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The existence of a strong stochasticity threshold (SST) has been detected in many Hamiltonian lattice
systems, including the Fermi-Pasta-Ulam (FPU) model, which is characterized by a crossover of the system
dynamics from weak to strong chaos with increasing energy density €. Correspondingly, the relaxation time to
energy equipartition and the largest Lyapunov exponent exhibit different scaling behavior in the regimes below
and beyond the threshold value. In this paper, we attempt to go one step further in this direction to explore
further changes in the energy density dependence of other Lyapunov exponents and of hydrodynamic
Lyapunov modes (HLMs). In particular, we find that for the FPU-B and FPU-a models the scalings of the
energy density dependence of all Lyapunov exponents experience a similar change at the SST as that of the
largest Lyapunov exponent. In addition, the threshold values of the crossover of all Lyapunov exponents are
nearly identical. These facts lend support to the point of view that the crossover in the system dynamics at the
SST manifests a global change in the geometric structure of phase space. They also partially answer the
question of why the simple assumption that the ambient manifold representing the system dynamics is quasi-
isotropic works quite well in the analytical calculation of the largest Lyapunov exponent. Furthermore, the
FPU-B model is used as an example to show that HLMs exist in Hamiltonian lattice models with continuous
symmetries. Some measures are defined to indicate the significance of HLMs. Numerical simulations demon-
strate that there is a smooth transition in the energy density dependence of these variables corresponding to the
crossover in Lyapunov exponents at the SST. In particular, our numerical results indicate that strong chaos is
essential for the appearance of HLMs and those modes become more significant with increasing degree of

chaoticity.
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I. INTRODUCTION

In spite of the great success in predicting properties of
systems from their microscopic details, some fundamental
issues at the basis of statistical mechanics are still under
discussion [1-6]. One important example is the validity of
the ergodicity hypothesis. This partially explains the continu-
ous and growing research interest in the nonlinear dynamics
of high-dimensional Hamiltonian systems during the last de-
cades.

Based on a theorem by Poincaré and Fermi [7], which
states that under general perturbations the total energy is the
only possible integral invariant in a Hamiltonian system with
N=3 degrees of freedom, a Hamiltonian system with a large
number of degrees of freedom is expected to be ergodic and
its long-time behavior should follow the predictions of sta-
tistical mechanics. In this context, the result reported in the
celebrated work by Fermi, Pasta, and Ulam (FPU) in 1955
came as a surprise [8]. They attempted to use numerical ex-
periments to check whether a high-dimensional Hamiltonian
system starting from nonequilibrium initial conditions would
relax to equilibrium eventually. Instead of the anticipated
energy equipartition among all normal modes, they saw a
recurrent flow of energy among modes in a lattice of oscil-
lators with anharmonic couplings. This challenges greatly the
validity of statistical mechanics in high-dimensional nonin-
tegrable Hamiltonian systems. It seemed that the difficulty
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could be resolved, at least partially, by applying the contem-
porary Kolmogorov-Arnold-Moser (KAM) theory [9], which
states that a positive measure of invariant tori persist if the
perturbation remains below a certain threshold. Subsequently
improved estimates showed, however, that the threshold
value decreases exponentially with increasing number of de-
grees of freedom [10,11]. Therefore the persistence of KAM
tori should not be an obstacle to the approach to energy
equipartition in FPU’s experiment. On the other hand, some
authors claimed that a threshold of stochasticity or equipar-
tition is detected in their numerical experiments with various
model systems including the FPU model and the Lennard-
Jones chain [12-14]. Moreover, there have been numerical
simulations which indicate the persistence of the threshold in
the thermodynamic limit [14]. Further careful numerical
work carried out in the last two decades clarified that such a
threshold does not characterize a transition from regular to
chaotic states [15,16]. Instead, it corresponds to a smooth
transition in the system dynamics between weak and strong
chaos. In other words, the equipartition of energy can almost
always be achieved in these high-dimensional nonlinear
Hamiltonian systems [17] and the only matter of concern is
the duration of the relaxation time to such a state [15,16].
Therefore, the smooth transition in the chaoticity of the sys-
tem dynamics is called the strong stochasticity threshold
(SST)[16]. In the low-energy regime below the SST, the re-
laxation time to energy equipartition grows as a stretched
exponential law of the energy density. Beyond the transition
the relaxation time is almost independent of the energy den-
sity. Besides, a remarkable change in the scaling laws of the
largest Lyapunov exponent also takes place at SST. Up to
now, similar results have been reported for a large number of
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systems [18-21], which indicates that the existence of the
SST is a quite general aspect of Hamiltonian systems with
many degrees of freedom.

In a series of recent papers [22-26] Pettini and co-
workers developed further the geometry theory of Hamil-
tonian chaos pioneered by Krylov [1]. The nonperturbative
nature of this approach facilitates the study of the origin of
Hamiltonian chaos and the SST in high-dimensional Hamil-
tonian systems. They provided evidence that the transition in
the system dynamics at the SST manifests a certain dramatic
change in the geometric structure of configuration space
[22,23]. The existence of a direct relation between the cur-
vature properties of the ambient manifold representing the
system dynamics and the Lyapunov instabilities of system
trajectories encourages an understanding of the physical ori-
gin of the SST from the point of view of nonlinear dynamics.

Since the transition at the SST is anticipated as a global
change in the geometric structure of phase space, and results
of previous investigations are in favor of such a statement
[22,23], we expect that there should be changes in other in-
dicators of the instability of trajectories, not only in the larg-
est Lyapunov exponent. The aim of the current paper is to
explore the possible changes in the whole Lyapunov spec-
trum and in the so-called hydrodynamic Lyapunov modes
(HLMs) [27] in connection with the SST.

