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This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author
obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69,
067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize
chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics,
and gives some interesting remarks for its potential applications to chaos control & synchronization. In
addition, a significant comment on synchronization-based parameter estimation is given, which shows some

techniques proposed in literature less strict and ineffective in some cases.
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I. INTRODUCTION

Since some pioneer works were given by Ott, Grebogi,
and Yorke (OGY) [1], and Pecora and Carroll [2], chaos
control and synchronization has become an active subject in
the field of nonlinear science due to its potential applications
to various disciplines, see the recent reviews [3,4]. A focused
problem in chaos control and synchronization is how to de-
sign a physically applicable controller to stabilize or syn-
chronize a chaotic system. In Refs. [5-7], the author pro-
posed a simple adaptive-feedback controller to effectively
stabilize and synchronize chaotic dynamics governed by the
ordinary differential equations (ODEs).

However, since the letters and brief reports [5-7] were
presented, some comments have been given to suspect the
strictness of this adaptive-feedback algorithm, and mean-
while some private communications have been given to in-
quire about some crucial deductions in the results. Therefore,
one of the motivations of this paper is to complement the
detailed proofs for the results obtained in Refs. [5-7]. In the
meanwhile, some interesting remarks related to the adaptive-
feedback algorithm are given, e.g., applications to control of
nonlinear oscillators, synchronization of delayed systems and
analysis of time series. Especially, we give a comment on the
technique of synchronization-based parameter estimation.
We point out that those techniques based on the Lyapunov
stability theorem in literature are less strict, so that in some
cases the unknown parameters cannot be definitely esti-
mated. Moreover, we stress that the chaotic behavior is nec-
essary to realize such techniques of parameter estimation.

II. ADAPTIVE-FEEDBACK CONTROLLER

Based on the consideration of stabilizing the so-called
near-nonhyperbolic systems, which the OGY-type methods
fail to control, a control algorithm combining feedback and
adaptive control was proposed in Ref. [5].
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Consider an n-dimensional system governed by ODE,
x=f(x), (1)

where )C=(.X1 sX25 e e 7'xn) € Rn’ .f(-x)=(fl(-x) 7f2(-x) LR 7fn('x)):
R"—R" is a nonlinear vector function. Without loss of the
generality we suppose that x"=(x],x,, ..., x,) is a fixed point
of (1), and the vector function f(x) satisfies
|fi(x) —fi()’)| = lmaxj|xj =Yl Vx,yeR",
i=1,2,...,n, (2)

where />0 is a constant. We call (2) as the uniform Lips-
chitz condition, which is very loose. Actually, for stabilizing
the system to x” it is sufficient to replace y by x" in (2).

For system (1), we design the following adaptive-
feedback controller:

X=fx) —k(x-x"), (3a)
k= yx-x")?, (3b)
where kx=(k\x;,kaxs, ..., k,x,), yxzz('y,x%, yzxg, - 'y,,x,zl),

and y=(v,,¥s,...,7,) is an arbitrary positive constant vec-
tor. Note that in comparison with that in Ref. [5] a little
adjustment has been given to the controller, which guaran-
tees the feedback strength k positive. We have the following
results for system (3).

Theorem 1: The bounded orbits starting from any initial
values of system (3), [x(f),k(z)], converge to (x",k,) as
t— oo, where k, is a constant vector depending on the initial
values. Namely, the adaptive-feedback controller stabilizes
the orbits to the fixed point x".

Before giving the proof, we introduce an important
lemma, i.e., the well-known Lasalle invariance principle [8].

Lemma 2: Consider the n-dimensional vector differential
equation

i=Xx). (4)

Let V(x) be a scalar function with continuous first partials for
all x € R". Assume that
(1) V(x)=0 for all x € R",

(2) V(x)=VV-X=0 for all x e R".
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largest invariant set of (4) contained in E (a set M is said to
be invariant if each solution starting in M remains in M for
all 7). Then every solution of (4) bounded for =0 ap-
proaches M as t— .

