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We show that a planar medium, locally modeled by a simple one-dimensional excitable system with a
piece-wise linear potential, can serve as a minimal model for spatial coherence resonance. Via an analytical
treatment of the spatially extended system, we derive the dependence of the resonant wave number on several
crucial system parameters, ranging from the diffusion coefficient to the local excursion time of constitutive
excitable units. Thus, we provide vital insights into mechanisms that enable the emergence of exclusively
noise-induced spatial periodicity in excitable media.
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I. INTRODUCTION

It is a well-established fact that noise can have construc-
tive effects on the dynamics of nonlinear systems �1�. Prob-
ably the most famous phenomenon related to this rather
counterintuitive fact is the stochastic resonance �2�, which
stands for the resonant noisy enhancement of the correlation
between the system’s response and a weak external stimulus
�3–11�. Fascinatingly, noise can play an ordering role even
in the absence of additional external signals, whereby the
established term describing the phenomenon is coherence
resonance �12–15�.

Following advances in the study of effects of noise on the
dynamics of temporal systems, recent years have witnessed a
big increase in scientific literature devoted to the analysis of
noise-induced phenomena also in spatially extended systems
�16�. The so-called spatiotemporal stochastic resonance has
been first reported in Ref. �17�, while spatial coherence reso-
nance was introduced in Ref. �18� for systems near pattern
forming instabilities and in Ref. �19� for excitable media.
Moreover, there exist studies reporting noise-induced spiral
growth and enhancement of spatiotemporal order �20–25�,
noise-sustained coherence of space-time clusters and self-
organized criticality �26�, noise-enhanced and -induced ex-
citability �27,28�, persistency of noise-induced spatial peri-
odicity �29�, noise-induced propagation of harmonic signals
�30�, noise-sustained and controlled synchronization �31�, as
well as spatial decoherence due to small-world connectivity
�32� in spatially extended systems.

In the present study, we propose a simple one-dimensional
excitable system with a piece-wise linear potential to be used
as the constitutive unit of a two-dimensional excitable media
yielding, due to its simplicity, a minimal model for spatial
coherence resonance. We show that additive spatiotemporal
random perturbations with an appropriate intensity are able
to extract a particular spatial frequency of the studied media
in a resonant manner, thus confirming the appropriateness of
the model for the designated role. Importantly, due to the
simple kinetics of the constitutive excitable units, the
spatially extended system can be analyzed analytically. In
particular, we succeed in explicitly linking the resonant

noise induced wave number kmax with the parameters deter-
mining the local system dynamics, as well as the diffusion
coefficient D. Thus, we derive analytically the conjecture
kmax�1/�D, which we have reported previously for the ex-
citable media with FitzHugh-Nagumo local dynamics solely
on the basis of a quantitative analysis �19�, as well as provide
an explanation for the emergence of periodic spatial waves in
excitable media out of noise. Finally, we show that the nu-
merical results are in excellent agreement with the theoretical
predictions, thus validating our analytical treatment.

The paper is structured as follows. Section II is devoted to
the description of the mathematical model and its main “lo-
cal” characteristics. In Secs. III and IV evidence for the spa-
tial coherence resonance and the analytical treatment is pre-
sented, respectively. In the last section, we summarize the
results and outline possible applications of our findings.

II. MATHEMATICAL MODEL

Since the essential role of slow and fast dynamics for
coherence resonance in excitable systems is well docu-
mented and established �13–15�, it is reasonable to demand
that a mathematical model should incorporate both features
if it is to be used successfully for demonstrating such phe-
nomena. As already established by Pradines et al. �15�, both
ingredients are readily incorporated in a simple one-
dimensional model with a doubly piece-wise linear potential
given by