Hydrodynamic Lyapunov modes are wavelike structures
in Lyapunov vectors associated with near-zero Lyapunov ex-
ponents of high-dimensional dynamical systems. Their exis-
tence was first reported in many-particle systems with hard-
core interactions by Posch and co-workers [27]. This
discovery immediately triggered great interest of many re-
search groups due to its potential importance for an under-
standing of the fundamental problems of statistical mechan-
ics from the point of view of nonlinear dynamics [28-38].
The existence of HLMs has already been reported for various
systems ranging from many-particle systems with hard-core
[28,32] or soft-potential interaction [34-36], products of ran-
dom matrices [29], and coupled map lattices [37] to the
Kuramato-Shivashinsky equation [38]. Although a lot of
work has already been carried out both numerically and ana-
lytically [28-38], a thorough understanding of this subject
has not yet been achieved. A common belief is that continu-
ous symmetries and conservation laws are essential for the
appearance of HLMs, which is also supported by previous
studies. In the current paper we try to show for Hamiltonian
lattice models that strong chaos is also important for the
appearance of such modes. In particular, the FPU- model is
selected as an example to illustrate that HLMs exist in
Hamiltonian lattice models with continuous symmetries.
Some indicators are defined to measure the significance of
HLMs. The dependence of these indicators on the energy
density is investigated in detail. Numerical simulations dem-
onstrate that these quantities show quite different behavior in
the regimes of weak and strong chaos, respectively.

The remainder of the paper is organized as follows. The
model systems under investigation and the details of the nu-
merical simulations are given in Sec. II. In order to facilitate
the reading of this paper, we will recall briefly in Sec. III the
correlation function theory of Lyapunov vectors. In Sec. IV
the results of numerical simulations with respect to the
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changes in the Lyapunov spectrum and in HLMs will be
presented. Our focus here is on the FPU-8 model while the
case of the FPU-a3 model is treated only briefly, since the
scenarios in the two systems are quite similar. We will study
in Sec. V how a change in the system size influences the
results presented in the previous sections and clarify the role
played by the fluctuations of finite-time Lyapunov expo-
nents. Finally we will summarize the main results and end
the paper with a short discussion.

II. MODELS

Two cases of the one-dimensional FPU model are used to
demonstrate the changes in Lyapunov spectrum and in hy-
drodynamic Lyapunov modes in connection with the cross-
over from weak to strong chaos. This class of models is
described by a Hamiltonian of the form

L 2
H=E(%+V(C]z+1—%)> (1)
=1

where ¢, denotes the displacement of the /th particle from its
equilibrium position la, p;=q, is the conjugate momentum,
and periodic boundary conditions ¢;,;=¢; are used. The po-
tential V(z) is of the form

LT SN SR

V(Z)—zz +3vz +4,uz ) (2)
With different choices of the parameters w and v in Eq. (2)
two variations of the FPU model can be defined, the so-
called FPU-$ model with u# v=0 and the FPU-a8 model
with u©#0 and v# 0. Throughout the current study we set
the parameter uw=1.0 for the FPU-B model and »=0.25 and
,(L=§V for the FPU-@8 model, respectively. The energy den-
sity e=E/L, where E is the total energy, is used as a control
parameter to investigate the variation in Lyapunov character-
istics.

Note that the Hamiltonian Eq. (1) is invariant under the
variable transformation g, =¢;+c¢ with an arbitrary constant
¢, since only internal forces among particles are present. As a
consequence of the translational invariance, the total mo-
mentum P=3/ p, is conserved in the models given above.
The continuous symmetry and the corresponding conserved
quantity are essential for the appearance of HLMs in those
systems.

The equations of motion, which can be easily derived
from the given Hamiltonian, are integrated with a fourth-
order Runge-Kutta algorithm [39]. The so-called standard
method invented by Benettin er al. and Shimada and Na-
gashima is adopted to calculate the Lyapunov exponents and
Lyapunov vectors, which characterizes the local instabilities
of the trajectories of the systems under investigation [40].

III. CORRELATION FUNCTIONS OF LYAPUNOV
VECTORS

In a high-dimensional system the Lyapunov vectors asso-
ciated with near-zero Lyapunov exponents are known to be
spatially extended [41]. If, in addition, the system holds
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some continuous symmetries, those Lyapunov vectors may
exhibit certain wavelike coherent structures, namely, hydro-
dynamic Lyapunov modes [27]. In order to detect unambigu-
ously the coherent structures in those Lyapunov vectors
(LVs) and to characterize the hydrodynamic Lyapunov
modes quantitatively, we have introduced the correlation
function theory for Lyapunov vectors, which will be recalled
briefly in this section. Details can be found in [34,35,37].

Following the definition of microscopic densities in mo-
lecular hydrodynamics [42], we introduce a dynamical vari-
able called the LV fluctuation density as

L
U r,1) =D, su' ' 8(r—r) (3)
I=1

where r; is the position coordinate of the /th element of the
system under investigation and {6145“)1} is the coordinate part
of the ath Lyapunov vector. Each Lyapunov vector of Hamil-
tonian systems has 2L entries, which reflects certain pertur-
bations in the coordinate ¢; and the momentum p; of the
particles. If we represent the ath Lyapunov vector as
(84", 6", ..., 84 p\ ™ apl?, .. apt@"),  then
5uf“)l= &15“)1. For the lattice models used here, the position
coordinate is simply r;=/la. We set the lattice constant a=1
throughout the remainder of this paper to simplify the calcu-
lations.