Proof of Theorem 1: For the 2n-dimensional system (3),
we construct the following scalar function:

n

SIS xS L -, 5)
2< 2

i=1 /i

where L is a constant bigger than nl, i.e., L>nl. Obviously,
V=0, for all (x,k) € R*". By differentiating the function V
along the trajectories of system (3), we obtain

V= E (x; = x;'k)[fi(x) — ki(x; _xi*)] + E (k= L)(x; _x;_*)z
i=1 i=1

=2 (x- x;-k)fi(x) LY (x;— X?)z- (6)
i=1 i=1

Note that if

n

> (5 —x)fix) =0, 7)

i=1

then the condition V=0 naturally holds for all (x,k) € R¥".
Otherwise, we have

= E |x; —Xj”fi(xﬂ-
i=1
(8)

Then using the condition (2) above (for the sake of simplic-
. * %
ity we assume [x;—x| =max;|x;—x;|), we have

E (x; —Xf)fi(x) = 2 (x; —X;k)fi(x)
i=1 i=1

n
2 b= x| = nl(x; - xy)?
i=1

> (= x)fi(x) = lx —x)
i=1

=nlY (x; —x?)z. 9)
i=1
Substituting (9) into (6) gives for all (x,k) € R*",

V=ml-L)> (x;-x)>=0 (10)
=1
because of the condition L>nl. Namely, for system (3), the
constructed scalar function V satisfies the conditions (1) and
(2) in Lemma 2. In the other side, from the above deduction
it is easy to find that the set E as in Lemma 2 is given by

E={(x,k) € R¥":V=0}={(x,k) € R?":x=x"}.

Moreover, in conjunction with system (3) the largest invari-
ant set M contained in E is

M ={(x,k) € R?":x=x",k =k},

where k is an arbitrary constant vector in R". Then Theorem
1 follows from Lemma 2, where k; is a constant vector de-
pending on the initial values (and the parameter y as well).
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Besides those remarks given in Ref. [5], we will give
some new remarks on this adaptive-feedback control algo-
rithm.

Remark 1: Just as we pointed out in Ref. [5], it is not
necessary for some particular models to use all the variables
of system as feedback signals. In particular, for those sys-
tems with nonhyperbolic chaotic attractor such an adaptive-
feedback control added to only partial variables is sufficient
to stabilize chaotic orbits. We speculate that the minimal
number of the needed control variables is just the number of
positive Lyapunov exponents of the considered system. Nu-
merous numerical examples including the Sprott’s collection
of the simplest chaotic systems [9] show this conjecture
likely right. As examples, we consider Hindmarsh-Rose
model and FitzHugh-Rinzel model. In comparison with two
control terms used in Ref. [5], one control term should be
enough to stabilize chaotic orbits of the Hindmarsh-Rose
model and FitzHugh-Rinzel model. Adding the adaptive-
feedback controller to the first variable of Hindmarsh-Rose
model and FitzHugh-Rinzel model, respectively, which rep-
resents the membrane potential of neuron, we obtain the con-
trolled Hindmarsh-Rose system

x=y—x>+5.0505x% - 5.5025x — z — kyx,

y=—5x>+6.835x—y, (11a)
2=0.0012(— z + 4x),
k;=0.01x, (11b)
and the controlled FitzHugh-Rinzel system
1
i=1.7832x - §x3 —0.885x% —y + 7 —kyx,

12
$=0.08(x—0.8y), (12a)
2=0.0001(-x—-z),

k;=0.01x. (12b)

Note that for the sake of simplicity the corresponding fixed
points have been transformed to the origin. Figures 1 and 2
show that the adaptive control is successful although the
transient time is very long. In both numerical simulations,
the initial values are set as [x(0),y(0),z(0),k;(0)]
=(-0.5,-0.3,0.1,0).

Remark 2: The bound of solution is very important for
this adaptive-feedback algorithm. Actually, it is because the
Lasalle invariance principle is only applicable for those so-
lutions bounded for all r=0, see Lemma 2. However, if the
considered solution is chaotic, then it is naturally bounded.
Especially if the system possesses a bounded chaotic invari-
ant set with global attraction, any solution of the system is
naturally bounded for all #=0.

Remark 3: Although all illustrative examples used in Ref.
[5] are those systems with a unique fixed point, the scheme is
free to the number of fixed points. Now we use the famous
Lorenz model to illustrate its effectiveness in the case of
multiequilibrium. Consider the typical Lorenz equations

%=-10x+ 10y,
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FIG. 1. (a)=(d) show numerically the success in stabilizing

Hindmarsh-Rose model to (0,0,0) by adding the adaptive control
to the variable x in (11).

y=28x—-y—xz,

i=xy-3z (13)

with three fixed points
X,=(0,0,0), X,=(6v2,612,27), Xs=(-6v2,—612,27).
(14)

To stabilize the Lorenz system to the fixed points above,
adding adaptive-feedback controller to the second variable,
ie., y, gives

%=—10x+ 10y,
j=28x—y—xz—-k(y—y"),
y=28x—y-xz-k(y-y) (15a)
.. 8
=Xy 32,
ky=0.1(y = y")?, (15b)

where y* is the second component of the considered fixed
point. Namely, let y*zO, 62, and —612, respectively, then
chaotic orbits will be stabilized to X;, X,, and X; in (14).
Numerical results are shown in Figs. 3-5, where the initial
values are (0.2,0.1,0.01,0).

