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Motivated by a synchronization problem in distributed computing we studied a simple growth model on
regular and small-world networks, embedded in one and two dimensions. We find that the synchronization
landscape (corresponding to the progress of the individual processors) exhibits Kardar-Parisi-Zhang-like ki-
netic roughening on regular networks with short-range communication links. Although the processors, on
average, progress at a nonzero rate, their spread (the width of the synchronization landscape) diverges with the
number of nodes (desynchronized state) hindering efficient data management. When random communication
links are added on top of the one and two-dimensional regular networks (resulting in a small-world network),
large fluctuations in the synchronization landscape are suppressed and the width approaches a finite value in
the large system-size limit (synchronized state). In the resulting synchronization scheme, the processors make
close-to-uniform progress with a nonzero rate without global intervention. We obtain our results by “simulating

the simulations,” based on the exact algorithmic rules, supported by coarse-grained arguments.
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I. INTRODUCTION

The study of complex networks pervades various areas of
science ranging from sociology to statistical physics [1-3]. A
network in terms of modeling can be defined as a set of
items, referred to as nodes with links connecting them. Ex-
amples of real life complex networks include the Internet
[4,5], the World Wide Web [6], metabolic networks [7],
transportation networks [8,9], and social networks [10].

Regular lattices are commonly used to study physical sys-
tems with short-range or long-range interactions. Earlier net-
work studies focused mostly on the topological properties of
the networks. Recent works, motivated by a large number of
natural and artificial systems, such as the ones listed above,
have turned the focus onto processes on networks, where the
interaction and dynamics between the nodes are facilitated
by a complex network. The question then is how the collec-
tive behavior of the system is influenced by this possibly
complex interaction topology. Watts and Strogatz, inspired
by a sociological experiment [11], have proposed a network
model known as the small-world (SW) network [12]. The
SW concept describes the observation that, despite their of-
ten large size, there is a relatively short path between any
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two nodes in most networks with some degree of random-
ness. The SW model was originally constructed as a network
to interpolate between regular lattices and completely ran-
dom networks [13]. Systems and models (with well known
behaviors on regular lattices) have been studied on SW net-
works, such as the Ising model [14-17], the XY model [18],
phase ordering [19], the Edwards-Wilkinson model [20-22],
diffusion [20-27], and resistor networks [28]. Closely related
to phase transitions and collective phenomena is synchroni-
zation in coupled multicomponent systems [29]. SW net-
works have been shown to facilitate autonomous synchroni-
zation which is an important feature of these networks from
both fundamental and system-design points of view [30-32].
In this paper we study a synchronization problem which
emerges [33] in certain parallel distributed algorithms re-
ferred to as parallel discrete-event simulation (PDES)
[34-37]. First, we find that constructing a SW-like synchro-
nization network for PDES can have a strong impact on the
scalability of the algorithm [38]. Second, since the particular
problem is effectively “local” relaxation in a noisy environ-
ment in a SW network, our study also contributes to the
understanding of collective phenomena on these networks.
Simulation of large spatially extended complex systems in
physics, engineering, computer science, or military applica-
tions require vast amount of CPU-time on serial machines
using sequential algorithms. PDES enabled researchers to
implement faithful simulations on parallel/distributed com-
puter systems, namely, systems composed of multiple inter-
connected computers [34—37]. PDES is a subclass of parallel
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and distributed simulations in which changes in the compo-
nents of the system occur instantaneously from one state to
another. These changes are referred to as discrete events,
e.g., spin-flip attempts in magnetic Ising models with
Glauber dynamics [39]. The primary motivation in PDES is
to perform parallel simulation for large systems without al-
tering the original physical dynamics. In the physics, chem-
istry, and biology communities these types of simulations are
most commonly referred to as dynamic or kinetic Monte
Carlo simulations. Examples for real-life complex systems
where discrete-event models are applicable include cellular
communication networks [36,40], magnetic systems [41,42],
spatial epidemic models [10,43], thin-film growth [44-46],
battlefield models [47], and internet traffic models [48]. In
the above examples the discrete events are call arrivals, spin-
flip attempts, infections, monomer depositions, troop move-
ments, and packet transmissions/receptions, respectively.

PDES has two basic ingredients: the set of local simulated
times of the processors or processing elements (PE) (also
referred to as virtual times [49]) and a synchronization
scheme [34]. The difficulty in PDES is that the discrete
events are not synchronized by a global clock since the dy-
namic is usually asynchronous. The challenge is algorithmi-
cally parallelizing the physically nonparallel dynamics, while
enforcing causality between events and reproducibility.
There are two main approaches in PDES: (i) conservative
synchronization, which avoids the possibility of any type of
causality errors by checking the causality relation between
potentially related events at every update attempt [50,51] and
(ii) optimistic synchronization, which allows possible causal-
ity errors, then later initiates rollbacks to correct the errone-
ous computations [49,52]. Innovative methods have also
been introduced to make optimistic synchronization more ef-
ficient, such as reverse computation [53]. Other recent im-
provements to exploit parallelism in discrete-event systems
are the “lookback” method [54] and the freeze-and-shift al-
gorithm [55].

As the number of available PEs on parallel architectures
increases to tens of thousands [56], and high-performance
grid-computing networks emerge [57,58], fundamental ques-
tions of the scalability of the underlying algorithms must be
addressed. A PDES should have the following properties to
be scalable [40]: (i) the virtual time horizon formed by the
virtual times of the PEs should progress on average with a
nonzero rate and (i) the typical spread (width) of the time
horizon should be bounded as the number of PEs, Npg, goes
to infinity. The latter condition becomes important to avoid
long delays while waiting for “slow” nodes [44] or, alterna-
tively, to eliminate the need to reserve a large amount of
memory for temporary data storage. In this paper we study
regular and SW network communication topologies and
show a possible way to construct fully scalable parallel algo-
rithms for systems with asynchronous dynamics and short-
range interactions on regular lattices.

