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We propose a measure to quantify the efficiency of classical and quantum mechanical transport processes on
graphs. The measure only depends on the density of states �DOS�, which contains all the necessary information
about the graph. For some given �continuous� DOS, the measure shows a power law behavior, where the
exponent for the quantum transport is twice the exponent of its classical counterpart. For small-world networks,
however, the measure shows rather a stretched exponential law but still the quantum transport outperforms the
classical one. Some finite tree graphs have a few highly degenerate eigenvalues, such that, on the other hand,
on them the classical transport may be more efficient than the quantum one.
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I. INTRODUCTION

The transfer of information is the cornerstone of many
physical, chemical or biological processes. The information
can be encoded in the mass, charge, or energy transported.
All these transfer processes depend on the underlying struc-
ture of the system under study. These could be, for example,
simple crystals, as in solid state physics �1�, more complex
molecular aggregates like polymers �2�, or general network
structures �3�. Of course, there exists a panoply of further
chemical or biological systems which propagate information.

There are several approaches to model the transport
on these structures. In �quantum� mechanics, the structure,
i.e., the potential a particle is moving in, specifies the Hamil-
tonian of the system, which determines the time evolution.
For instance, the dynamics of an electron in a simple crystal
is described by the Bloch ansatz �1�. Hückel’s molecular-
orbital theory in quantum chemistry allows to define
a Hamiltonian for more complex structures, such as mol-
ecules �4�. This is again related to transport processes in
polymers, where the connectivity of the polymer plays a fun-
damental role in its dynamical and relaxational properties
�5�. There, �classical� transport processes can be described by
a master equation approach with an appropriate �classical�
transfer operator which determines the temporal evolution of
an excitation �2,6�.

In all examples listed above, the densities of states �DOS�,
or spectral density, of a given system of size N,

���� =
1

N
�
n=1

N

��� − �n� ,

contains the essential informations about the system. Here,
the �n’s are the eigenvalues of the appropriate Hamiltonian
H or transfer operator T. Depending �mainly� on the topol-
ogy of the system, ���� shows very distinct features. A clas-
sic in this respect is the DOS of a random matrix, corre-
sponding to a random graph �7�. Wigner has shown that for a
�large� matrix with �specific� random entries, the eigenvalues
of this matrix lie within a semicircle �8�. As we will show,

distinct features of the DOS also result in very distinct trans-
port properties.

II. TRANSPORT ON GRAPHS

We start our discussion by considering quantum mechani-
cal transport processes on discrete structures, in general
called graphs, which are a collection of N connected nodes.
We assume that the states �j�, associated with a localized
excitation at node j, form an orthonormal basis set and span
the whole accessible Hilbert space. The time evolution of an
excitation initially placed at node �j� is determined by the
systems’ Hamiltonian H and reads exp�−iHt��j�. The classi-
cal transport can be described by a master equation for the
conditional probability, pk,j�t�, to find an excitation at time t
at node k when starting at time 0 at node j. Using also here
the Dirac notation for a state at node j, the classical time
evolution of this state follows from the transfer matrix T
of the transport process as exp�Tt��j�. In order to compare
the classical and the quantum motion, we identify the Hamil-
tonian of the system with the �classical� transfer matrix,
H=−T, which we will relate later to the �discrete� Laplacian
of the graph, see, e.g., Refs. �9,10�. The classical and quan-
tum mechanical transition probabilities to go from the state
�j� at time 0 to the state �k� in time t are given by pk,j�t�
�	k�exp�Tt��j� and �k,j�t����k,j�t��2��	k�exp�−iHt��j��2,
respectively.

III. AVERAGED TRANSITION PROBABILITIES

Quantum mechanically, a lower bound of the average
probability to be still or again at the initially excited node,
�̄discr�t�� 1

N� j=1
N � j,j�t�, is obtained for a finite network by an

eigenstate expansion and using the Cauchy-Schwarz inequal-
ity as �11�

�̄discr�t� � 
 1

N
�

n

exp�− i�nt�
2

� ��̄discr�t��2. �1�

Note that ��̄discr�t��2 depends only on the eigenvalues of H
but not on the eigenvectors. As we have shown earlier, espe-
cially the local maxima of �̄�t� are very well reproduced by
��̄�t��2 and for regular networks, the lower bound is exact*Electronic address: oliver.muelken@physik.uni-freiburg.de
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�11�. Therefore, we will use ��̄discr�t��2 in the following to
characterize transport processes.