Remark 4: When the considered system is nonautono-
mous, i.e., the vector function f(x) in (1) explicitly contains
the time ¢, say

x=f(x,1),

the proposed adaptive-feedback algorithm is still effective if
f(x,1) is bounded for 7. The proof of this conclusion is easy,
and hence here we only give an illustrative example. We
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FIG. 2. (a)-(d) show numerical results of stabilizing the chaotic
FitzHugh—-Rinzel neuron model by the adaptive control algorithm in
(12).

consider a simple planar pendulum whose base is subject to
a vertical, periodic excitation given by 0.1 sin 7 (such motion
will appear chaotic in general). Its motion is governed by
equation

X+sinx(1-0.1sin¢) =0, (16)
equivalent with
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FIG. 3. (a)-(d) show the Lorenz equations are stabilized to the
fixed point X;=(0,0,0) by the adaptive scheme (15) with y"=0.
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FIG. 4. (a)—(d) show the Lorenz equations are stabilized to the

fixed point X,=(612,612,27) by the adaptive scheme (15) with
v =642.

y==sinx(l —0.1sin 7). (17)

To stabilize the system, we add an adaptive damping term to
the model, and obtain the following system:
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FIG. 5. (a)—(d) show the Lorenz equations are stabilized to the
fixed point X3=(~612,-612,27) by the adaptive scheme (15) with
y'==612.
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FIG. 6. (a)—(c) show the nonautonomous model of a simply
pendulum with periodic excitation is stabilized by adding the adap-
tive damping in (18).

xX=y,

L . (18a)
y=-sinx(1—0.1sin7) - k,y,

k,=0.01y, (18b)
where k, represents damping. Numerical results in Fig. 6
show that the system is stabilized to the fixed point (0,0) by
such a damping control, where the initial values are
(0.2,0.1,0). The example implies that the proposed adaptive-
feedback algorithm has potential applications to control non-
linear oscillators.

III. ADAPTIVE SYNCHRONIZATION WITH APPLICATION

One of the central questions concerned with chaos syn-
chronization is: Given two arbitrary identical chaotic sys-
tems, how to design a physically available coupling scheme
to strictly produce stable identical synchronization motion.
Instead of the numerical methods used in literature, e.g.,
based on the computation of the conditional Lyapunov expo-
nents, the author used the idea of the adaptive-feedback al-
gorithm above to give a more reasonable solution to this
question, see Ref. [6].

Letting the system in the form of (1) as a drive system, we
construct the following drive-response system by unidirec-
tionally coupling:

x=flx), (19a)

y=f(y) —k(y—x), (19b)
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k= y(y-x)?,

where k(y—x)=(k,e,,kes,...,k,e,) is the added adaptive-
feedback term with ¢;=(y;,—x;), i=1,2,...,n denoting the
synchronization error, and y=(vy,, ¥2,...,7v,) is an arbitrary
positive constant vector. To guarantee synchronization be-
tween x and y we must prove that the invariant manifold of
synchronization in (19), x=y, is globally attractive (or
stable), which is just a conclusion that the following theorem
describes.

Theorem 3: Suppose that the uniform Lipschitz condition
(2) holds, then the bounded solutions starting from arbitrary
initial values of (19) possess asymptotic behavior: y—x—0
and k— k, as t— %, where k is a constant vector depending
on the initial values.

The proof of this theorem is similar to that of Theorem 1,
and the only difference is to construct the following scalar
function V for the 3n-dimensional system (19):

(19¢)

1< lew 1
=D ef+ -2 —(k-L)
235 2.3

where the constant L>nl. Therefore the proof is left out
here. In addition, those remarks on Theorem 1 are also ap-
plicable to Theorem 3. Here we would stress this adaptive
algorithm may be directly extended to the delayed systems,
say in the form of

i = flx(t-1],

where 7>0 denotes the delay. By introducing the function

1< l 1
= —2 €l~2 + _E _(ki—lz)2
255 25

1 n +7

+22 | AR = D)= filxts - ) ds,

i=1J1
where the constant L> %(1 +nl?), one may prove easily that
such two delayed systems will synchronize under the adap-
tive scheme as (19). Further, one may consider similarly the
case of time-varying delay.