In order to understand scalability and synchronizability of
PDES, we consider the parallel simulation itself as a com-
plex interacting system where the specific synchronization
rules correspond to the “microscopic dynamics.” A similar
approach was also successful to establish a connection [59]
between rollback-based (or optimistic) schemes [49] and
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self-organized criticality [60,61]. Our approach exploits a
mapping between nonequilibrium surface growth and the
evolution of the simulated time horizon [33,62] so that we
can use the tools and framework of statistical mechanics. A
similar analogy between phase transitions and computational
complexity has turned out to be highly fruitful to gain more
insight into traditional hard computational problems [63,64].
In this paper we consider the scalability of conservative syn-
chronization schemes for self-initiating processes [65,66],
where update attempts on each node are modeled as indepen-
dent Poisson streams. We study the morphological properties
of the simulated time horizon (or synchronization land-
scape). Through our study one also gains some insight into
the effects of SW-like interaction topologies on the critical
fluctuations in interacting systems.

This paper, in part, is an expanded version of our earlier
works on one-dimensional (1D) [33] and 1D SW (SW em-
bedded in one dimension) synchronization networks [38].
Further, we present results for the two-dimensional (2D), and
for the 2D SW (SW embedded in two dimensions) synchro-
nization networks. The paper is organized as follows. In Sec.
IT we show detailed results for a previously studied short-
range model with nearest neighbor communication which we
refer to as the basic conservative synchronization (BCS)
scheme in one dimension [33]. In Sec. Il we present results
on SW networks constructed by adding random links on a
regular one-dimensional network [38]. Sections IV and V
present the results on the BCS scheme in two dimensions
and its SW version, respectively. In Sec. VI we summarize
our work and discuss results.

II. BASIC CONSERVATIVE SYNCHRONIZATION
SCHEME IN 1D

First, we briefly summarize the basic observables relevant
to our analysis for synchronization and their scaling relations
borrowed from nonequilibrium surface growth theory. The
set of local simulated times for the PEs, {T,»(t)}fi’]’f, constitutes
the simulated time horizon. Here Npg is the number of PEs
and ¢ is the discrete number of parallel steps, proportional to
the real/wall-clock time. On a regular d-dimensional hyper-
cubic lattice Npz=N?, where N is the linear size of the lattice.
For a one-dimensional system Npgz=N. For the rest of the
paper we will use the term “height,” “simulated time,” or
“virtual time” interchangeably, since we refer to the same
local observable (local field variable).

Since the discrete events in PDES are not synchronized
by a global clock, the processing elements have to synchro-
nize themselves by communicating with others. One of the
first approaches to this problem for self-initiating processes
[65,66] is the BCS scheme proposed by Lubachevsky
[67,68] by using only nearest neighbor interactions, mimick-
ing the interaction topology of the underlying physical sys-
tem [33]. His basic model associates each component or site
with one PE (worst-case scenario) under periodic boundary
conditions. In this BCS scheme, at each time step, only those
PEs whose local simulated times are not larger than the local
simulated times of their nearest neighbors are incremented
by an exponentially distributed random amount so that the
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discrete events exhibit Poisson asynchrony. Otherwise (if the
local simulated time of the PE is larger than any of its neigh-
bors’ simulated time), no update occurs, i.e., the PE idles.
The evolution equation for the local simulated time of site i
simply becomes

7(t+ 1) = 7,(t) + 9()O[7,_, (1) = 7:(1) ]O[ 7,1 (1) — 7,(1) ],
(1)

where 7,(¢) is an exponentially distributed random number
and O(---) is the Heaviside step function. In one-dimension
with periodic boundary conditions, the network has a ring
topology as shown in Fig. 1(a), so each node is connected to
the nearest left and right neighbors. The nearest-neighbor
interaction in the BCS scheme implies that in order to ensure
causality, PEs need to exchange their local simulated (vir-
tual) times only with neighboring PEs in the virtual network
topology. As can be seen from Fig. 1(a), the virtual topology
of the PEs is an imitation of the real interaction topology in
the physical system. The figure shows a mapping from a
physical system (one-dimensional Ising model for illustra-
tion) to a computing (simulation) network. Here, the Ising
magnet is decomposed into small blocks having four spins
each. Then each block is assigned to a PE which is respon-

Computing network

(Virtual topology)
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FIG. 1. (Color online) (a) One-
dimensional (1D) regular network
(with periodic boundary condi-
tions), where nodes are connected
to their nearest neighbors. (b)
Small-world (SW) synchroniza-
tion network, where each node is
connected to exactly one ran-
domly chosen node, in addition to
the nearest neighbors.

sible for keeping record of the spins. Modeling spin-flip at-
tempts as independent Poisson arrivals [39], after spatial de-
composition, each PE must have its own local simulated time
[67,68]. The simulated time of the next update attempt is
determined by exponentially distributed local time incre-
ments for each PE. When the PE attempts to update the spin
along the border of its block, it has to know the state of all
neighboring spins, including the ones residing in the neigh-
boring block, at the time of the update attempt. Hence, to
enforce causality in a conservative fashion [67,68], the PE
has to wait, if its neighboring PE is lagging behind in terms
of virtual times. This requires a communication between the
neighboring PEs. By virtue of the Poisson asynchrony, each
PE will have different local simulated (or virtual) time, hence
the problem of de-synchronization (in virtual times) between
the PEs emerges. In this paper we consider the worst case
scenario in which each PE carries only one spin and thus the
PEs communicate with neighboring PEs at every update at-
tempt. The same difficulty of synchronizing PEs along the
interfaces of the blocks occurs in all spatially distributed
discrete-event simulations, and for short-range interactions
can be addressed in the same fashion as in the Ising model
simulations. For example, a parallel implementation of a re-
cently proposed [69] scheme to simulate the stochastic

066115-3



PHYSICAL REVIEW E 73, 066115 (2006)

FIG. 2. Possible simulated-time configura-
tions for three successive nodes (involving two
successive slopes) in the basic conservative
scheme (BCS) in one dimension. From the per-
spective of node i, only configuration (b) allows
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it to proceed (node i is a local minimum). In all
other cases causality could be violated if an up-
date occurs at site i, because the local field vari-
ables of the neighboring nodes are not known at
the instant of the update attempt.