The spatial Fourier transformation of the LV fluctuation
density reads

L

Z/{;ca)(f) — J L[(a)(r, t)e—ik-rdr — 2 guga)le—ik-rl' (4)

=1
The so-called static LV structure factor is defined as
S (k) = UL OU @), (5)

where (- - -) represents the time average. As can be easily seen
from Eq. (5), the static LV structure factor is nothing but the
spatial Fourier spectrum of the LV fluctuation density ()
X (r,t). Therefore it is suited for the characterization of the
spatial structure of Lyapunov vectors.

The dynamic LV structure factor is defined as

Sk, o) = f U DOUL(0))e' dr, (6)

which can provide detailed information on the dynamical
behavior of Lyapunov vectors.

The success of these quantities in the detection and char-
acterization of HLMs has been shown in our previous studies
of Lennard-Jones fluids and coupled map lattices
[34,35,37,38].

IV. NUMERICAL RESULTS FOR LYAPUNOV SPECTRA
AND HYDRODYNAMIC LYAPUNOV MODES

In this section the model systems described in Sec. I will
be used to illustrate the changes that are observed in the
Lyapunov spectrum and the hydrodynamic Lyapunov modes
as the energy density is increased.
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FIG. 1. Lyapunov spectrum of the FPU-8 model with u=1.0
and €=10. Due to the Hamiltonian nature of the system the
Lyapunov spectrum has the symmetry A(@=—\2L=1-9)Ag can be
seen from the inset, the system has four zero-value Lyapunov ex-
ponents. The system size used here is L=128.

A. FPU- model

In this model the nature of the relaxation to energy equi-
partition has been extensively studied and the existence of
the SST was first identified [14,16].

The Lyapunov spectrum for the case €=10 is shown in
Fig. 1. Due to the Hamiltonian structure the spectrum has the
symmetry \@=-\L~1-9)_Aq can be seen from the inset, the
system has four zero-value Lyapunov exponents, which are
related to the space and time translational invariance symme-
tries of the system and the associated conserved quantities,
the total energy and the total momentum.

We present in Fig. 2 the change of the largest Lyapunov
exponent A" with increasing energy density e. Note that the
ascent of NV with € in the low-energy regime is much faster
than in the high-energy regime. Numerical fitting of the e
dependence of NV to a power law AV~ €f yields B=2.0
and 0.25 in the two regimes, respectively. A smooth transi-
tion connects the two different kinds of behavior at interme-
diate energy density values. As interpreted in previous stud-
ies [16], the change in the € dependence of the largest
Lyapunov exponent manifests a crossover of the system dy-
namics from weak to strong chaos. The critical energy den-
sity of the SST is roughly estimated as €,=0.2 for the cur-
rent parameter setting.

Besides the above-mentioned change in the € dependence
of the largest Lyapunov exponent, we also expect to see
changes in other indicators of the instability of trajectories,

0 =
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€

FIG. 2. (Color online) The largest Lyapunov exponent A1) vs
energy density € for the FPU-8 model. The € dependence of AW is
fitted to a power law with the exponents 2.0 and 0.25 in the low-
and high-energy regimes, respectively. The threshold value of the
crossover between the two regimes is €,=0.2.
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FIG. 3. (Color online) € dependence of typical Lyapunov expo-
nents in the positive branch of the Lyapunov spectrum for the FPU-
B model. Here, « takes values from 1 to 121 with the increment 10
(from top to bottom). The density of the Kolmogorov-Sinai entropy
pr=nhgs/N is plotted as a dashed line. Obviously, all the Lyapunov
exponents roughly follow the same trend as A1),

since the transition of the system dynamics at the SST is
anticipated to be a global change in the geometric structure
of phase space [16]. In Fig. 3 the € dependence of other
Lyapunov exponents sampled from the positive branch of the
Lyapunov spectrum is presented. Obviously all of them fol-
low the same tendency as the largest Lyapunov exponent,
i.e., there are two scaling regimes at low and high energy
densities, respectively, and they are mediated by a smooth
transition in between.

The variation of the normalized Lyapunov exponents
N9 (€)/\¥(g,) with the energy density is presented in Fig.
4. Roughly speaking all the data from different Lyapunov
exponents collapse on a single curve. This demonstrates
clearly that all Lyapunov exponents change in a similar way
as the largest one. Moreover, the crossover in all Lyapunov
exponents takes place at the same threshold value €,=0.2.
On the one hand this result supports the above-mentioned
point of view that there is a global change in the geometric
structure of the phase space at the SST. On the other hand it
explains why the strong assumption of quasi-isotropy works
quite well in the analytical calculation of the largest
Lyapunov exponent [24,25]. Under this assumption, the ten-
sor equations governing the detailed dynamics of the local
instabilities of the system trajectories are reduced to a simple
scalar equation which describes the average instabilities of
the given system. The form of the reduced equation does not
depend on the detailed dynamics of the original system and
only averaged properties of the curvatures of the ambient
manifold enter as parameters. Roughly speaking, such an

FIG. 4. (Color online) Normalized Lyapunov exponents A(®
X (€)/\ (&) vs energy density e. Here the more or less arbitrary
value €,=0.9 was chosen. Note that all the data for different
Lyapunov exponents collapse on one master curve.
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FIG. 5. (Color online) Lyapunov exponents normalized by the
entropy density p, vs energy density e for the FPU-8 model.

assumption implies that all the Lyapunov exponents of the
system under investigation are identical. As Fig. 1 shows,
this is not the case. An analytical estimate of the largest
Lyapunov exponent based on this assumption, however,
agrees with the numerical value quite well. Our results re-
ported here provide an explanation for this puzzle. Although
the values of the Lyapunov exponents differ from one an-
other, they do have a similar € dependence. In other words,
apart from some constants, all the Lyapunov exponents con-
tain the same information with respect to the tendency of
change with e. Therefore it comes as no surprise that one can
obtain a correct estimate of the € dependence of the largest
Lyapunov exponent, or, of an effective measure of the aver-
age instability of the system dynamics, by using such a
simple assumption.