Next we will discuss how to apply such a simple
adaptive-feedback synchronization algorithm to time series
analysis. Time series analysis is one of interesting applica-
tions of chaotic synchronization. Assuming that the number
of independent variables and the structure of underlying dy-
namical equations for a chaotic system are available, in Ref.
[7] we addressed how to use adaptive chaos synchronization
to dynamically estimate all model parameters of the experi-
mental system. We consider an n-dimensional (experimental)
chaotic system (e.g., with a bounded chaotic invariant set) in
the form of

x=F(x,p), (20)
where x=(x;,x5,...,x,) €R", F(x,p)
=[F,(x,p),Fs(x,p),...,F,(x,p)] is a nonlinear vector func-
tion with

PHYSICAL REVIEW E 73, 066204 (2006)

Fi(xap)=ci(x)+2pijfij(x) i=12,....n (1)
J=1

Here c(x),f;;(x) are some nonlinear functions, and p=(p;;)
€ R™" are nm unknown parameters to be estimated. We still
assume the vector field (20) satisfies the uniform Lipschitz
condition, i.e., there exists a constant />0 such that

|Fi(x,p) = Fi(y, p)|<lmax| -yl VxyeR"
i=1.2, ... (22)

To estimate the unknown parameters p from the time series,
we introduce the receiver system

y=F(y,q) —k(y—x), (23a)
Sjeifii(y), i=12,....n, j=12,....m,

(23b)

k= yy-x)?, (23c¢)

where §;;>0 are arbitrary constants, and the other notations
are the same as those in (19). We have the following conclu-
sion.

Theorem 4: The solutions starting from arbitrary initial
values of (20) and (23) possess asymptotic behavior: y—x
—0 and g— p as t— 0. Namely, the unknown parameters p
may be dynamically estimated from ¢ in the receiver system.

Proof: For the (3n+nm)-dimensional system consisting of
(20) and (23), we introduce the scalar function

V(xyq,k)——ze + = 22

l]jl l]

(q,, pi)’

1 1
+=> —(k-L), (24)
230

where L>nl. Differentiating it along the system gives

V(-xaysq’k) = 2 ei[Fi(y?q) - Fi(-x’p) - kiei]
i=1

n

—EEe(q,, pipfii( y)+2(k L)e;

i=1 j=1

= 2 e[Fi(y.q) — Fi(x.p)]
i=1

n

- 2 E €; (qu plj)flj )’) LE €; (25)

i=1 j=1

Use of (21) we have
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n

E e[Fi(y.q) = Fix,p)] - 2 E ei(‘]ij _pij)fij(y)

i=1 i=1 j=1

m

= €i<Ci()’) + q:fii(y) = Fi(X,P))
i=1 =

- 2 2 eiqijfij())) + E 2 eipijfij(y)

i=1 j=1 i=1 j=I

== eF(x,p)+ > ei(ci(y) + Pz;;fij(y))
i=1 i=1 =1

= e[F{y.p) - Fx.p)]. (26)
i=1

Substituting (26) into (25) and applying condition (22), we
obtain

V(xvyvq’k) = E ei[Fi(yuD) - Fi(x’p)] - LE ei2
i=1 i=1

=(nl-L)> e =0. (27)

i=1

From the above deduction it is easy to find that the set E such
that V=0 is given by

E={(x.y,q,k) € R"™"":V=0} ={(x,y,q,k) € R*"*"":x=y}.
(28)

In the other side, thanks to chaotic behavior of the consid-
ered system (i.e., all solutions of the system approach a cha-
otic invariant set), the largest invariant set M contained in E
is

M ={(x,y,q,k) € R*"":x=y,q=p,k=k}, (29)

where k is an arbitrary constant vector in R". Then Theorem
4 follows from Lemma 2.

For this result, we give the following remarks.

Remark 5: Note from the above proof that Eq. (9) in Ref.
[7] is deduced not by simply neglecting the term
=227, (g;=pij)fij(y), but by combining the first two terms
there. Meanwhile, note that the set M defined in (29) is a
unique invariant set contained in the set E due to the chaotic
characteristic of system. So ¢(7) in the receiver system can
approximate definitely the unknown parameters p as r— .