Landau-Lifshitz-Gilbert equation for micromagnetic simula-
tions using a PDES algorithm could be parallelized using this
method of synchronization along the boundaries.

The possible configurations for the local simulated times
for the successive nodes are shown in Fig. 2. In these con-
figurations an update occurs only if the node we are consid-
ering (node i) is a local minimum. In the other three cases the
node i idles. The algorithm is obviously free from deadlock,
since at worst, the PE with the absolute minimum local simu-
lated time can make progress. Note that from an actual par-
allel implementation viewpoint, equal virtual times (and
hence conflicting updates) are extremely unlikely (to the ex-
tent of the resolution of generating continuously distributed
exponential variables), and the algorithm allows updates if
the neighboring virtual times are greater than or equal to that
of PE i. From a theoretical viewpoint, for >0, the probabil-
ity density of the simulated time horizon {7,(t)}"£ is a con-
tinuous measure, so the probability that the simulated times
of any two nodes are the same has measure zero.

In analyzing the performance of the above scheme, it is
helpful that the progress of the simulation itself is decoupled
from the possibly complex behavior of the underlying sys-
tem. This is contrary to optimistic approaches, where the
evolution of the underlying system and the progress of the
PDES simulation are strongly entangled [59], making scal-
ability analysis a much more difficult task.

One of the important aspects of conservative PDES is the
theoretical efficiency or utilization which is defined as the
average fraction of nonidling PEs at each parallel step. This
measure also provides the average progress rate of the simu-
lation, as can be seen from Eq. (1). In the BCS scheme,
where only nearest-neighbor interactions are present, the uti-
lization is equal to the density of local minima in the simu-
lated time horizon. Thus, the utilization (on a regular one-
dimensional lattice) can be written as

() =(O(7;.; = 7)O(711 — 7)) =(O(= ¢,-1)O()), (2)

where ¢;=7;,;— 7; is the local slope, O(---) is the Heaviside
step function, and (- - -) denotes an ensemble average over the
noise in Eq. (1). The utilization is independent of i for a
system of identical PEs due to the translational invariance.

Another important observable of PDES is the statistical
spread or width of the simulated time surface. The width of
the simulated time surface w is defined as the root mean
square of the virtual times with respect to the mean, w
= \/W, where

d

N
(W) = (2N, 1)) = N%E[mt)—m)]z G
i=1

and F(t):(l/Nd)Effl1 7(t) is the mean progress (“mean
height”) of the time surface.

Since we use the formalism and terminology of nonequi-
librium surface growth phenomena, we briefly review scal-
ing concepts for self-affine or rough surfaces. The scaling
behavior of the width, (w*(N,t)), alone typically captures
and identifies the universality class of the nonequilibrium
growth process [70-72]. In a finite system the width initially
grows as (W2(N,1))~*#, and after a system-size dependent
crossover time t, ~N-, it reaches a steady state (w>(N,t))
~ N2@ for t>t,. In the relations above «, B, and zzl% are
called the roughness, the growth, and the dynamic exponent,
respectively. The temporal and system-size scaling of the
width can be captured by the Family-Vicsek [73] relation

(WA(N,1)) = N**f(1/N?). (4)

Note that the scaling function f(x) depends on ¢ and the
linear system-size N only through the specific combination
x=t/N%, reflecting the importance of the crossover time 7.
For small values of its argument f(x) behaves as a power
law, while for large arguments it approaches a constant,

2P ifx<1
fx) ~ { (5)

const ifx>1,

yielding the correct scaling behavior of the width for early
times (x<¢1) and for the steady state (x>1).

A somewhat less frequently studied quantity is the growth
rate of a growing surface. This quantity is typically nonuni-
versal [33,74-79], but as was shown by Krug and Meakin
[75], on d-dimensional regular lattices, the finite-size correc-
tions to it are. In the context of the basic PDES scheme, the
growth rate of the simulated time surface corresponds to the
progress rate (or utilization) of the simulation, hence our
special interest in this observable. For the finite-size behavior
of the steady-state growth rate, one has [75]

const

(W) = (u(=)) + 55755 (6)
where (u(e)) is the value of the growth rate in the
asymptotic infinite system-size limit and « is the dimension-
dependent roughness exponent of the growth process.
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Based on a mapping between virtual times and surface
heights [33], in the coarse-grained description, the virtual
time horizon of the BCS was found to be governed [33,74]
by the Kardar-Parisi-Zhang (KPZ) equation [80], well known
in surface growth phenomena

0= V2= NVE) + -+ + (D), (7

where V? stands for the discretized Laplacian, V2%=%;,,
7,_1—27;, V is the discretized gradient operator, V7;=7;,
-7, T,=7,—7 is the surface height fluctuation (or virtual
time) measured from the mean, 7;(¢) is a noise & correlated
in space and time, (7,(¢) 7;(t'))=2D3;;8(t—1"), \ is a positive
constant and - - - stands for higher order irrelevant terms (in a
renormalization group sense). Equation (7) can also give an
account of a number of other nonlinear phenomena such as
Burgers turbulence and directed polymers in random media
[70]. When the simple update rule of the basic synchroniza-
tion scheme is implemented on a one-dimensional regular
network, one can observe a simulated time surface governed
by the KPZ equation, and in the steady-state, by the
Edwards-Wilkinson (EW) Hamiltonian [81] [Fig. 3(a)].
When analyzing the statistical and morphological proper-
ties of the stochastic landscape of the simulated times, it is
convenient to study the height-height correlation or its Fou-
rier transform, the height-height structure factor. The equal-
time height-height structure factor S(k,) in one dimension is
defined as

