vari-
ables, y is the scalar output �coupling� variable, A is an �n
�n� matrix, C is a 1�n �row� matrix, ��y� is a continuous
nonlinearity. We assume that all the trajectories of the system
�1� belong to a bounded set � �e.g., attractor of a chaotic
system�. Such an assumption is typical for chaotic systems.

The response �slave, entrained� system is described as a
nonlinear observer

ẋ̂ = Ax̂ + ��y� + K�y − ŷ�, ŷ = Cx̂ , �2�

where K is the vector of the observer parameters �gain�. Ap-
parently, the dynamics of the state error vector e�t�=x�t�
− x̂�t� is described by a linear equation

ė = AKe, y = Cx , �3�

where AK=A−KC.
As is known from control theory, e.g. �26,27�, if the pair

�A ,C� is observable, i.e., if rank�CT ,ATCT , . . . , �AT�n−1CT�
=n, then there exists K providing the matrix AK with any
given eigenvalues. Particularly, all eigenvalues of AK can
have negative real parts, i.e., the system �3� can be made
asymptotically stable and e�t�→0 as t→�. Therefore, in the
absence of measurement and transmission errors the syn-
chronization error decays to zero.

Now let us take into account transmission errors. We as-
sume that the observation signal y�t� is coded with symbols
from a finite alphabet at discrete sampling time instants tk
=kTs, k=0,1 ,2 , . . ., where Ts is the sampling time. Let the
coded symbol ȳk= ȳ�tk� be transmitted over a digital commu-
nication channel with a finite capacity. To simplify the analy-

sis, we assume that the observations are not corrupted by
observation noise; transmissions delay and transmission
channel distortions may be neglected. Therefore, the discrete
communication channel with the sampling period Ts is con-
sidered, but it is assumed that the coded symbols are avail-
able at the receiver side at the same sampling instant
tk=kTs, as they are generated by the coder.

Assume that zero-order extrapolation is used to convert
the digital sequence ȳk to the continuous-time input of the
response system ȳ�t�, namely, that ȳ�t�= ȳk as kTs� t� �k
+1�Ts. Then the transmission error is defined as follows:

�y�t� = y�t� − ȳ�t� . �4�

In the presence of the transmission error, Eq. �3� takes the
form

ė = AKe + ��y� − ��y + �y�t�� − K�y�t� . �5�

Our goal is to evaluate limitations imposed on the syn-
chronization precision by limited transmission rate. To this
end introduce an upper bound of the limit synchronization
error Q=sup limt→��e�t��, where e�t� is from �5�, �·� denotes
the Euclidian norm of a vector, and the supremum is taken
over all admissible transmission errors. In the next two sec-
tions we describe encoding and decoding procedures and
evaluate the set of admissible transmission errors �y�t� for
the optimal choice of coder parameters. It will be shown that
�y�t� is bounded and does not tend to zero.

III. CODING PROCEDURES

At first, consider the memoryless �static� coder with uni-
form discretization and constant range. For a given real num-
ber M �0 and positive integer 	�Z define a uniform scaled
coder to be a discretized map q	,M :R→R as follows. Intro-
duce the range interval I= �−M ,M� of length 2M and the
discretization interval of length �=21−	M and define the
coder function q	,M�y� as

q	,M�y� = �� · 	�−1y
 , if �y� � M ,

M sign�y� , otherwise,
� �6�

where 	·
 denotes round-up to the nearest integer function,
sign�·� is the signum function: sign�y�=1, if y
0, sign�y�
=−1, if y�0. Evidently, �y−q	,M�y���� /2 for all y such that
y : �y��M +� /2 and all values of q	,M�y� belong to the range
interval I. Notice that the interval I is equally split into 2	

parts. Therefore, the cardinality of the mapping q	,M image is
equal to 2	+1, and each codeword symbol contains R
=log2�2	+1�=log2�2M /�+1� bits of information. Thus, the
discretized output of the considered coder is found as
ȳ=q	,M�y�. We assume that the coder and decoder make de-
cisions based on the same information.