du

dt
= f�u� = �1 − a���uc − u� + b��u − uc� , �1�

where 0�u�2� is the phase of the system, � is the Heavi-
side function, uc�0 is the firing threshold, while parameters
a�1 and b�0 determine the kinetics of the system for
u�uc and u�uc, respectively. For the above parameter val-
ues the system has a single excitable steady state at u=0.
Small perturbations of the excitable steady state evoke large-
amplitude spikes �u=2��, provided u exceeds uc. Impor-
tantly, large-amplitude spikes occur solely due to the noise-
induced threshold crossing events of variable u in the state
space, and thus should not be attributed to the proximity of
system parameters to the oscillatory dynamical regime that
emerges for a�1.*Electronic address: matjaz.perc@uni-mb.si
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The above one-dimensional model is used as the consti-
tutive unit for the spatially extended system, which we pro-
pose as the minimal model for spatial coherence resonance.
The studied spatially extended system takes the form

duij

dt
= f�uij� + D�2uij + �ij�t� , �2�

where uij is considered as a dimensionless two-dimensional
scalar field on a discrete n	n square lattice with mesh size

x=1. �ij�t� is temporally and spatially white additive
Gaussian noise with zero mean satisfying the correlation
��ij�t��op�t���=�2��t− t���io� jp /
x2, where � /
x is the stan-
dard deviation of the noise in a discrete space �16�. The
Laplacian D�2uij, D being the diffusion coefficient, is incor-
porated into the numerical scheme via a five-point finite-
difference formula as described by Barkley �33�, using peri-
odic boundary conditions. System parameters used in
subsequent calculations are a=1.05, b=8.0, uc=� /30, D
=0.32, and n=128. Moreover, the system is initiated from
steady state excitable conditions uij =0 for "i , j.

III. SPATIAL COHERENCE RESONANCE

In what follows, we will systematically analyze effects of
different � on the spatial dynamics of the media under study.
We start by visually inspecting characteristic spatial profiles
of uij obtained for three different values of �. Results are
presented in Fig. 1. It is evident that there exists an interme-

diate value of �, for which coherent pattern formation in the
media is resonantly pronounced, yielding well-ordered spiral
waves in the spatial profile of uij, as presented in the middle
panel of Fig. 1. On the other hand, small � are unable to
excite the system strong enough to evoke any particular spa-
tial dynamics in the media, while for larger � the pattern
formation becomes somewhat violent so that the spatial pro-
file again lacks any visible structure or order.

To quantify effects of various � on the spatial scale of the
studied system, we calculate the spatial structure function
according to the equation

P�kx,ky� = �H2�kx,ky�� , �3�

where H�kx ,ky� is the spatial Fourier transform of the u field
at a particular t and �. . .� is the ensemble average over noise
realizations. Figure 2 shows the results. As anticipated, small
� are unable to induce any particular spatial periodicity in
the media, and thus P�k�� is completely flat. On the other
hand, near optimal � clearly enhance a particular spatial
scale of the media, which is indicated by the well-expressed
circularly symmetric ring clearly visible in the middle panel
of Fig. 2. For somewhat larger �, noisy excitations start to
indent ordered spatial waves in a random fashion, which dis-
rupts the resonantly pronounced wave number. Note that the
circularly symmetric ring in the rightmost panel of Fig. 2 is
blurred in comparison to the middle panel.

To study results presented in Fig. 2 quantitatively, we ex-
ploit the circular symmetry of P�k�� as proposed in Ref. �18�.

FIG. 1. �Color online� Characteristic snapshots of the spatial profile of u for �=0.027 �left�, �=0.035 �middle�, and �=0.040 �right�. All
figures are drawn using a linear color profile white marking 0.0 and blue 2� values of u, whereby the color scale in the left panel is divided
by a factor of 100 to enable visualization of small-amplitude excitations.