Sk, )N o = (T(1) 7 (1)), (8)

where ?k=2jyzle‘ikj 7; is the Fourier transform of the virtual
times with the wave number k=2mn/N, n=0,1,2,... ,N—-1
and &, _; is the Kronecker 6. The structure factor essentially
contains all the “physics” needed to describe the scaling be-
havior of the time surface. Here we focus on the steady-state
properties (t— ) of the time horizon where the structure
factor becomes independent of time, lim,_..S(k,f)=S(k). In
the long-time limit in one dimension, for a KPZ surface de-
scribed by Eq. (7) one has [74]

D 1
S(k) = M —eos] & )

where the latter approximation holds for small values of k.
By performing the inverse Fourier transformation of Eq. (9),
we can also obtain the spatial two-point function

G(l) = (1/N) 2 e™S(k), (10)
k#0
yielding [74,82]
DN
G(l)zg(g—l) (11)

for 1<<I/<N. In particular, for the steady-state width one
finds
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o1 N L
<w>_Nk§)S(k)_G(0)_12N N (12)

in one dimension [74]. This divergent width is caused by a
divergent length scale, & the “lateral” correlation length in
the KPZ-like synchronization landscape.

The measured steady-state structure factor [Fig. 4(a)], ob-
tained by simulating the BCS based on the exact rules for the
evolution of the synchronization landscape, confirms the
coarse-grained prediction for small k values, S(k)~ 1/k>.
Figure 4(b) shows the corresponding spatial two-point corre-
lation function G(I). Simulations of the BCS scheme in one
dimension yield scaling exponents that agree within error
with the predictions of the KPZ equation [70,71,80]. The
time evolution of the width [Fig. 5(a)] shows that the growth
exponent S=0.31. Looking at the system-size dependence
of the steady-state width [Fig. 5(b)], we find the roughness
exponent «==0.53, nearly consistent with the one-
dimensional KPZ value, (w?)~ N?>*~ N. The dynamic expo-
nent values found from the width as a function of the cross-
over time and z=a«/ are the same, about 1.71. The inset in
Fig. 5(a) shows that the scaled version of the width evolution
by using the scaling exponents is consistent with the Family-
Vicsek relation [Eq. (4)], although with relatively large cor-
rections to scaling.

The width distributions, P(w?), have been introduced to
provide a more detailed characterization of surface growth
processes [83-88] and have been used to identify universal-
ity classes [33]. The width distribution of rough surfaces
belonging to the same universality class is governed by a
universal scaling function ®(x), such that P(w?)
=(w?) 1O (w?/(w?)). ®(x) can be calculated analytically for
a number of models, including the EW class [83]. The width
distribution for the basic synchronization scheme is shown in
Fig. 5(c). Systems with N=10° show convincing data col-
lapse onto this exact scaling function. The inset in Fig. 5(c)
shows the same graph in log-normal scale to show the col-
lapse at the tail of the distribution. The convergence to the
limit distribution is very slow when compared to other mi-
croscopic models (such as the single-step model [70,86]) be-
longing to the same universality class.

Now we discuss our findings for the steady-state utiliza-
tion of the BCS scheme. As stated above, the synchroniza-
tion landscape of the virtual times belongs to the EW univer-
sality class in one dimension. This implies that the local
slopes in the steady-state landscape are short-range corre-
lated [74]. Hence the density of local minima in the synchro-
nization landscape, and in turn the utilization, remains non-
zero in the infinite system-size limit [33,74]. For fixed N, the
utilization drops from relatively higher initial value at early
times to its steady-state value in a very short time [Fig. 6].
Further, the steady-state utilizations for various systems con-
verge to the asymptotic system-size independent value. In
1D, where a=1/2, the system-size dependence of the

steady-state utilization must follow [Eq. (6)] (u(N))
=~ (u(*))+*5", as confirmed by our direct simulations for
the BCS scheme [inset of Fig. 6]. For the KPZ model [Eq.

(7)] (u(0))=1/4, since in the steady state, the local slopes
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FIG. 3. (Color online) Virtual time horizon snapshots in the
steady state for 10 000 sites in 1D. (a) For the regular network with
nearest-neighbor connections (p=0). The lateral correlation length
¢ and width w= \w? are shown for illustration in the graph. The
rough steady-state surface belongs to the KPZ/EW universality
class. For the SW synchronization network with (b) p=0.1 and (c)
p=1 the heights are effectively decorrelated and both the correla-
tion length and the width are reduced, and approach system-size
independent values for sufficiently large systems. The resulting sur-
face is macroscopically smooth. Note that the heights are relative to
the average height.
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FIG. 4. (Color online) (a) The steady-state structure factor as a
function of the wave number for the BCS scheme in 1D. The small-
k course-grained prediction (consistent with the steady-state EW/
KPZ universality class in 1D) is indicated by a dashed line [Eq.
(9)]. Note the log-log scales. (b) Steady-state spatial two-point cor-
relation function. The straight line again indicates the asymptotic
EW/KPZ behavior in one dimension [Eq. (11)].

are ¢ correlated, resulting in a probability of 1/4 for the
configuration in Fig. 2(b), corresponding to a local mini-
mum. For the actual BCS synchronization profile (u())
=().2464 [33,74], as a result of nonuniversal short-range cor-
relations present for the slopes in the specific microscopic
model [82]. Finally one can argue that the utilization for the
BCS on regular lattices remains nonzero in the thermody-
namic limit and it displays universal finite-size effects
[75-79]. Note that a small change with respect to the worst
case (one-site-per PE) scenario, in particular, hosting more
than one site per PE, leads to utilizations that are close to the
limiting value of unity [77,79], and hence are practical for
actual PDES implementations [41,44,45].