In a number of papers more sophisticated encoding
schemes have been proposed and analyzed, see �17,28–30�,
for example. The underlying idea for coders of this kind is to
reduce the range parameter M, replacing the symmetric
range interval I by the interval Yk+1, covering some area
around the predicted value for the �k+1�th observation yk+1,

FIG. 1. Block diagram for drive-response synchronization using
a discrete communication channel.
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yk+1�Yk+1. If the length of Yk+1 is small compared with the
full range of possible measured output values y, then there is
an opportunity to reduce the range parameter M and, conse-
quently, to decrease the coding interval � preserving the bit-
rate of transmission. To realize this scheme, memory should
be introduced into the coder. Using such a “zooming” strat-
egy it is possible to increase coder accuracy in the steady-
state mode, and, at the same time, to prevent coder saturation
at the beginning of the process.

In this paper we use a simple version of such a coder
having one-step memory and time-based zooming. To de-
scribe it we introduce the sequence of central numbers ck,
k=0,1 ,2 , . . . with initial condition c0=0. At step k the coder
compares the current measured output yk with the number ck,
forming the deviation signal �yk=yk−ck. Then this signal is
discretized with a given 	 and M =Mk according to �6�. The
output signal

�̄yk = q	,Mk
��yk� �7�

is represented as an R-bit information symbol from the cod-
ing alphabet and transmitted over the communication chan-
nel to the decoder. Then the central number ck+1 and the
range parameter Mk are renewed based on the available in-
formation about the driving system dynamics. We use the
following update algorithms:

ck+1 = ck + �̄yk, c0 = 0, k = 0,1, . . . , �8�

Mk = �M0 − M���k + M�, k = 0,1, . . . , �9�

where 0���1 is the decay parameter, M� stands for the
limit value of Mk. The initial value M0 should be large
enough to capture all the region of possible initial values of
y0.

Equations �6�, �7�, and �9� describe the coder algorithm.
The same algorithm is realized by the decoder. Namely, the

decoder calculates the variables c̃k, M̃k based on received
codeword flow similarly to ck, Mk.

IV. CODER OPTIMIZATION

We now find a relation between the transmission rate and
the achievable accuracy of the coder-decoder pair, assuming
that the growth rate of y�t� is uniformly bounded. Obviously,
the exact bound Ly for the rate of y�t� is Ly =supx���Cẋ�,
where ẋ is from �1�. To analyze the coder-decoder accuracy,
evaluate the upper bound �=supt��y�t�� of the transmission
error �y�t�=y�t�− ȳ�t�. Consider the sampling interval
�tk , tk+1�. It is clear that ��y�tk�� does not exceed � /2. Addi-
tionally, the error may increase from tk to tk+1 due to a
change of y�t� by a value not exceeding suptk�t�tk+1

�y�t�
−y�tk���
tk

tk+1�ẏ�
��d
�
tk
tk+1Lyd
=LyTs. Therefore the total

transmission error for each interval �tk , tk+1� satisfies the in-
equality,

��y�t�� � �/2 + LyTs. �10�

Inequality �10� shows that in order to meet the inequality
��y�t���� for all t, the sampling interval Ts should satisfy
condition

Ts � �/Ly . �11�

Furthermore, if the condition �11� holds, the given bound
for the coding error will be guaranteed if the coding interval
� is appropriately chosen, namely, ��2�−2LyTs. It provides
the lower bound for the transmission bit-per-step rate R; its
value should not be less than log2� M

�−LyTs
+1�. Therefore, the

coder with range 2M, coding interval � and sampling period
Ts ensures the total transmission error � if �11� holds and the
transmission rate satisfies inequality

R 
 log2� M

� − LyTs
+ 1� . �12�

It follows from �11� and �12� that if Ts is sufficiently small
and R is sufficiently large, then an arbitrarily small value of
� can be assured.