Remark 6: According to the results in Ref. [6], it is not
necessary for the adaptive synchronization of some particular
chaotic models to use all the variables of system as feedback
signals. So one may estimate the unknown parameters
through the time series of the partial variables. For example,
for the Lorenz system

x=p(y-x),

Y=pox—xz-y,

PHYSICAL REVIEW E 73, 066204 (2006)

=Xy - Pz, (30)

it is sufficient to estimate the parameter when the time series
of the second variable y are available. This is important for
secure communication using parameter modulation. For ex-
ample, when p, in the Lorenz system (30) is modulated by a
digital information signal, the sent message may be retrieved
with a good quality when the time series of y are available.

Remark 7: Note from (21) that the unknown parameters
are linear. The proposed method, however, may be directly
applied to the case of nonlinearity. For example, we replace
(21) by

Fi(-xsp) = Ci(x) + 2 Slj(plj)flj(x)’ i: 1’2’ e, (31)
j=1

where S;; are differentiable nonlinear functions. Then as long
as replacing (23b) by

ds.(g.) ™!
Ciijz—‘("i(—l&ﬁ) efy(y), i=12,....n,
d%‘j

j=12,....m, (32)

the unknown parameters p;; may be estimated similarly. The
proof is similar to that of Theorem 4, but it is necessary to
replace the scalar function V in (24) by

1< les w1
V(x,y.q.k) = EE eiz + EE E 5_[Sij(qij) - S[j(pij)]2
i=1 i

i=1 j=1 9ij

1 1
+=>, —(k;— L)% (33)
233

In conjunction with Theorem 4 and Remark 7, the proposed
method gives an analytical treatment on synchronization-
based parameter estimation. So it supplies a resolution to the
puzzlement in the pioneer work [10], where the author gave
such a statement: “In general, however, an analytical treat-
ment of the problem is not possible and a practical approach
for deriving the differential equations of the parameters is
desirable.”

IV. COMMENT ON SYNCHRONIZATION-BASED
PARAMETER ESTIMATION

In conclusion, the results obtained in Refs. [5-7] have
been proved in detail. However, some investigations still re-
main. For example, how to extend this adaptive idea to the
discrete systems. Actually, in the course of trying to deduce
the discrete version of this adaptive algorithm, we found that
the difficulty went beyond that we had expected.

We would stress that we prove these conclusions with the
well-known Lasalle invariance principle, i.e., Lemma 2, not
Lyapunov asymptotic stability theorem (although they look
similar). Actually, the obtained results cannot be rigorously
deduced by the Lyapunov asymptotic stability theorem. Es-
pecially, the technique of identifying parameter based on
synchronization is guaranteed effective only by Lasalle in-
variance principle. To my best knowledge, however, in the
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literature on synchronization-based parameter estimation (in-
cluding the simple example discussed in the pioneer work
given by Parlitz in Ref. [10]) the Lyapunov asymptotic sta-
bility theorem was used to prove the corresponding tech-
niques effective. Actually, the proof like that is problematic.
To show this point, we first state the Lyapunov asymptotic
stability theorem (for the sake of simplicity here we give
only the case of the global asymptotic stability).

Lyapunov theorem: Consider the n-dimensional vector
differential equation

¥=X(x). (34)

Suppose x=0 is its fixed point. Let V(x) be a scalar function
with continuous first partials for all x € R”. Assume that

(1) V(0)=0 and V(x)>0 for all x#0,

(i) V(x)=VV-X<O0 for all x# 0 and V(0)=0.
Then all solutions of (34) approach 0 as r— @, i.e., the equi-
librium solution x=0 is globally asymptotically stable.

Note that one of the obvious differences between this

theorem and Lemma 2 is: Lyapunov theorem requires that

V(x) is strictly negative, and vanishes only at the considered
fixed point. In addition, it is easy to find that if x=0 is glo-
bally asymptotically stable, then it must be a unique fixed
point of (34).

Next we will show how problematic synchronization-
based parameter estimation in literature (where the Lyapunov
asymptotic stability theorem was used) is. To do it, we use
that example considered in Ref. [10].