Also classically one has a simple expression for
p̄discr�t�� 1

N� j=1
N pj,j�t�, see, e.g., Ref. �12�

p̄discr�t� =
1

N
�
n=1

N

exp�− �nt� . �2�

Again, this result depends only on the �discrete� eigenvalue
spectrum of T but not on the eigenvectors.

In the continuum limit, Eqs. �1� and �2� can be written as

�̄�t� � 
� d� ����exp�− i�t�
2

� ��̄�t��2, �3�

p̄�t� =� d� ����exp�− �t� , �4�

The explicit calculation of the integrals is easily done using
computer algebra systems like MAPLE or MATHEMATICA; in
many cases, the integrals can also be found in Ref. �13�.

IV. EFFICIENCY MEASURE OF TRANSPORT
ON GRAPHS

Equations �1�–�4� allow us to define an efficiency measure
�EM� for the performance of the transport on a graph. We
stress again, that the EM does not involve any computation-
ally expensive calculations of eigenstates. Rather, only the
energy eigenvalues are needed, which are quite readily ob-
tained by diagonalizing H.

By starting with continuous DOS, since those are math-
ematically easier to handle, we define the �classical� EM of
the graph by the decay of p̄�t� for large t, where a fast decay
means that the initial excitation spreads rapidly over the
whole graph. Quantum mechanically, however, the transition
probabilities fluctuate due to the unitary time evolution.
Therefore, in most cases also �̄�t� and ��̄�t��2 fluctuate. Nev-
ertheless, the local maxima of ��̄�t��2 reproduce the ones of
�̄�t� rather well. We use now the temporal scaling of the
local maxima of ��̄�t��2 as the �quantum� EM and denote the
envelope of the maxima by env���̄�t��2�. Similar to the clas-
sical case, a fast decay of env���̄�t��2� corresponds to a rapid
spreading of an initial excitation.

For a large variety of graphs the DOS can be written as

���� � ���m − �2��, �5�

with �	−1 and where �m is the maximal eigenvalue �we
assumed the minimum eigenvalue to be zero�. Since we are
interested in the large t behavior, p̄�t� �and also p̄discr�t�� will
be mainly determined by small � values, such that for t
1
we can assume �������. Then it is easy to show that the
classical EM scales as

p̄�t� � t−�1+��. �6�

This scaling argument for long times is well known through-
out the literature, where 2�1+���ds is sometimes called the
spectral or fracton dimension, see, e.g., Ref. �14�.

In order to obtain the quantum mechanical scaling for the
same DOS, we can use the same scaling arguments. For
t
1, also ��̄�t��2 �and ��̄discr�t��2� will be mainly determined
by the small � values. In fact, for ������� one has
��̄�t��= p̄�t�. Here, all quantum mechanical oscillations van-
ish, because we consider only the leading term of the DOS
for small �. Thus, we furthermore have env���̄�t��2�= ��̄�t��2,
i.e., the quantum EM reads

env���̄�t��2� � t−2�1+��. �7�

Equation �7� can also be directly obtained from Eq. �3�
with �������. Of course, Eqs. �6� and �7� agree with the
solution for p̄�t� and env���̄�t��2� obtained from the full DOS
��������m−�2��. The same scaling has been obtained for
the decay of temporal correlations in quantum mechanical
systems with Cantor spectra �15�. There, the �full� probabil-
ity �̄�t�, which was smoothed over time, was used.

In general, for p̄�t�� t−Pcl, the exponent Pcl determines the
classical EM of the graph because larger Pcl correspond to a
faster decay of p̄�t�. Quantum mechanically, we may have
env���̄�t��2�� t−Pqm, such that the exponent Pqm determines
the quantum EM of the graph. Since we consider only the
local maxima, the actual �fluctuating� probability �̄�t�
�bounded from below by ��̄�t��2� might drop well below
these values, i.e., there are times t at which �̄�t��1. How-
ever, these values are very localized in time and the overall
performance of the quantum transport is best quantified by
the scaling of env���̄�t��2�.

The difference between the classical and quantum EM is
given by the factor

�P�t� � ln
env���̄�t��2��/ln�p̄�t�� . �8�

For classical and quantum power law behavior �P�t� is time
independent and we have �P=Pqm/Pcl. Thus, for the DOS
given above, with �
�, we get �P=2, as could be expected
from the wavelike behavior of the quantum motion com-
pared to the normal diffusive behavior of the classical mo-
tion.