Let us now optimize the coder parameters to achieve the
minimum bound for the error �. As seen from �12�, reduc-
tion in the coder range 2M results in a reduction in the trans-
mission rate R and channel capacity R*. On the other hand, to
prevent coder saturation, M should not be less than
supk�Z��y�tk��−� /2=�−� /2. Taking into account that
�=21−	M, we arrive at the following formula for the minimal
admissible range:

M =
2	

2	 + 1
� . �13�

Remark 1: At the initial stage of the system evolution the
error ��y� may exceed the bound �, because the initial value
y�0� is not known. This leads to the transient mode of the
system behavior. The zooming strategy may be efficient at
this stage, providing the following recipé for the choice of
coder parameters: M0=My, M�=2	� / �2	+1�, where My

=supx0�� �y�t��.
Now optimize the coder w.r.t. Ts. Consider the steady-

state mode when �y�t�−ck��� for each time interval
t� �tk , tk+1�. Let M be found from �13�. Introduce a real num-
ber � as �=LyTs /�, �evidently, 0���1� and rewrite the
lower bound R* for R in the form

R* = log2� 2	

�2	 + 1��1 − ��
+ 1� . �14�

Defining the bit-per-second rate R̄=R /Ts and its lower bound

R̄* we have from �14�:

R̄* =
Ly

��
log2� 2	

�2	 + 1��1 − ��
+ 1� . �15�

Now the optimization of the coder is reduced to the fol-
lowing minimization problem. Find ��* ,	*�
=arg min

	�Z
���0,1� R̄�� ,	�. Since the right-hand side of �15� is

strictly growing in 	, the optimal value of 	 is 	*=0. This
means that the binary coding scheme gives the optimal trans-
mission rate R*=1 bit per step, which yields M*=� /2 as an
optimal value for M, and the signum function as an optimal
coder function, ȳ= �

2 sign y.

For the optimal value of 	 we have R̄*= �Ly /��r���, where
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r��� =
1

�
log2� 1

2�1 − ��
+ 1� . �16�

Let r*=min0���1 r���. It is easy to see that this mimimum
exists and satisfies the transcendental equation dr��� /d�=0.
Numerical one-dimensional minimization yields r*=r��*�
�1.688, where �*�0.5923.

Therefore, the optimal sampling time Ts
* is

Ts
* = �* �

Ly
. �17�

Then the minimal channel bit rate R̄*=1/Ts is

R̄* = r*Ly

�
, �18�

and this bound is tight for the considered class of coders. The
relation �18� can be rewritten as

R̄� 
 r*Ly , �19�

playing the role of an uncertainty relation between the propa-
gation rate of information and the transmission error.

V. EVALUATION OF SYNCHRONIZATION ERROR

Now let us evaluate the total guaranteed synchronization
error Q=sup limt→��e�t��, where sup is taken over the set of
transmission errors �y�t� not exceeding the level � in abso-
lute value. The ratio Ce=Q /� �the relative error� can be
interpreted as the norm of the transformation from the input
function �y�·� to the output function e�·� generated by the
system �5�. Owing to nonlinearity of Eq. �5� evaluation of
the norm Ce is nontrivial and it even may be infinite for
rapidly growing nonlinearities ��y�. To obtain a reasonable
upper bound for Ce we assume that the nonlinearity is Lips-
chitz continuous along all the trajectories of the drive system
�1�. More precisely, we assume existence of some positive
real number L��0 such that

���y� − ��y + ��� � L����

for all y=Cx, x��, where � is a set containing all the
trajectories of the drive system �1�, starting from the set of
initial conditions �0, �� � ��.