FIG. 2. �Color online� Spatial structure functions of uij obtained for the same noise levels as used in Fig. 1.
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In particular, we calculate the circular average of the struc-
ture function according to the equation

p�k� = �

k

P�k��d
k, �4�

where 
k is a circular shell of radius k= 	k�	. To quantify the
ability of each particular noise level to extract the character-
istic spatial periodicity in the system more precisely, we cal-
culate the quantity �p= p�kmax� / p̃, where p̃= �p�kmax−
ka�
+ p�kmax+
kb�� /2 is an approximation for the level of back-
ground fluctuations in the system. Thereby, 
ka and 
kb
mark the first local minima occurring to the left and right
side of p�kmax� respectively, hence determining the width of
the peak around the resonantly pronounced wave number.
Thus, �p measures the normalized height of the peak at kmax
for each particular �. Figure 3 shows how �p varies with �.
It is evident that there exists an optimal level of additive
noise for which the peak of the circularly averaged structure
function at kmax is best resolved, thus indicating the existence
of spatial coherence resonance in the studied excitable
media.

Importantly, since the dynamics of the media under study
is qualitatively identical as in Ref. �19�, the same explanation
for the reported spatial coherence resonance applies. In par-
ticular, both the FitzHugh-Nagumo system �19� and the pres-
ently studied model have a stable excitable node, which has
a state-space-based excitability threshold. If the steady state
is perturbed strongly enough, both systems exhibit a large
amplitude excitation in the state space, before quickly reset-
tling onto the excitable node. The large-amplitude excitation
phase is in both cases robust to noise, meaning that excita-
tory spikes cannot be overridden by the same weak noise that
suffices to evoke an excitation. Thus, local excitations can
propagate through the media in a persistent and robust man-
ner. We argue that if a constitutive unit of a diffusively
coupled excitable media satisfies these conditions, the latter
qualifies for the observation of spatial coherence resonance,
as reported above.

In Ref. �19� it was argued that the noise-robust excursion
time te that is characteristic for the local dynamics of excit-
able units, together with the spread rate proportional to �D
with which excitations propagate through the media, consti-

tute an inherent spatial scale that can be resonantly enhanced
by additive random spatiotemporal perturbations, thus en-
abling spatial coherence resonance in the system. By exploit-
ing these assumptions, we have shown via a quantitative
analysis that kmax�1/�teD. Due to the minimalistic form of
the presently studied model, this conjecture can be derived
analytically. Moreover, below we present an explanation for
the emergence of noise-induced periodic spatial waves in
excitable media, thus explaining the essence of the reported
spatial coherence resonance via a rigorous mathematical
analysis.

IV. ANALYTICAL TREATMENT

Prior to investigating the dynamics of the spatially ex-
tended system, we first outline some obvious properties of a
single excitable unit with respect to parameters a, b, and uc
that determine its dynamics. To excite a given unit from its
steady state at u=0 the variable has to exceed the threshold
u=uc in the state space. In doing so, however, the external
forcing has to overcome the system’s internal resistance
given by du /dt=1−a, which imposes a tendency towards
u=0 �note that 1−a�0 in Eq. �1��. Once a given unit
exceeds u=uc, its dynamics is determined by the fast kinetics
u=bt.

To capture the essence of the noise-induced dynamics of
the spatially extended system we, in the following, consider
only two coupled units. Specifically, we study the influence
of an excited unit on its not-yet excited �u�uc� neighbor.
The influence of the excited neighbor on the dynamics of the
quiescent unit can be approximated by the flux D�bt−u�.
Thus, the dynamics of a quiescent unit, coupled with an al-
ready excited unit, can be described by the equation

du

dt
= 1 − a + D�bt − u� . �5�

Integrating Eq. �5� for the initial condition u	t=0=0 gives
the implicit equation for time tc in which the critical value
u=uc is reached. The equation reads

ce−Dtc + btc = uc + c , �6�

where c= �a+b−1� /D. In order to obtain an explicit expres-
sion for tc we simplify Eq. �6� by applying the approximation
e−Dtc 
1−Dtc+D2tc