As becomes obvious in Fig. 4 the collapse of the data is
not perfect in the whole energy regime. To show this more
clearly, we present in Fig. 5 the normalized Lyapunov expo-
nents N\ “/p,, where p,=hgs/L is the density of the
Kolmogorov-Sinai entropy. These quantities are expected to
be independent of e, if all Lyapunov exponents have exactly
identical € dependence. The figure indicates that, apart from
numerical errors, there are still deviations. In Sec. V we
show that they can not be attributed to finite-size effects
either. Therefore the occurrence of deviations from constants
reflects the nature of the system dynamics.

We now turn to the characterization of Lyapunov vectors.
The profiles of two prototypical Lyapunov vectors are shown
in Fig. 6. The one associated with the largest Lyapunov ex-

e=10

U“a,

“at)

20 32 64 9% 128

FIG. 6. Snapshots of two prototypical Lyapunov vectors for the
FPU-B model with e=10. The Lyapunov spectrum is shown in Fig.
1. The LV (with a=1) associated with the largest Lyapunov expo-
nent is highly localized while the LV (with a=124) corresponding
to a near-zero Lyapunov exponent is spatially extended.
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FIG. 7. (Color online) Static LV structure factor Sftaa)(k) for a
LV with a=50. Here, k,,,, is defined as the wave number of the
highest peak in the spectrum S,(;m) (k).

ponent is highly localized in space. This aspect has been
discussed for a long time [43-45] and a detailed study of the
universal scenarios can be found in Ref. [45]. In contrast, the
Lyapunov vector with a=124, which is associated with a
near-zero Lyapunov exponent, is spatially extended. More-
over, it exhibits a certain long-wavelength coherent structure,
which indicates the existence of HLMs in this system.

For an accurate characterization of the spatial structure of
the Lyapunov vectors, we adopt the measure of the static LV
structure factor defined in Eq. (5). To simplify the notation,
we will ignore the subscript and superscript of S’(Aw)(k)
throughout the remainder of this paper. The static LV struc-
ture factor of an example case e=10 and a=50 is presented
in Fig. 7. It is characterized by the existence of a peak at
k,.ar- Note that the associated Lyapunov exponent is already
far from the center of the Lyapunov spectrum (see Fig. 1).
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FIG. 8. (Color online) (a) Contour plot of static LV structure
factors for the FPU-B model with €=10. (b) Variation of k,,,, with
the index a of the LV. The Lyapunov vectors with a=~128 are
dominated by components with small wave numbers comparable to
2m/L, which is the smallest nontrivial wave number permitted by

the periodic boundary conditions used. These facts together imply
the existence of hydrodynamic Lyapunov modes in this system.
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FIG. 9. S(k,,4,) vs a for the FPU-B model with e=10. S,,,(€),
S in(€), and ag(e) are defined to measure the significance of HLMs.

Therefore, the peak in the static LV structure factor is not so
sharp.

The contour plot of the static LV structure factors for the
whole set of Lyapunov vectors is shown in Fig. 8. It is ob-
vious that the static LV structure factors of Lyapunov vectors
associated with near-zero Lyapunov exponents are strongly
dominated by certain components with low wave numbers.
As shown in Fig. 8(b), the wave number k,,,, of the domi-
nant peak approaches 27r/L gradually as the index a of
Lyapunov vectors goes to 128, i.e., as the associated
Lyapunov exponents approach zero. The variation of S(k,,,,)
and the spectral entropy Hg as function of the index « are
presented in Figs. 9 and 10, respectively, where S(k,,,,) de-
notes the height of the dominant peak of the static structure
factor of a given Lyapunov vector and the spectral entropy
Hg is defined as Hy=-2S(k)In S(k). A smaller value of Hy
and a larger value of S(k,,,,) indicate the existence of a sharp
peak in the static LV structure factor under investigation.
Numerical data show that both quantities attain their extreme
values at a=108. Combined with the fact that the wave
numbers k,,,, of the dominant peaks are near to 277/ L in this
regime, these numerical results demonstrate the existence of
HLMs in this system.

To illustrate the changes in the Lyapunov vectors with
increasing energy density, the variations of the quantities
S(kyax)s ke and Hg are shown in Fig. 11 for several
Lyapunov vectors with the associated Lyapunov exponents in
the positive branch of the Lyapunov spectrum. All three vari-
ables exhibit qualitatively different behavior in the low- and
high-energy regimes. Here we just outline some of the main
differences. In cases of low energy, the values of S(k,,,,) are
nearly identical for all Lyapunov vectors and there is no
special order in S(k,,,,) with respect to the index a. The
situation is, however, different in the high-energy regime.

4~2 T T T T
aasly T ]
41 ]

= 4.05| /
A i
395¢ aH(sk Hmafs_)

s 1 ) L s 1
3% 32 64 9% 128

o

FIG. 10. Spectral entropy Hy=-2S(k)In S(k) vs « for the FPU-
B model with e=10. Note the definitions of the quantities H,,,.(€),
Hmin(e)s and aH(6)~
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FIG. 11. (Color online) (a) S(k,4yc), (b) k4 and (c) Hg against
the variation of the energy density e for Lyapunov vectors corre-
sponding to the Lyapunov exponents shown in Fig. 3 for the FPU-
B model. The e dependence of all the quantities exhibit smooth
transitions in a regime around the critical value €,=0.2 for the
crossover in the Lyapunov spectrum.