In order to obtain an analytically tractable scalability
model for the BCS scheme, Greenberg et al. introduced the
K-random interaction network model [89]. In this model at
each update attempt PEs compare their local simulated times
with those of a set of K randomly chosen PEs. This set is
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FIG. 5. (Color online) (a) Time evolution of the width for dif-
ferent system sizes in the BCS scheme in 1D. The inset shows the
same data on scaled axes, (w?)/N?“ versus t/N¢. Each curve has
been obtained by averaging over at least fifty realizations. (b) The
steady-state width of the time horizon for the one-dimensional BCS
as a function of system size. The dashed straight line represents the
asymptotic one-dimensional KPZ/EW behavior, (w?(N)) ~ N>¢ with
a=1/2. (c) Scaled width distributions for the BCS scheme in 1D.
The exact asymptotic EW/KPZ width distribution [83] is shown
with a dashed line. The inset shows the same distributions on log-
normal scales.
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FIG. 6. (Color online) Utilization in the 1D BCS scheme as a
function of time for various system sizes. The inset shows the
steady-state utilization as a function of the 1/N?(!"® with the 1D
KPZ roughness exponent aw=1/2. The dashed line is a linear fit to
Eq. (6) with a=1/2, (u(N))=0.2464+0.2219/N.

rechosen for each update attempt (i.e., the network is “an-
nealed”), even if a previous update attempt has failed. It was
shown that in the limit of r— % and N — oo, the utilization (or
the average rate of progress) converges to a nonzero con-
stant, 1/(K+1). They also suggested that the scaling proper-
ties of K-random model as t—% and N— o are universal
and hold for regular lattices as well. But changing the inter-
action from nearest neighbor PEs on a regular lattice to ran-
domly chosen PEs changes the universality class of the time
horizon. Simply put, the underlying topology has crucial ef-
fects on the universal behavior of the time horizon. The ran-
dom (annealed) interaction topology of the K-random model
results in a mean-field-like behavior, where the simulated
time surface is uncorrelated and has a finite width in the limit
of an infinite number of PEs. Their conjecture for the width
does not hold, thus, the BCS scheme for regular lattices
cannot be equivalently described by the K-random model (at
least not below the upper critical dimension of the KPZ uni-
versality class [90]). However, we were inspired by [89] to
change the communication topology of the PEs by introduc-
ing random links in addition to the necessary short-range
connections. In the next section we present our modification
to the original conservative scheme on regular lattices to
achieve a fully scalable algorithm where both scalability
conditions are satisfied: the simulation has a nonzero
progress rate and the width of the synchronization landscape
is finite.

III. SMALL-WORLD SYNCHRONIZATION SCHEME
IN 1D

The divergent width for the larger systems, discussed in
the previous section, is the result of the divergent lateral
correlation length ¢ of the virtual time surface, reaching the
system size N in the steady state [70,76-79]. To decorrelate
the simulated time horizon, first, we modify the virtual com-
munication topology of the PEs. The resulting communica-
tion network must include the original short-range (nearest
neighbor) connections to faithfully simulate the dynamics of
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FIG. 7. (Color online) Average and maximum shortest path (di-
ameter) as a function of the number of nodes for the SW synchro-
nization network in 1D, as described in the text. The solid and
dashed lines both indicate the logarithmic dependence. Note the
normal-log scales.

the underlying system. In the modified network, the connec-
tivity of the nodes (the number of neighbors) should remain
nonextensive (i.e., only a finite number of virtual neighbors
per node is allowed). This is in accordance with our desire to
design a PDES scheme where no global intervention or syn-
chronization is employed [PEs can only have O(1) commu-
nication exchanges per step]. It is clear that the added syn-
chronization links (or at least some of them) have to be long
range. Short range links alone would not change the univer-
sality class and the scaling properties of the width of the time
horizon. One can satisfy this condition by selecting the ad-
ditional links called “small-world” links randomly among all
the nodes in the network. Also, fluctuations in the individual
connectivity should be avoided for load balancing purposes,
i.e., requiring the same number of added links (e.g., one) for
each node is a reasonable constraint. We then choose the
extra synchronization links in such a way that each PE is
connected to exactly one other PE via a “quenched” bidirec-
tional link [Fig. 1(b)].

One of the basic structural characteristics of SW-like net-
works is the “low degree of separation” between the nodes.
The most commonly used observables to analyze this prop-
erty are the average shortest path length, &,,(N), and the
maximum shortest path length, &,,,,(N). The shortest path
length between two nodes is defined as the minimum number
of nodes needed to visit in order to go from one of the nodes
to the other. The average shortest path length is obtained by
averaging the above quantity between all possible pairs of
nodes in a given network. The maximum shortest path
length, also known as the diameter of the network, is the
length of the longest among the shortest paths in the net-
work. Both of these observables scale logarithmically with
the system-size N in SW-like networks [91]. The system-size
dependence of these path lengths for our one-dimensional
SW network is logarithmic as expected, see Fig. 7.

We now describe the modified algorithmic steps for the
SW connected PEs [38]. In the SW conservative PDES

PHYSICAL REVIEW E 73, 066115 (2006)

scheme, in every parallel time step, each PE, with probability
p, compares its local simulated time with its full virtual
neighborhood, and can only advance if it is the minimum in
this neighborhood, i.e., if 7,(f)<min{7_,(¢), 7,,(2), 7,(;(1)},
where r(i) is the random connection of PE i. With probability
(1-p) each PE follows the original scheme, i.e., the PE then
can advance if 7;(f)<min{7_;(¢),7,,(1)}. Our network
model including the nearest neighbors and random SW links
can be seen in Fig. 1(b). Note that the occasional extra
checking of the simulated time of the random neighbor is not
needed for the faithfulness of the simulation [38]. Tt is
merely introduced fo control the width of the time horizon.
The occasional checking of the virtual time of the random
neighbor (with rate p) introduces an effective strength J
=J(p) for these links. Note that this is a dynamic “averaging”
process controlled by the parameter p and can possibly be
affected by nonlinearities in the dynamics through renormal-
ization effects. The exact form of J(p) is not known. The
only plausible assumption we make for J is that it is a mono-
tonically increasing function of p and is only zero when p
=0.