A. Continuous DOS

Two important examples are connected to scaling. An in-
finite hypercubic lattice in d dimensions has as eigenvalues
���1 , ¯ ,�d���n=1

d ���n�, with ���n�=2−2 cos �n and
�n� �0,2��. Here, one can calculate explicitly ��̄�t��2 and
�̄�t� and demonstrate that the local maxima really obey scal-
ing; we get namely ��̄�t��2= �̄�t���J0�2t��2d �11�. For t
1
this can be approximated by �̄�t��sin2d�2t+� /4� / td �13�.
Since the maximum of the sin function is 1, the quantum
measure scales as env���̄�t��2�=env��̄��t�� t−d, which is
what one also obtains from the scaling argument above and
������d/2−1. Then �=d /2−1, and the classical measure
scales as p̄�t�� t−d/2 �i.e., the spectral dimension is ds=d�.

As a second example, we take a random graph. It was
shown that the eigenvalue spectrum of the Laplacian of such
a graph obeys Wigner’s semicircle law �7,8�, which we ob-
tain for �=1/2 from the DOS given above. For large times
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both measures again obey scaling and we have p̄�t�� t−3/2

and env���̄�t��2�� t−3.
Figure 1 shows the temporal behavior of p̄�t� and ��̄�t��2

as well as the power law behavior of p̄�t� and env���̄�t��2� for
�a� an infinite, regular, one-dimensional �1D� graph and �b� a
random graph. Note that here �and in the following figures,
too� the very localized minima of ��̄�t��2 do not always show
up clearly in the logarithmic scale used.

For some DOS, the EMs show no power law behavior.
The DOS given above are bounded from above by a maxi-
mal eigenvalue. This does not have to be the case. The DOS
of small-world networks, for instance, may show long � tails
�16�. One additional feature of such DOS is that they do not
obey any simple scaling for small �. Nevertheless, some-
times analytic solutions for, at least, p̄�t� can be obtained
�16�, as, for example for certain 1D systems with
������−3/2 exp�−1/���.

For computational simplicity we consider a two-
dimensional �2D� system with

���� = �−b exp�− 1/�� �9�

for �� �0,�� and b	1. The term exp�−1/�� is usually re-
ferred to as Lifshits tail, while the term �−b assures that
lim�→� ����=0. Then, for t
1, the EMs are proportional to
the product of a stretched exponential and a power law �13�

��̄�t��2 = env���̄�t��2� � t�2b−3�/2 exp�− 2�2t� , �10�

p̄�t� � t�2b−3�/4 exp�− 2�t� . �11�

Furthermore, �̄�t� does not oscillate, an effect which is inter-
esting in itself but we will not elaborate on this here.

Although we do not obtain a simple relation between
the classical and the quantum EMs, �p̄�t��2 and env���̄�t��2�
still display similar functional forms. Now, however,
�P�t�= �2�2b−3�ln t−8�2t� / ��2b−3�ln t−8�t� is time de-

pendent. Equations �11� and �10� are only valid for t
1,
such that limt→� �P�t�=�2 for all b. Hence, also here the
quantum transport outperforms the classical one, which is
also confirmed by numerical integration of the time-
dependent Schrödinger equation for a small-world network
�17�. In fact, in both cases the transport is faster than for a
regular 2D graph. We note that localization is related to other
features of the DOS as we will recall below. However, at
intermediate times the quantum EM may drop below the
classical EM; the position of the crossover from �P�t�
1 to
�P�t�	1 depends on the exponent b.

B. Discrete DOS

Up to now, we have only considered continuous DOS,
where the quantum EM is quicker than the classical one. In
the following we will consider discrete DOS which are ob-
tained by modeling the motion on a given graph classically
by continuous-time random walks �CTRWs�, see, e.g., Ref.
�6�, and quantum mechanically by continuous-time quantum
walks �CTQWs� �9,10�. The Hamiltonian is given by the
�discrete� Laplacian associated with the graph, i.e., by the
functionality of the nodes and their connectivity. We assume
the jump rates between all connected pairs of nodes of the
graph to be equal.

In general, for finite graphs, p̄discr�t� and env���̄discr�t��2�
do not decay ad infinitum but at some time will remain con-
stant �classically� or fluctuate about a constant value �quan-
tum mechanically�. This time is given by the time it takes for
the CTRW to reach the �equilibrium� equipartitioned prob-
ability distribution and for the CTQW to fluctuate about a
saturation value. At intermediate times, p̄discr�t� and
env���̄discr�t��2� will show the same scaling as for a system
with the corresponding continuous DOS. Figure 2�a� shows
the temporal behavior of p̄discr�t� and ��̄discr�t��2 for a finite
regular 1D graph of size N=200 with periodic boundary con-
ditions, see also Ref. �18�. At intermediate times, the scaling
behavior is obviously that of the continuous case shown in
Fig. 1�a�.