Consider a model based on the Lorenz system,

X1=0lr-x),

Xy =P1X] — PaXp — X1X3 + D3,

X3 =x1x) — bxs, (35)

where o=10, b:%, pi» i=1,2,3 are unknown parameters
with p,>0. To estimate the unknown parameters, such a
receiver system is introduced in Ref. [10],

yi=0lxn=y1), (36a)
Y2=q1Y1 = 42)2— Y1Y3 + 43,
y3=y1y2—bys,
with the parameter update law
g1 =(x2 = y2)y1.
Gr=—(x2 = y2)y2s
43 =Xy = Y2 (36b)

By investigating the dynamics of the difference e=y—x and
f=q—p, it is easy to find e;—0, i.e., y;—x; as t— 0. Then
in Ref. [10] replacing x; by y,, the remaining equations gov-
ern the dynamics of the difference (e,,e5.f;./f2.f3) [see Eq.
(10) in Ref. [10]],
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FIG. 7. (a)-(c) show that the parameters p of system (35) with
o=10, b=5 cannot be estimated through ¢ under the scheme in
(36), where the initial values are (x,y,q)=(0.1,0,1,0.1,
~0.1,0.1,0,10,10,10), p,=28, po=1, and p3=0.

€= y1f1 = yof2 —Prer—yi€3+ f3,

é3=ye,— bes,

fl =—€),
fzzez)’m
fi=—e. (37)

For this system, the Lyapunov function, L=e§+e§+ f%+ f%
+/3, was introduced in Ref. [10], and %L:—pzeg—begso
due to p,>0. Then the author claimed that since the deriva-
tive of the Lyapunov function is strictly negative, the re-
ceiver system (36) converges globally to the parameters p in
system (35) and synchronizes, i.e., the unknown parameters
p may be estimated through g.

However, note that %L:—pzeg—geg is not strictly nega-
tive, but vanishes in the set {(e,,e5,f.f2.f3) € R :1e,=0,e;5
=0, Vfi}. Therefore, f—0 (i.e., g—p) as r— cannot be
strictly guaranteed by the Lyapunov theorem. Actually, it is
easy to find that system (37) probably possesses the other
fixed points besides (0,0,0,0,0). Since the fixed points of
(37) are determined by e,=¢3=0 and the formula

yifi=y2f2+f3=0, (38)

if y; and y, are constants (or approach constants as — ),
then the existence of more than one fixed points is sure for
system (37). In other words, its fixed point (0,0,0,0,0)
would not be globally stable (at most locally stable). In
this case, the asymptotic behaviors of the difference
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FIG. 8. (a)—(c) show the results of numerically solving systems
(35) and (36) with ¢=10, b=5 and initial values (x,y,q)
=(0.1,0,1,0.1,-0.1,0.1,0,5,4,3). In comparison with those in
Fig. 7, the results indicate that the converged values of ¢ depend on
the corresponding initial values.

(e5,€3,f1-f2.f3) depend on the initial values. Instead, if y,
and y, are chaotic (their values look like random and arbi-
trary), then the unique solution of the algebra equation (38)
is f1=/f>=/3=0. So in this case (0,0,0,0,0) is a unique fixed
point in system (37), and naturally p may be estimated
through ¢. This is just the reason why the technique used in
Ref. [10] is effective with those parameters.

Now we show numerically this analysis by altering the
system parameter, say b. For example, we only replace
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b=§ by b=5 while the other parameters are the same as
those in Ref. [10], i.e., 0=10,p,;=28,p,=1,p;=0. Numeri-
cal results in Figs. 7 and 8 show accordant with the above
analysis. In Fig. 7 the initial values are set as (x,y,q)
=(0.1,0.1,0.1,-0.1,0.1,0,10,10,10) (i.e., same as those in
Ref. [10]), but (0.1,0.1,0.1,-0.1,0.1,0,5,4,3) in Fig. 8.
Neither of the two cases g can converge to the target p pre-
cisely. Moreover, the converged values with two different
initial values are different. In addition, it is easy to check
numerically that the converged values indeed satisfy equa-
tion (38), and meanwhile y; and y, converge. Similarly, suit-
ably adjusting the parameter o, one will find the similar
problems in this example.

Similarly, in many papers on synchronization-based esti-
mation parameter the authors introduced a Lyapunov func-
tion, say L=%E?=]ei2+%2}":](qj—pj)2 [here g(7) will be used
to estimate the unknown parameters p, which satisfies a cer-
tain update law], and concluded that due to the Lyapunov

stability theorem ¢(f) can precisely estimate the target p if L
is negative, say L=—3"_ ¢?. From the above discussion, how-
ever, the proof like that is actually problematic. Just as we
pointed out in Ref. [11], in this case using the Lasalle invari-
ance principle rather than the Lyapunov stability theorem
may guarantee the effectiveness of the proposed method.
Moreover, the chaotic behavior of the system is necessary for
a successful estimation.
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