The error Eq. �5� can be represented as

ė = AKe + ��t� , �20�

where ���t��� �L�+ �K���, i.e., the problem is reduced to a
standard problem of linear system theory. Choose K such
that AK is a Hurwitz �stable� matrix and choose a positive-
definite matrix P= PT�0 satisfying the modified Lyapunov
inequality

PAK + AK
T P � − �P , �21�

for some ��0. Note that the solutions of �21� exist if and
only if ���*, where �*=−max Re �i�A� is a stability de-
gree of matrix A. After simple algebra we obtain the differ-
ential inequality for the function V�t�=e�t�TPe�t�,

V̇ � − �V + eTP��t� � − �V + �V · ��TP� .

Since V̇�0 within the set �V��−1 supt���t�TP��t�, the
value of limt→� sup V�t� cannot exceed
�2�L�+ �K��2�max�P� /�2. In view of positivity of P,
�min�P��e�t��2�V�t�, where �min�P�, �max�P� are minimum
and maximum eigenvalues of P, respectively. Hence

lim
t→�

�e�t�� � Ce
+� , �22�

where

Ce
+ =��max�P�

�min�P�
L� + �K�

�
. �23�

The inequality �22� shows that the total synchronization
error is proportional to the upper bound of transmission error
�. Taking into account the relation �18� for optimal transmis-
sion rate, the synchronization error can be estimated as fol-
lows:

lim
t→�

�e�t�� � Ce
+r*Ly/R̄ , �24�

i.e., it can be made arbitrarily small for sufficiently large
transmission rate R.

Similar estimates for synchronization errors in coupled
systems were obtained in several papers �31–35�. However,
in �31–35� either existence of Lyapunov functions, i.e., sta-
bility of uncoupled systems is required, or a partial stability
�stability of the synchronization manifold� is provided by a
strong coupling playing the role of state feedback in the error
system. In the observer-based scheme studied in this paper it
is assumed that only output feedback is admitted. Then the
partial stability conditions are provided by the linear ob-
server theory. In addition the final result �24� is presented in
terms of transmission rate.

One can pose the following problem: choose an optimal
gain vector K and the matrix P providing the minimum value
of Ce. However an analytical solution is difficult to obtain in
view of the system nonlinearity. For the fixed K the value Ce

+

can be minimized numerically by means of solving
Lyapunov inequality �21� for P for every � from a finite grid
in the range 0����*. To solve �21� one of a number of
existing software packages can be used, e.g. YALMIP �36�. An
alternative approach is to evaluate upper and lower bounds
for Ce based on worst case inputs �y�t�. Such a problem is
similar to the energy control problem for systems with dissi-
pation �37,38� and Ce can be interpreted as excitability index
of the system. Employing the lower bound for excitability
index for passive systems �37,38� we conclude that if the
gain vector K is chosen to ensure strict passivity of the sys-
tem �5� then the lower bound for Ce is positive, i.e.,

sup
��y�t����

lim
t→�

�e�t�� 
 Ce
−� . �25�

Thus, for finite channel capacity the guaranteed synchro-
nization error is not reduced to zero being of the same order
of magnitude as the transmission error.

Remark 2: The limits of synchronization error may be
different if a more sophisticated coder is used, e.g., a first-
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order coder with linear extrapolation of the signal or an nth
order coder with predictive model of the drive system. For
example, if a full order observer is admitted at the transmitter
side and there are n channels for simultaneous transmission
of the n-dimensional vector x̂�tk� of estimates of the drive
system state, then the coder can calculate the best estimate
x̂�tk+1� and choose ck+1=Cx̂�tk+1�. In this case the prediction
error for a binary coder will be determined by the divergence
rate of neighboring trajectories, i.e., relation �10� should be
replaced by �

2 exp�hTs���, where h�0 is the upper
Lyapunov exponent of the chaotic drive system. This yields
the bound Ts� ln�2/ �C � /Ce

+� /h, where Ce
+ is from �23� in-

stead of the bound �11�. For the transmission rate it gives the
necessary condition R*�h / ln�2/ �C � /Ce

+� instead of the
lower bound R*�Ly /� following from �11�. If the condition
R*�h / ln�2/ �C � /Ce

+� holds, then the upper bound for trans-
mission error � will decrease at each sampling interval
�tk , tk+1� in R*�h / ln�2/ �C � /Ce

+� times and, therefore, will
converge to zero exponentially.