In what follows, we focus on the characteristics of the
synchronization dynamics on the network. As we have seen
for the one-dimensional regular network, the communication
topology between the nodes (up to linear terms) leads to
simple relaxation, governed by the Laplacian on the regular
grid. Random communication links give rise to analogous
effective couplings between the nodes, corresponding to the
Laplacian on the random part of the network. Thus, the
large-scale properties of the virtual time horizon of our SW
scheme are governed by the effective Langevin equation

0= V8= 2 Ty(5= 1)+ -+ (o), (13)
J

where the - - - stands for infinitely many nonlinear terms (in-
volving nonlinear interactions through the random links as
well), and J;; is proportional to the symmetric adjacency ma-
trix of the random part of the network: J;;=J(p) if sites i and
J are connected by a random link and J;;=0 otherwise. For
our specific SW construction each node has exactly one ran-
dom neighbor, i.e., there are no fluctuations in the individual
connectivity (degree) of the nodes. Our simulations (to be
discussed below) indicate that when considering the large-
scale properties of the systems, the Laplacian on the random
part of the network generates an effective coupling 7y to the
mean value of the fluctuations in the synchronization land-
scape 7 [38]. At the level of the structure factor, it corre-
sponds to an effective mass vy (in a field-theory sense)

S(k) o (14)

y+ k2
where y=7y(p) is a monotonically increasing function of p
with y(0)=0.

We emphasize that the above is not a derivation of Eq.
(14), but rather a “phenomenological” description of our
findings. It is also strongly supported by exact asymptotic
results for the (linear) EW model on SW networks, where the
effect of the Laplacian on the random part of the network is
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to generate an effective mass [20,22]. The averaging over the
quenched network ensemble, however, can introduce non-
trivial scaling and corrections in the effective coupling
[20-22]. In our case, this is further complicated by the non-
linear nature of the interaction. The results of “simulating the
simulation,” however, suggest that the dynamic control of
the link strength and nonlinearities only give rise to a renor-
malized coupling and a corresponding renormalized mass.
Thus, the dynamics of the BCS scheme with random cou-
plings is effectively governed by the EW relaxation in a
small-world [20-22].

From Eq. (14) it directly follows that the lateral correla-
tion length, in the infinite system-size limit, scales as

E~y'2, (15)

i.e., becomes finite for all p # 0. The presence of the effec-
tive mass term in the structure factor in Eq. (14) implies that
lim;_,, S(k) <oo, that is, there are no large amplitude long-
wavelength modes in the surface. Consequently, the width
WH=(1/N)Z;.0S(k) ~ € is also finite. Our simulated time
landscapes indeed show that they become macroscopically
smooth when SW links are employed [Figs. 3(b) and 3(c)],
compared to the same dynamics with only short-range links
[Fig. 3(a)].

In the simulations, we typically performed averages over
10-100 network realizations, and compared the results to
those of individual runs. Our results indicate that the observ-
ables we studied (the width and its distribution, the structure
factor, and the utilization) display strong self-averaging
properties, i.e., for large enough systems, they become inde-
pendent of the particular realization of the underlying SW
network. Simulation results for the structure factor, S(k), for
the SW synchronization scheme are shown in Fig. 8(a). If an
infinitesimally small p is chosen, S(k) approaches a finite
constant in the limit of k— 0, and in turn, the virtual time
horizon becomes macroscopically smooth with a finite width.

A possible (phenomenological) way to obtain the correla-
tion length is to fit our structure factor data to Eq. (14), more
specifically, by plotting 1/S(k) versus k*, which exhibits a
linear relationship. By a linear fit, v is then the ratio of the
intercept and the slope [inset in Fig. 8(a)]. Alternatively, one
can confirm that the massive propagator in Eq. (14) indeed
leads to an exponential decay in the two-point correlation
function G(I) from which the correlation length can also be
extracted [Fig. 8(b)]. In our case with a system-size N
=16384 it is £=~27 for p=0.1 and é~=~1.6 for p=1. Figure
8(c) shows the correlation length extracted from the structure
factor S(k) as a function of p for different system sizes.

An alternative way to determine the correlation length is
to attempt a finite-size scaling analysis of the width (w?).
There are two length scales in the system: the linear system
size N and the correlation ¢ of an infinite system. For p=0,
(W)~ N, while for p>0 and N — o, (w?) ~ £. For nonzero p
and finite N the scaling of the width can be expected [21,28]
to follow

(w?) =Ng(&IN), (16)
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where g(x) is a scaling function such that

) X ifx<<1 (17)
Sh const if x> 1.

For nonzero p and for sufficiently small systems [N<&(p)]
one can confirm that the behavior of the width follows that of
the system without random links (w?)~N [Fig. 9(a)]. For
large-enough systems, on the other hand, we can extract the
p dependence of the infinite-system correlation length as
(w?)~ &(p) [Fig. 9(b)], yielding

&p)~p~, (18)

where s~=0.84.

We then studied the data collapse as proposed by Eq. (16)
by plotting (w?)/N vs 1/p*N. In fact, we performed this res-
caling originating from both raw data sets Figs. 9(a) and
9(b). The resulting scaled data points in Fig. 10(a) and 10(b),
of course, are identical in the two figures, but the lines con-
nect data points with the same value of p in Fig. 10(a) and
with the same value of N in Fig. 10(b). These scaled plots in
Fig. 10 indicate that there are very strong corrections to scal-
ing: data for larger p or smaller N values peel off from the
proposed scaling form Eq. (17) relatively quickly. These
strong corrections are possibly the result of the nonlinear
nature of the interaction between the nodes on the quenched
network. We note that the purely linear EW model on iden-
tical networks exhibits the scaling proposed in Egs. (16) and
(17) without noticeable corrections to scaling [21,28].