With an increase in the energy density, the values of S(k,,,,)
for the Lyapunov vectors with smaller « decrease gradually,
while the values of S(k,,,) for those Lyapunov vectors with
larger « increase in the meantime. An ascending order in the
values of S(k,,,,) with increasing indices « is established
gradually along with the growth of the energy density. The
crossover between the two kinds of behavior takes place in a
regime around the above-mentioned threshold value €,=0.2
for the change in the Lyapunov spectrum. The data of k,,,, in
the low-energy regime are quite noisy, while some general
tendencies of change can be identified from the data in the
high-energy regime. For €>> €, k,,,,, of the Lyapunov vectors
corresponding to near-zero Lyapunov exponents are close to
2/ L and the value of k,,,, increases gradually on decreasing
the index « from L. Similarly, in cases of low energy density,
the dependences of Hg on « have no particular tendency. As
the energy density increases beyond a critical value, a de-
scending order in Hg with the growth of « appears gradually.
These aspects of the e dependence of the three variables
suggest that there are changes in the Lyapunov vectors at the
SST and that significant HLMs are only possible in the
strong chaotic regime with high energy density. Moreover,
the significance of the HLMs increases with the growth of
the degree of chaoticity.

To further quantify the significance of HLMs in a case
with given energy density, we now define some measures
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FIG. 12. (Color online) S,,,.(€) vs € for the FPU-B model. For
€< €., the quantity S,,,,(€) is nearly constant. For > €., however,
S nax(€) increases gradually with e. These facts demonstrate that the
significance of hydrodynamic Lyapunov modes grows as the energy
density increases. Here, the threshold energy density €.=0.2 for the
transition in the Lyapunov spectrum is shown as a dashed line.

based on the quantities S(k,,,,) and Hg, which are already
capable of indicating the significance of the possibly wave-
like structures in a Lyapunov vector. Two candidates which
are suitable for this purpose are the extreme values S,,,.(€)
and H,,;,(e) (see Figs. 9 and 10 for the definitions). Roughly
speaking, S,,..(€) represents the height of the highest peak in
the static structure factors of all Lyapunov vectors of a case
with given €, and H,,;, measures the significance of this
peak. We also explore the e dependence of S,,,./S,,, and
H,..—H,;,. These relative measures are expected to be even
more suitable for the comparison of cases with different en-
ergy densities €.

The variation of S, (€) with € is plotted in Fig. 12. As
can be seen from the figure, S,,,.(€) is roughly constant as
long as the energy density € is lower than the threshold value
€., although a systematic trend of slow decrease can be rec-
ognized for very low energy densities. In contrast, S,,,.(€)
increases gradually with € for €> €. There is also a smooth
transition in H,,;,(€) (see Fig. 13). For e<e,, the dependence
of H,,;,(€) on € is rather weak while it decreases gradually
with increasing € in the regime €> €. As shown in Fig. 14,
the existence of a crossover in the dynamics of the Lyapunov
vectors is also reflected in the changes in the € dependences
of the relative measures S,,,,/S,i» and H,,,.—H,,;,,- Note that
the crossover points of these quantities all lie in the regime
around the threshold energy density €. of the transition in the
Lyapunov spectrum (see Fig. 2). This implies that both tran-
sitions in the Lyapunov spectrum and in the Lyapunov vec-
tors at the SST are possibly manifestations of the same geo-
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FIG. 13. (Color online) H,,;, vs € for the FPU-B model. The
quantity H,,;, is nearly constant for e< €. while it decreases gradu-
ally with increasing € for €> €.
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FIG. 14. (Color online) (a) S,ux/Smin and (b) H,ue—H,in Vs €
for the FPU-B model. In both quantities a change in the € depen-
dence is observed as one crosses the threshold value €.=0.2.

metric change in the structure of phase space. The variations
of these quantities also illustrate that the highest peak in the
LV structure factors is more dominant for €>e€. than for
€< €. Moreover, in the regime beyond the SST, the signifi-
cance of that peak grows with increasing energy density €.
We present in Fig. 15 the variation of the indices «g and
ay with € (see Fig. 9 and 10 for the definitions of these
indices). The indices normalized by L are rather close to 1.0
in the regime beyond the SST, which means that the corre-
sponding Lyapunov exponents are close to zero. Thus, the
associated highest peaks represent certain HLMs. In the re-
gime €< €., however, the normalized indices are relatively
far from 1.0, i.e., the corresponding Lyapunov exponents are
rather far from zero. This fact, alongside those just men-
tioned, demonstrates that significant hydrodynamic
Lyapunov modes appear only in the regime beyond the SST.
Moreover, for €> €., the significance of the HLMs becomes
gradually stronger as the energy density increases.

B. FPU-a8 model

In this subsection, we will show only briefly the changes
in the Lyapunov spectrum and the hydrodynamic Lyapunov
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FIG. 15. (Color online) The normalized indices ag/L and ay/L
are plotted against the energy density €. Note that they are relatively
close to 1.0 for €> €. For the purpose of comparison, the quantities
g and a are also presented here. Their definitions are given in
Figs. 27 and 28, respectively.
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FIG. 16. (Color online) The largest Lyapunov exponent A vs e
for the FPU-@ model. Similar to the case shown in Fig. 2 for the
FPU-B model, there is a crossover in the € dependence of AD at
€.=5.0.

modes of the FPU-a8 model, since the results are qualita-
tively similar to what we have reported for the FPU- model.

The variation of the largest Lyapunov exponent A" with
the energy density € is presented in Fig. 16. As in the case of
the FPU- model, there is a crossover in the € dependence of
A and the scaling is different in the regimes beyond and
below the threshold value €, of the crossover [21]. Numeri-
cal fitting of the data to a power law ND~éf yields
B=2.0 for e<e, and B=0.25 for €> €, respectively. The
threshold energy density of the crossover is estimated as
€.=5.0.