Treelike graphs do not display scaling in general. For
CTQW on hyperbranched structures �like Cayley trees, den-
drimers, or Husimi cacti�, the transition probability between
two nodes strongly depends on the site j of the initial exci-
tation �10,11�. Even in the long time average

�k,j = lim
T→�

T−1�
0

T

dt �k,j�t� , �12�

there are transition probabilities which are considerably
lower than the equipartitioned classical value �10,11�. In Fig.
2�b� we display the temporal behavior of p̄discr�t� and
��̄discr�t��2 for a dendrimer of generation 10 having function-
ality z=3, i.e., N=3�210−2. Here the classical curve does
not show scaling at intermediate times. Quantum mechani-
cally, however, ��̄discr�t��2 has a strong dip at short times but
then fluctuates about a finite value which is larger than the
classical saturation value. One should also bear in mind that
��̄discr�t��2 is a lower bound and the actual probability will be
larger. Therefore, according to our measure for intermediate

FIG. 1. �Color online� p̄�t� and ��̄�t��2 as well as the power
laws given in Eqs. �7� and �6� for �a� an infinite regular �1D� graph
��=−1/2� and �b� a random graph whose DOS obeys Wigner’s
semicircle law ��=1/2�.
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t
1, the classical transport outperforms the quantum trans-
port on these special, finite graphs. As we proceed to show,
the reason for this is to be found in the DOS. This is related
to �Anderson� localization. Anderson showed that for local-
ization the DOS has to display a discrete finite series of �
functions �19�.

We consider now a simple star graph, having one core
node and N−1 nodes directly connected to the core but not
to each other. The eigenvalue spectrum of this star has a very
simple structure, there are three distinct eigenvalues, namely
�1=0, �2=1, and �3=N, having as degeneracies g1=1,
g2=N−2, and g3=1. Therefore, we get

p̄discr�t� =
1

N
�1 + �N − 2�e−t + e−�N−2�t� , �13�

�̄discr�t� �
1

N2 �1 + �N − 2�e−it + e−i�N−2�t�2. �14�

Obviously, only the term ��N−2�exp�−it��2 /N2= �N−2�2 /N2

in Eq. �14� is of order O�1�. All the other terms are of order
O�1/N� or O�1/N2� and, therefore, cause only small oscilla-
tions �fluctuating terms� about or negligible shifts �constant
terms� from �N−2�2 /N2.

Having only one low lying eigenvalue which is highly
degenerate and no other eigenvalue of a degeneracy of the
same order of magnitude, results in p̄discr�t�
�̄discr�t� for all
times t and p̄discr�t�
 ��̄discr�t��2 for almost all times t. Figure
3 shows the temporal behavior of p̄discr�t�, �̄discr�t�, and

��̄discr�t��2 for N=10. Now, for all times, the quantum trans-
port is slower than the classical one. We also see that
��̄discr�t��2 fluctuates about �N−2�2 /N2=16/25.

In general we find for our star graph that the classical EM
is lower than the quantum EM. This result is to some extent
also obeyed by dendrimers and by other hyperbranched
structures. These, too, have a few highly degenerate eigen-
values, all other degeneracies being an order of magnitude
less, which results in the absence of any scaling of
env���̄discr�t��2�, see Fig. 2�b�. Of course, the details are much
more complex due to the more complex structure, we will
elaborate on this elsewhere.

V. CONCLUSION

We have proposed a measure to classify the efficiency of
classical and quantum mechanical transport processes. De-
pending on the density of states, the quantum transport out-
performs the classical transport by means of the speed of the
spreding of an initial excitation over a given system. For
algebraic DOS, the EMs confirm the difference between
classical diffusive and quantum mechanical wavelike trans-
port. Also for small-world networks the quantum mechanical
EM is lower than the classical one, i.e., the quantum me-
chanical transport is faster.

However, for some finite graphs with a few highly degen-
erate eigenvalues it may happen that the classical transport is
more efficient, i.e., that the �quantum� states become local-
ized. We have shown this analytically for a simple star graph.
More complex structures, like dendrimers or hyperbranched
fractals, show an analogous behavior.
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FIG. 2. �Color online� p̄discr�t� and ��̄discr�t��2 for �a� a finite
regular �1D� graph of size N=200 with periodic boundary condi-
tions and �b� a dendrimer of generation 10 having functionality
z=3, i.e., N=3�210−2. Panel �a� contains also the power-law be-
havior for the infinite regular �1D� graph, see Fig. 1�a�.

FIG. 3. �Color online� p̄discr�t�, �̄discr�t�, and ��̄discr�t��2 for a star
with N=10.
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