The nonzero v, leading to a finite correlation length, &,
ensures a finite width in the infinite system-size limit. Our
simulations show that the width saturates to a finite value for
p>0 [Fig. 11(a)]. The distribution of the steady-state width
P(w?) changes from that of the EW/KPZ class to a & func-
tion for nonzero values of p as the system size goes to infin-
ity. Figures 11(b) and 11(c) shows the width distributions for
p=0.1 and p=1, respectively. The scaled width distributions
(to zero mean and unit variance), however, exhibit the con-
vergence to a 6 function through nontrivial shapes for differ-
ent values of p. For p=0.1 [Fig. 12(a)] the distributions ap-
pear to slowly converge to a Gaussian as the system-size
increases. For p=1 [Fig. 12(b)], the trend is opposite, up to
the system sizes we could simulate; as the system-size in-
creases, the distributions exhibit progressively non-Gaussian
features (closer to an exponential) around the center, for up
to N=10°. Note that not only the average width (w?), but also
the full distribution P(w?) was found to be self-averaging,
i.e., independent of the particular realization of the underly-
ing SW network, so the above effect is not due to insufficient
averaging over network realizations. Since we were intrigued
by the above change in the trend of the convergence (i.e.,
away from vs toward the Gaussian), we carried out some
exploratory simulations for a range of p values and evaluated
the kurtosis and the skewness of the width distributions. The
results shows that this change occurs at around p~0.9. We
could not conclude, however, whether this change corre-
sponds to an actual transition and the emergence of a strong
disordered-coupling regime, where the distribution of the
width is a & function, centered about a finite value, but, the
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FIG. 8. (Color online) (a) Structure factor for the 1D SW syn-
chronization scheme with p=0.1. The inset shows 1/S(k) vs k2 for
small values of k, confirming the coarse-grained prediction Eq.
(14). (b) The spatial two-point correlation function as a function of
(the Euclidean) distance [ between the nodes for two different val-
ues of p, indicating an exponential decay with an average correla-
tion length {¢=27 and {=1.6 for p=0.1 and p=1, respectively. The
inset shows the same data on log-normal scales. (c) Correlation
length vs p for different system sizes. The dashed line corresponds
to the estimate of the exponent s, &(p)~p™ with s=~0.84, in the
small-p regime for an asymptotically infinite system.
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FIG. 9. (Color online) (a) The average steady-state width in the
1D SW synchronization landscape as a function of the system size
for different values of p in the range of [1073,107']. The dashed
line indicates the EW/KPZ scaling, corresponding to the small
system-size behavior. (b) The average steady-state width in the 1D
SW synchronization landscape as a function of p for different val-
ues of N in the range of [40,10%]. The dashed line indicates the
best-fit power law in the asymptotic large-N small-p regime to ex-
tract the correlation length exponent s, according to Egs. (16)—(18).

limiting shape of the & function is non-Gaussian, or to the
development of strong nonmonotonic finite-size effects.

The effect of the random communication links on the uti-
lization can be understood as follows. According to the algo-
rithmic rules, the virtual times of the full network neighbor-
hood (including the random neighbor) are checked with
probability p, while with probability (1-p) only short-
ranged synchronization is employed. Thus, the average
progress rate of the simulated times becomes

(u)=(1-p)NO(= ¢_1)0(¢))
+p(O(- ¢i—1)®(¢i)(7'r(i) - 7))
=(0(= ¢:.1)0(¢)) - p{O(~ ¢.1)O(¢,))
—(O(= ¢1.1)0(,)O(7,(;) — T))]. (19)

066115-10



SYNCHRONIZATION LANDSCAPES IN SMALL-WORLD-...

(a)

il
10'F
z | e N
2 Z decreasin _
”/3\10 2 //;j{ gp
\Y i //,;%,'4
r /?
. // %J
L /J{é_{
Wk A 3
E o
4
Covcnd v v im0 vl vl 0
10” 107 10" 10° 10"
s
I/pN
-1
10'F
g |
N 107F
2 o
VoI
10°F
A A R BT BTN B

10° 10° 10™ 10° 10"

1/p'N

FIG. 10. (Color online) The scaled versions of Figs. 9(a) and
9(b), as proposed by Eqgs. (16)—(18) by plotting (w?)/N vs 1/p’N
with s=0.84. The data points are identical in (a) and (b), but in (a)
the ones with the same value of p are connected by a line and in (b)
with the same value of N, as obtained by rescaling Figs. 9(a) and
9(b), respectively. The dashed line corresponds to the asymptotic
small-x behavior of the scaling function g(x) [Eq. (17)].

Note that performing disorder averaging (over random net-
work realizations) makes the right hand side independent of
i. In the presence of the SW links the regular density of local
minima (O(—¢,_,)O(¢;)) remains nonzero (in fact, increases,
compared to the short-range synchronized BCS scheme)
[38,82,92]. Thus, for an infinitesimally small p, the utiliza-
tion, at most, can be reduced by an infinitesimal amount, and
the SW-synchronized simulation scheme maintains a non-
zero average progress rate. This can be favorable in PDES
where scalable global performance requires both finite width
and nonzero utilization. With the SW synchronization
scheme, both of these objectives can be achieved. For ex-
ample, for p=0.1 (u),,=0.242, while for p=1 (u),,=0.141.
The steady-state utilization as a function of system size for
various values of p can be seen in Fig. 13.