Remark 3: It worth mentioning that relations �22� and �25�
give an overestimate for the synchronization error, because it
provides its upper bound for the worst case of the input sig-
nal �y�t�. Also the estimate of the mean square value of the
synchronization error may be used. There is a significant
body of work in which the quantization error signal �y�t� is
modelled as an extra additive white noise. This assumption,
typical for the digital filtering theory, is reasonable if the
quantizer resolution is high �39–41�, but it must be consid-
ered revision for the cases of low number of quantization
levels �42�. Some comparison between the theoretical and
numerical results is given below in Sec. VI.

Remark 4: It is assumed in the present work, that the
coupled systems are in the Lurie form. It can be seen that the
proposed theory can be applied to observer-based synchroni-
zation of chaotic nonlinear systems not presented in the Lu-
rie form. For example the drive system may be described by
the following equations:

ẋ = A�y�x + B��y�, y = Cx , �26�

where x�Rn is a vector of state variables, y is the scalar
output, A�y� is an �n�n�-matrix, B is an �n�1�-vector, C is
�1�n�-matrix, ��y� is a continuous nonlinear function.

Following �23,43–46� let us choose the response �ob-
server� system model as

ẋ̂ = A�y�x̂ + B��y� + K�ȳ�t� − ŷ�t��, ŷ = Cx̂ , �27�

where ȳ is the drive system output, transmitted over the com-
munication channel, x̂ is the estimate of x, K is an �n�1�
vector of design parameters.

Taking into account the transmission error �4�, one obtains
the following equation for the synchronization error e�t�
=x�t�− x̂�t�,

ė = �A�y� − KC�e − K�y�t� . �28�

Assume that there exists vector K such that the following
strengthened stability condition �Demidovich condition
�47,48�� for the matrix AK�y�=A�y�+KC holds:

�i�AK�y� + AK�y�T� � − � � 0, i = 1,2, . . . ,n

for some ��0, where �i�A�, i=1,2 , . . . ,n are eigenvalues of
the matrix A. Then the upper bounds �22� and �23� for the
synchronization error remain true.

VI. EXAMPLE SYNCHRONIZATION OF CHAOTIC CHUA
SYSTEMS

Let us apply the above results to synchronization of two
chaotic Chua systems coupled via a channel with limited
capacity.

A. System equations

Consider the chaotic Chua system model,

�ẋ1 = p�− x1 + ��y� + x2�, t 
 0,

ẋ2 = x1 − x2 + x3,

ẋ3 = − qx2,
�

y�t� = x1�t� , �29�

where y�t� is the sensor output �to be transmitted over the
communication channel�, p, q are known plant model param-
eters, x= �x1 ,x2 ,x3�T�R3 is the plant state vector, the initial
condition vector x0=x�0� is assumed to be unknown, ��y� is
a piecewise-linear function, having the following form:

��y� = m0y + �x + 1� − �x − 1� + 0.5�m1 − m0���x + 1� − �x − 1�� ,

�30�

where m0, m1 are given plant parameters.

B. Observer design

To obtain estimates x̂�t� of the current state x�t� of the
system �29�, the special case of a continuous time observer
�5� is designed as follows:

� ẋ̂1 = p�− x̂1 + ��y� + x̂2� + k1��t� ,

ẋ̂2 = x̂1 − x̂2 + x̂3 + k2��t� ,

ẋ̂3 = − qx̂2 + k3��t� ,

��t� = ȳ�t� − ŷ�t� ,
�

ŷ�t� = x̂1�t�, x̂�0� = x̂0, �31�

where k1, k2, k3 are observer parameters, forming the 3�1
observer matrix gain K= �k1 ,k2 ,k3�T.