2 /2. By retaining the physically relevant
positive solution and considering also that b�a−1, we
obtain

tc 

a − 1 + �2bDuc

bD
. �7�

The estimated time tc, in which a given unit starting from
u=0 reaches the threshold u=uc, represents the time in
which the excitation is transmitted from the excited to the
neighboring quiescent unit. The propagation of the spatial
wave therefore strongly depends on tc. Actually, in case of
periodic waves, the next wave front always appears after an
integer multiple of tc. Thus, the wavelength �, representing
the distance between two neighbouring wave fronts, is deter-
mined by �= �t0 / tc�
x, where t0 is the oscillation period of

FIG. 3. Spatial coherence resonance in the studied system.
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every single unit in the spatially extended system. Acknowl-
edging the fact that the firing period is practically equal to
the noise-robust excursion time te, the spatial period of the
waves � is determined by

� =
te

tc

x . �8�

Since b�a−1 and uc�2� the excursion time of the system
given by Eq. �1� can be approximated analytically by
te
2� /b. By inserting this relation, 
x=1, and Eq. �7�
into Eq. �8�, and expressing the spatial dynamics in terms of
the inherent wave number kmax=1/�, we finally obtain the
equation

kmax 

a − 1 + �2bDuc

2�D
, �9�

which links the noise-induced spatial periodicity with all pa-
rameters determining the dynamics of a single unit of the
spatially extended system as well as the spatial coupling con-
stant. It is evident that kmax�1/�D and kmax��b�1/�te,
thus confirming quantitatively based conjectures presented in

Ref. �19�. Moreover, the above treatment clearly reveals the
mechanism behind the noise-induced spatial periodicity, and
thus in turn explains the essence of spatial coherence reso-
nance in excitable media.

To evaluate the accuracy of Eq. �9�, we compare analyti-
cal predictions with values resulting from the numerical in-
tegration of Eq. �2�. However, since the above analytical
treatment was conducted without taking explicitly into ac-
count noise �note that we have just assumed that one unit is
excited and the other one not�, we first have to take into
account nonzero values of �. This is done simply by ac-
knowledging the fact that nonzero � decrease the effective
excitability threshold in the state space of each spatial unit.
Thus, when integrating Eq. �5� the initial state of variable u
is not exactly zero, but in fact u	t=0=��0. For the near op-
timal � resulting in maximal values of �p, we found that on
average �=0.35uc. This has the same effect as if uc in Eq. �9�
is replaced by the effective threshold 0.65uc, which is also
the value we have used for evaluating the results presented in
Fig. 4. It is evident that the analytically predicted values of
kmax obtained by Eq. �9� are in excellent agreement with the
numerically calculated values for the near optimal �, thus
validating our above arguments and treatment.

V. SUMMARY

We present a minimal model for spatial coherence reso-
nance that is locally modeled by a simple one-dimensional
excitable system with a doubly piece-wise linear potential. In
particular, we show that additive spatiotemporally white
Gaussian noise is able to extract an inherent spatial fre-
quency of the studied media in a resonant manner. Thereby,
no additional deterministic inputs were introduced to the sys-
tem and the latter was initiated from steady state initial con-
ditions. Due to the minimalistic form of the presently studied
model, several important aspects of the noise-induced spatial
dynamics can be analyzed analytically. We express the wave
number of noise-induced waves as a function of all param-
eters determining the dynamics of a single unit of the spa-
tially extended system as well as the diffusion coefficient. In
doing so, we confirm conjectures of Ref. �19� in a more
rigorous fashion, as well as provide an explanation for the
emergence of periodic spatial waves in excitable media out
of noise. Since excitability and noise appear to be present in
various areas of science, ranging from chemistry, neuro-
physiology, cardiology to laser optics �16,34�, we hope that
the presented results will be of value to a broad readership.
Moreover, since the simple dynamics of the studied system
should also be fairly easily to mimic experimentally, we ar-
gue that the presented model is well suited for experimental
investigations of the described phenomenon.

FIG. 4. Resonant wave number in dependence on D �top� and b
�bottom�. Dots indicate numerically obtained values, whereas solid
lines indicate the predicted dependence given by Eq. �9�.
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