To illustrate further changes in the Lyapunov spectrum,
we show in Fig. 17 the € dependences of several Lyapunov
exponents sampled from the positive branch of the Lyapunov
spectrum. Obviously, their tendency of variation is very simi-
lar to that of NV, The normalized quantities AD(e)/\ @
X (€p) are plotted in Fig. 18 against the energy density €. As
shown in the diagram, all data from different Lyapunov ex-
ponents collapse on a single curve, which suggests that all
Lyapunov exponents exhibit a crossover at €. similar to the
largest one A\"). This confirms the anticipation that, in con-
nection with the transition from weak to strong chaos, the
geometric structure of the phase space changes globally at
the SST. Moreover, as in the case of the FPU-8 model, the
numerical results presented also provide a basis for the
quasi-isotropy assumption used in the analytical calculation
of the largest Lyapunov exponent [25].

We present in Fig. 19 the normalized quantities \®/p,,
which are assumed to be constant, irrespective of the varia-
tion of the energy density, if all the Lyapunov exponents
have identical e-dependence. As can be seen from the plot,

FIG. 17. (Color online) Similar to Fig. 3 but for the FPU-af
model. All Lyapunov exponents follow the same tendency of varia-
tion as the largest one.
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FIG. 18. (Color online) Similar to Fig. 4 but for the FPU-af3
model. All data from different Lyapunov exponents roughly col-
lapse onto a master curve.

these quantities are nearly constant in the regime of € shown.
This fact further demonstrates the correctness of our obser-
vation that the tendencies of change of all Lyapunov expo-
nents are almost identical.

The variations of the quantities S(k,,,,), kyq and Hg for
several Lyapunov vectors with the associated Lyapunov ex-
ponents in the positive branch of the Lyapunov spectrum are
shown in Fig. 20. All three variables exhibit different behav-
ior in the low- and high-energy regimes. Moreover, the
crossover in the e dependence of these quantities takes place
in a regime around the threshold value €.=5.0 as in the
Lyapunov spectrum of this system (see Fig. 18). The illus-
trated aspects of the e-dependence of these quantities dem-
onstrate that, alongside the alternations in the Lyapunov
spectrum, there are also changes in the Lyapunov vectors at
the SST.

The variations of the measures S,,,, and H,,;, with the
energy density € are shown in Fig. 21. One can easily see
from the plot that both variables display different behaviors
in the two regimes divided by the threshold value €.=5.0. In
particular, for €> €, S, ascends gradually with increasing
energy density, and H,,, decreases. In the regime e<e,,
however, the variable S,,,, increases with decreasing e, and
H,,;, decreases in the meantime [49]. From the above discus-
sion one can conclude that the highest peak in the LV struc-
ture factors becomes more significant as the energy density
departs further from the threshold value e,.

The normalized indices ag and «y presented in Fig. 22 are
close to 1.0 for e>> €, i.e., the corresponding Lyapunov ex-
ponents are close to 0. This suggests that in this high-energy
regime the highest peak of the LV structure factors represents
a certain HLM. In contrast, the indices are close to zero for

1()1: A B LA B

& P ——
_ £ D
g 10

.

(e 0 1 2 3 4

FIG. 19. (Color online) Similar to Fig. 5 but for the FPU-af
model. \®)/p,, are nearly constant over the regime of e shown,
which indicates that all the Lyapunov vectors have roughly identical
tendencies of change with e.
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FIG. 20. (Color online) (a) S(k4c)s (b) k4 and (c) Hg against
the variation of the energy density e for several Lyapunov vectors
corresponding to the Lyapunov exponents shown in Fig. 17. The €
dependence of all the quantities exhibits smooth transitions in a
regime around the critical value €.=5.0 of the crossover in the
Lyapunov spectrum.

€<g,., i.e., the Lyapunov exponents corresponding to the
Lyapunov vectors whose static structure factors show the
highest peak are far from zero. This demonstrates that the
highest peak in the static LV structure factors does not rep-
resent a HLM. Therefore, we conclude that the HLMs are
more significant in the regime €> €, than in the regime €
< €. The increase of S,,,, and the decrease of H,,,, with € in
the regime €> €, indicate that HLMs become more signifi-
cant with increasing e.

Here, we find a scenario of change in the Lyapunov spec-
trum and the Lyapunov vectors of the FPU-a8 model which
is similar to that in the FPU-B model. This encourages us to
surmise that the occurrence of such changes in the Lyapunov
characteristics at the SST is typical for a large class of
Hamiltonian lattice models.

V. FINITE-SIZE EFFECTS AND THE ROLE OF
FLUCTUATIONS IN FINITE-TIME LYAPUNOV
EXPONENTS

In the previous sections, we kept the system size L=128
to demonstrate the changes of the Lyapunov spectrum and
HLMs with varying energy density €. Here, we will see how
these results are influenced by the change of the system size
L. Since the study of the thermodynamic limit of Lyapunov
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FIG. 21. (Color online) (a) S,,,. and (b) H,,;, vs € for the FPU-
a3 model. Both quantities have different behaviors in the regimes
below and beyond the threshold value €.=5.

characteristics is a substantial topic by itself, we postpone a
thorough exploration of related features to a forthcoming
publication and show only briefly some essential points in
this paper.

It is well known that the Lyapunov spectrum of extended
chaotic systems approaches a continuous curve as the system
size goes to infinity [50]. The Lyapunov spectra for three
cases with different L are shown in Fig. 23 for the FPU-8
model. The collapse of data on a single master curve shows
that the Lyapunov spectrum with L=128, which was used in
the previous sections, is already rather close to the limit dis-
tribution, and the reported changes of the Lyapunov spec-
trum at the SST should persist in the thermodynamic limit.