Subtracting �31� from �29� yields

�
ė1 = p�− e1 + e2� + k1��y�t� − e1� + �1�t� ,

ė2 = e1 − e2 + e3 + k2��y�t� − e2� ,

ė3 = − qe2 + k3��y�t� − e3� ,

�1�t� = �„y�t� − �y�t�… − �„y�t�… .
� �32�

Equation �32� describes the linear time-invariant �LTI�
system ė�t�=Ae�t�, e�0�=x0− x̂0 with the following matrix A:
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A = �− p − k1 p 0

1 − k2 − 1 1

− k3 q 0
� . �33�

Matrix K should be chosen so that the observer �31� sta-
bility conditions are satisfied, i.e., the characteristic polyno-
mial DK�s�=det�sI−AK� is Hurwitz. For the observer �34�,
the polynomial DK�s� has the form

DK�s� = s3 + �1 + p + k1�s2 + �− q + pk2 + k1�s − pq + k3p

− k1q . �34�

Evidently, we may find the matrix K for any arbitrarily
assigned parameters d1, d2, d3 so that the characteristic poly-
nomial DK�s�=s3+d1s2+d2s+d3. This leads to asymptotic
convergence of the synchronization error e�t� to zero with
prescribed dynamics in the disturbance-free case.

C. Simulation results

For simulation the following parameter values of the
Chua system model �29� were chosen: p=10.0, q=15.6, m0
=0.33, m1=0.22. The system exhibits a chaotic behavior, see
y�t� in Fig. 2.

In our simulations parameter � has been taken from the
set �= �0.1,0.2,0.5,0.7,1�. The sampling time Ts for each �
has been chosen in accordance with �17� for Ly =30 s−1. In
�9� the initial value M0 has been taken as M0=5, decay pa-
rameter �=exp�−0.1Ts�, and limit value M�=M*=� /2.

To evaluate the minimal synchronization error the optimal
observer gain matrix K*��� was found numerically for sev-
eral values of the transmission error �. We obtained
K*�0.1�= �−4.66,0.50,−4.40�T, K*�0.5�= �−4.40,0.46,
−4.54�T, K*�1.0�= �−4.97,0.46,−4.47�T. For comparison the
observer design by assigning a Butterworth distribution of
the observer matrix AK eigenvalues was performed. For the
third order system the Butterworth design provides charac-
teristic polynomial �34� as D�s�=s3+2�0s2+2�0

2s+�0
3,

where parameter �0�0 specifies the desired estimation rate.
In our example �0=6 s−1 is taken. It provides the observer
eigenvalues: s1=−6.0, s2,3=−3.0±5.2i. The observer feed-
back gain matrix K is found as K=KB= �1.00,5.54,4.44�T.
For simulation the initial condition vectors for the systems
�29� and �31� were taken as x0= �0.3,0.3,0.3�T and
x̂0= �0,0 ,0�T.

Simulation results for the coder �6�, �7�, and �9� and ob-
server with optimally chosen gains for �=1 are shown in
Figs. 2–4. The sampling interval is Ts=0.02 s, which corre-

sponds to the transmission rate R̄=50 bits per second. The
following coder parameters were chosen: M0=5.0, M�=0.5,
�=0.998. It is seen that the synchronization process pos-
sesses sufficiently fast dynamics even in the presence of in-
formation constraints.

It is seen from Fig. 5 that the difference in the limit syn-
chronization error for different rationally chosen observer
gains is not significant. Moreover, it is seen from Fig. 6 that

FIG. 3. �Color online� Zooming of Fig. 2 for t� �20,22� s.

FIG. 4. �Color online� Time histories for �=1: �a� x2�t� �dotted
line�, x̂2�t� �solid line�; �b� x3�t� �dotted line�, x̂3�t� �solid line�.