Note that in Fig. 8, for a group of LVs with a=L, the
peak wave-numbers k,,,, take the same value 27/L. This
hinders us from seeing the linear dispersion relation A
~kypay claimed in previous work [37,38]. We will provide
numerical evidence for the fact that the apparent condensa-
tion of k,,,, at 27/L is a finite-size effect. As presented in
Fig. 24 for three cases with L=64, 128 and 256 respectively,
the population of LVs with k,,,,=27/L decreases as the sys-
tem size increases. It appears that there is a limit curve

1 LR BLE RS § ey A TEER LER B BEELL |

o
)
T

FIG. 22. (Color online) Variation of the indices ag and ay with
the energy density e. Note that they are close to 1.0 for €> €,
which means that the corresponding Lyapunov exponents are close
to zero.
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FIG. 23. (Color online) System size dependence of the

Lyapunov spectrum of the FPU-8 model. The collapse of the data to
a single master curve suggests that the finite-size effect on the
Lyapunov spectrum can be neglected.

k(a/L) as L goes to infinity, and for a simulation with a finite
L, only a part of this asymptotic curve can be recognized
from the « dependence of k,,,, due to the finite resolution of
k.

Variations of the quantity S(k,,,,) with the index « are
shown in Fig. 25 for three cases with L=64, 128, and 256,
respectively. In connection with the change of k,,,, presented
in Fig. 24, the increase of the system size L does lead to the
increase of S(k,,,,) in the regime around S,,,,,, i.e., for those
LVs whose static LV structure factors have sharp peaks. A
comparison of the two figures tells us that the significant
changes of S(k,,,,) occur in the regime where the value of
kypay varies with L, i.e., the change in S(k,,,,) is mainly due to
the improvement of the estimate of the peak position k.
This is consistent with the observation that the change in
S(k,pgqy) 1s significant for the LVs whose static LV structure
factors have sharp peaks.

The € dependence of §,,,, for simulations with L=256
was shown in Fig. 12 together with the case L=128. As
expected, increasing the system size does lead to some
changes in the values of S,,,,, especially in the high-energy
regime €>> €. The discrepancy in the energy density depen-
dence of S,,,, in the low- and high-energy regimes is, how-
ever, qualitatively the same for the two cases with different
system sizes L. With the variation of the system size L, the
changes in the behavior of other quantities characterizing the
Lyapunov vectors resemble that of S,,,,. These facts demon-
strate that the changes in the Lyapunov vectors at the SST,
which were reported in the previous sections, are intrinsic to
the treated systems and they will not be changed by a varia-
tion in the system size.

T
e=10
1/64
= 1/128
oES, e
— 1=256
10—3 1 L 1 1
0 0.2 0.4 0.6 0.8 1

FIG. 24. (Color online) System size dependence of the peak
wave number k,,,, of LVs of the FPU- model. A comparison be-
tween data sets with different system sizes L indicates that the ap-
parent condensation of k,,,, at 277/ L for the LVs with a= L, which
can be observed in Fig. 8, is an effect of a finite system size.
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FIG. 25. (Color online) System size dependence of S(k,,,,). The
significant changes in S(k,,,) occur in the regime where k.,
changes with the system size L.

Another interesting feature of the L dependence of S(k,,,,)
is that the value of the normalized index ag/L is nearly con-
stant, irrespective of the increase in system size (see Fig. 26).
Therefore, the deviation of ag from the intuitive expectation
ag=L is not a finite-size effect and it is necessary to offer an
alternative explanation here. We attribute it to the difference
in the fluctuations of finite-time Lyapunov exponents.

In previous studies [28] Posch et al. have proposed that
the different Lyapunov vector dynamics of systems with
hard-core or soft-potential interactions is a result of the dif-
ferent nature of the fluctuations of finite-time Lyapunov ex-
ponents. The finite-time Lyapunov exponent \(7) represents
the average instability of trajectory segments of duration 7
and it approaches the normal Lyapunov exponent as 7 goes
to infinity, i.e., lim,_,,A(7)=N. The standard deviation
(N (7)) of N(7) is a measure of the fluctuations of finite-time
Lyapunov exponents A(7), which has been used by Posch et
al. in previous work to show the difference between systems
with hard-core or soft-potential interactions [28]. Here, we
prefer to use a relative measure o(\?(7))/ (@D -\(®),
which shows the effective overlap of the distributions of the
finite-time Lyapunov exponents with neighboring a. We ex-
pect such a quantity to be able to tell us how strong the
mixing between the unstable directions represented by
Lyapunov vectors is, which controls the significance of
HLMs. For instance, a small value ofa(A®(7))/(\(@*D
—\) means that the mixing among unstable directions as-
sociated with neighboring LVs is relatively weak, i.e., the
HLMs are significant.

The variation of (A ®(7))/(N @V =\®) with « and the
definition of «, are presented in Fig. 27. The values of «a,,

| &=10 ]
0.2 .

ol . | . | . |
64 128 L192 256

FIG. 26. Numerical simulations show that the value of the nor-
malized index ag/L (see Fig. 9) is nearly constant, irrespective of
the variation in system size L.
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FIG. 27. (Color online) The fluctuations of the finite-time
Lyapunov exponents are measured by the quantity o(\(®
X (1)/ (N @D\ (@) where o(A\®)(7)) is the standard deviation of
the finite-time Lyapunov exponents with the index a. The quantity
a, is defined as the index corresponding to the minimal value of
the quantity (M ?(1))/(N@*D=\ (@) in the regime A(®) =0.

for several cases with different energy densities € are shown
in Fig. 15. They are quite close to the corresponding values
of ag. This confirms our statement that the value of «j is
determined by the nature of the fluctuations of the finite-time
Lyapunov exponents. For comparison, the values of «,, de-
fined with respect to o(A(?)(7)), are presented in the same
figure. The deviation from «y is rather large compared to the
difference between «,,; and ag,which shows the advantage of
the relative measure o(A9(7))/(N@D-\(@) over oA
X (7)). The definition of a, and the variation of o(\(®(7))
can be found in Fig. 28.