FIG. 2. �Color online� Time histories for y�t� �solid line�, ȳk

�dotted line�, y�t�− ŷ�t� �dashed-dotted line�; �=1.

FIG. 5. �Color online� Synchronization error Q vs � for differ-
ent K. 1: K=K*�0.1� �solid line�; 2: K=K*�0.5� �dashed-dotted line�;
3: K=K*�1� �dashed line�.
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the relative error does not approach zero for all choices of
the observer gains.

Let us consider the theoretical estimate of the relative
synchronization error Q /�. The upper bound of this error Ce

+

is given by �23�.
To find Ce

+ numerically, the following procedure has been
employed. Parameter � in �23� has been considered as a free
argument for minimization of the value of Ce

+. To find the
matrix P, satisfying for the given � Lyapunov inequality
�21�, the software package YALMIP �36� has been used. It is
found that for K=KB= �1.0,5.54,4.44�T the optimal � is �*

=4.25 and �21� is satisfied for

P = P��*� = � 0.544 − 0.9477 0.024

− 0.9477 3.066 − 0.360

0.024 − 0.360 0.133
� . �35�

The eigenvalues � of the matrix P are as follows: �1�P�
=0.05, �2�P�=0.274, �3�P�=3.42. Hence �max�P�=3.412,
�min�P�=0.05, and Ce

+=18.3. This value is significantly
larger than the one found by simulation �see Fig. 6�.

Dependence of the synchronization error Q on the trans-

mission rate R̄ is shown in Fig. 7, demonstrating that the
synchronization error becomes small for sufficiently large
transmission rates.

VII. CONCLUSIONS

We have studied the dependence of the synchronization
error in the observer-based synchronization system both ana-
lytically and numerically. It is shown that upper and lower
bounds for limit synchronization error depend linearly on the
transmission error which, in turn, is proportional to the driv-
ing signal rate and inversely proportional to the transmission
rate. Though these results are obtained for a special type of

coder, it reflects the peculiarity of the synchronization prob-
lem as a nonequilibrium dynamical problem. On the con-
trary, the stabilization problem considered previously in the
literature on control under information constraints belongs to
a class of equilibrium problems.

Note that though convergence of trajectories to a point is
a special case of convergence to a set and the difference is
not essential from the dynamical systems point of view, the
difference may be significant for the system analysis or syn-
thesis. Indeed, in the case of one-dimensional limit set �con-
vergence to a point or to a reference trajectory� the current
system state approaches a known position and its limit be-
havior is easier to study than in the case when the current
state is wandering over a set. Even if the two subsystem
states tend to a synchronous mode, each state may tend to
infinity or may escape in a finite time. In our analysis we
imposed special assumptions allowing to reduce the analysis
of the overall nonlinear system �1� and �5� to the analysis of
the linear error system �20�. It is important, however, that the
dimensions of systems �1�, �5�, and �20� are not equal and
their analysis problems are not equivalent in general. Even in
the absence of disturbances, when the trajectories of the syn-
chronized system �1� and �5� tend to the n-dimensional sub-
space of the overall 2n-dimensional state space, the behavior
of the systems �1� and �5� may be much more complex than
that of the linear system �20� converging to a point. A more
detailed discussion about controlled synchronization can be
found in �8,49�.

As an intermediate result we obtained relation �19� play-
ing the role of an uncertainty relation between the transmis-
sion rate of information and the transmission error. Future
research is aimed at analysis of controlled synchronization
and control of chaos problems under information constraints.
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FIG. 6. �Color online� Relative synchronization error Q /� vs �
for different K. 1: K=K*�0.1� �solid line�; 2: K=K*�0.5� �dashed-
dotted line�; 4: K=KB �dotted line�.

FIG. 7. �Color online� Synchronization error Q vs transmission

rate R̄.
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