In addition, Fig. 27 shows that the value of o(A@
X (7)/ (N @D _\@) in the regime o=~ L decreases gradually
as € changes from 1 to 100. This provides an explanation for
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FIG. 28. (Color online) Standard deviation of the finite-time
Lyapunov exponents o{(A@(7)) vs the index a for (a) e=10 and (b)
several cases with different energy densities €. The quantity «,; is
defined as the index corresponding to the minimal value of the
quantity o(A\?(7)) in the regime \(@=0.
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the above observation that the significance of the HLMs in-
creases with € in this energy regime (see Figs. 12 and 13). In
some respects, the quantity o(A@(7)/(A\@*D-\ () serves
as a quantitative measure of the chaoticity of the treated sys-
tems. We leave a detailed study of the relation between the
fluctuations of finite-time Lyapunov exponents and the sig-
nificance of HLMs to a future publication.

VI. CONCLUSION AND DISCUSSION

In this study, we have shown that apart from a crossover
in the scalings of the energy density dependence of the larg-
est Lyapunov exponent, other Lyapunov exponents of the
Hamiltonian lattice models exhibit similar smooth transitions
at the SST. The FPU-B model has been selected as an ex-
ample to illustrate that there exist HLMs in systems of
Hamiltonian lattices with continuous symmetries. Some
measures have been defined to indicate the significance of
HLMs. Numerical simulations demonstrate that these quan-
tities characterizing the significance of HLMs exhibit differ-
ent behavior in the regimes below and beyond SST. Roughly
speaking, significant HLMs are only possible in the regime
of strong chaos beyond the SST and there the significance of
HLMs grows as the energy density increases. These numeri-
cal results give support to the point of view that the transition
from weak to strong chaos at the SST manifests a global
change in the geometric structure of phase space. Numerical
simulations for cases with different system sizes imply that
the above-mentioned changes in Lyapunov exponents and
vectors at the SST appear to persist in the thermodynamic
limit. We discussed briefly the relation between the fluctua-
tions of finite-time Lyapunov exponents and the significance
of HLMs.

For the two versions of the FPU model under investiga-
tion, all Lyapunov exponents have similar tendencies of
change in the regime around the SST. This may have its
origin in the nature of the geometric structure of phase space
of the two systems. In previous studies Pettini and co-
workers found that the sectional curvatures of the manifold
representing the dynamics of the two systems are nearly al-
ways positive as the energy density increases through the
SST [22]. The mechanism of the creation of chaos in these
systems is parametric resonance, an instability induced by
the oscillation of sectional curvatures instead of the occur-
rence of negative curvatures. We expect that the scenario of
change in the Lyapunov exponents and Lyapunov vectors at
the SST as reported in this paper is common for Hamiltonian
lattice models where parametric resonance is the only (domi-
nant) origin of chaos. Similar tendencies of change in all
Lyapunov exponents may also be the very reason why the
analytical method based on the quasi-isotropy assumption is

PHYSICAL REVIEW E 73, 066201 (2006)

capable of correctly estimating the largest Lyapunov expo-
nent in certain Hamiltonian lattice models. For the dynamic
XY model [19,46—48], in contrast to the FPU model, the
occurrence of negative curvatures is another important
source of chaos besides parametric resonance. Previous in-
vestigations have shown that there are rather large differ-
ences between the analytical estimate of the largest
Lyapunov exponent based on the quasi-isotropy assumption
and the numerical value in the crossover regime where the
dominant source of chaos changes from parametric reso-
nance to the occurrence of negative curvatures [25]. Our pre-
liminary simulations show that with varying energy density,
the Lyapunov exponents of this system have different ten-
dencies of change except in the low-energy regime close to
the harmonic limit. The scenario of change in the Lyapunov
vectors is different from, and also quite complex compared
to, the cases investigated here. A detailed report on these
results for the dynamic XY model is beyond the scope of this
work and will be presented elsewhere.

Continuous symmetries and conserved quantities are com-
monly believed to be essential for the appearance of HLMs.
Our investigations in the current paper demonstrate that
strong chaos is also important for the appearance of HLMs
and the significance of HLMs increases with a growth in the
degree of chaoticity. In the low-energy regime below the
SST, the dynamics of the systems under investigation is
rather close to that of a chain of harmonic oscillators, and all
the Lyapunov exponents are nearly degenerate. At least the
fluctuations of the finite-time Lyapunov exponents are quite
large compared to the differences between the neighboring
Lyapunov exponents in the spectrum. These facts prevent a
clear decomposition of the tangent space into individual mu-
tually orthogonal subspaces corresponding to the groups of
degenerate Lyapunov exponents. In these low-energy cases,
there may still be certain long-wavelength structures in the
Lyapunov vectors associated with near-zero Lyapunov expo-
nents. These long-wavelength structures are, however, so
weak in comparison with those in the cases beyond the SST
that we prefer to say that HLMs are only possible in the
high-energy regime beyond the SST. Therefore, the SST
could be viewed as an effective threshold value for the ob-
servation of significant HLMs. Note that, since the explored
transitions at the SST are all quite smooth, the threshold
values estimated in this paper can only be considered as ref-
erence points of qualitative changes while these transitions
actually take place in a regime around them.
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