PHYSICAL REVIEW E 73, 066115 (2006)
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FIG. 11. (Color online) (a) The average steady-state width as a
function of system size for different values of p in the 1D SW
synchronization scheme. The p=0 case corresponds to the purely
ID BCS scheme (exhibiting EW/KPZ scaling, indicated by a
dashed line) and is also shown for comparison. Steady-state width
distributions in the 1D SW synchronization scheme for (b) p=0.1
and for (c) p=1. The distributions were constructed using ten dif-
ferent network realizations, except for N=10°, where only one re-
alization was obtained due to computational limitations. All width
distributions, however, indicated self-averaging.
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FIG. 12. (Color online) Steady-state width distributions for the
1D SW synchronization scheme scaled to zero mean and unit vari-
ance for (a) p=0.1 and (b) p=1. The dashed curves are similarly
scaled Gaussians for comparison.

IV. BASIC CONSERVATIVE SYNCHRONIZATION
SCHEME IN 2D

A natural generalization to pursue is the same synchroni-
zation dynamics and the associated landscapes on networks
embedded in higher dimensions. One might ask whether
PDES of two-dimensional phenomena exhibit kinetic rough-
ening of the virtual time horizon. Preliminary results indi-
cated that this is the case [58,62]. In this section we give
detailed results when the BCS scheme is extended onto a
two-dimensional lattice (Npz=N?, N being the linear size) in
which each node has four nearest neighbors. We consider a
system with periodic boundary conditions in both axis as can
be seen in Fig. 14(a). The same microscopic rules, i.e., each
node increments its local simulated time by an exponentially
distributed random amount when it is a local minimum
among its nearest neighbors, are applied to this lattice. As in
the one-dimensional case, during the evolution of the local
simulated times correlations between the nodes develop in
the system. One observes rough time surfaces in the steady-
state after simulating this system. Figure 15(a) shows the

PHYSICAL REVIEW E 73, 066115 (2006)
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FIG. 13. (Color online) Steady-state utilization of SW synchro-
nization network in 1D as a function of system-size for three dif-
ferent values of p=0 (BCS), p=0.1 and p=1.

contour plot of the simulated time surface for the BCS
scheme in 2D. In 2D as well, we observe kinetic roughening
of the BCS scheme. The simulated time surface for a finite
system initially roughens with time in a power-law fashion.
It then saturates after some system-size dependent crossover
time to its system-size dependent steady-state value, as
shown in [Fig. 16(a)]. From the temporal behavior of the
width [Fig. 16(a)], the steady roughness [Fig. 16(b)], and the
width distributions [Fig. 16(c)], it is clear that the scaling
regime has not been reached yet for system sizes accessible
by our simulations.

The roughness exponent a for KPZ-like systems have
been measured and estimated in a number of experiments
and simulations [70]. Since exact exponents for the higher-
dimensional KPZ universality class are not available, for ref-
erence, we compare our results to a recent high-precision
simulation study by Marinari et al. [93] on the restricted
solid-on-solid (RSOS) model [94], a model believed to be-
long to the KPZ class. They found in Ref. [93] that «
=0.393 for the 2D RSOS roughness exponent. While our
simulations of the virtual time horizon show kinetic rough-
ening in Fig. 16(a), the scaled plot, suggested by Eq. (4),
indicates very strong corrections to scaling for the BCS in
2D [Fig. 16(a) inset]. Figures 16(b) and 16(c) also indicates

@ e

S JAL
4P @i

( [~

FIG. 14. (Color online) Communication topologies in 2D.
(a) 2D regular network, where each node is connected to its four
nearest neighbors. (b) SW synchronization network. One random
link per node is added on top of the 2D regular network. Red arrows
show the bidirectional random links between the nodes.
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FIG. 15. (Color online) Steady-state synchronization landscapes as contour plots for the 2D BCS on regular and SW networks of
128 X 128 nodes. (a) for the BCS scheme on a regular lattice with only nearest-neighbor connections (equivalent to p=0); (b) for p=0.1;

(c) for p=1.

that the (KPZ) scaling regime is approached very slowly,
which is not completely unexpected: for the 1D BCS scheme
as well, convergence to the steady-state roughness exponent
Fig. 5(a) and to the KPZ width distribution Fig. 5(b) only
appears for linear system sizes N> ((10%). Here, for the 2D
case, the asymptotic roughness scaling [Fig. 16(b)] and
width distribution [Fig. 16(c)] has not been reached for the
system sizes we could simulate (up to linear system size N
=2048). Nevertheless the trend in the finite-size behavior,
and the identical microscopic rules (simply extended to 2D)
suggest that 2D BCS landscape belongs to the 2D KPZ uni-
versality class.

For further evidence, we also constructed the structure
factor for the 2D BCS steady-state landscape. As shown in
Fig. 17(a), S(k,,k,) exhibits a strong singularity about k=0.
For further analysis, we exploited the symmetry of S(k,,k,)

that it can only depend on |k|= \k3+k)2 Hence, we averaged
over all directions having the same wave number |K| to ob-
tain S(|k|). For small wave numbers we found that it diverges
as

S(lk[) ~ (20)

|k|2+2a’

with @=0.39, as shown in Fig. 17(b). This is consistent with
the small-k behavior of the structure factor of the 2D KPZ
universality class with roughness exponent a=0.39 [93]. As
noted above, the scaling of the width and its distribution
exhibited very slow convergence to those of our “reference’-
KPZ system, the RSOS model [90,93]. This is likely the
effect of the nonuniversal and surprisingly large contribu-
tions coming from the large-k modes, leading to very strong
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FIG. 16. (Color online) (a) Time evolution of the width in 2D BCS scheme. The dashed line indicates the power-law behavior of the
width before saturation with a growth exponent 8=~ 0.24. The inset shows the scaled plot (w?)/N?® vs t/N°. The 8=0.24 and z=1.61 are
found by using the relations z=a/B, a+z=2, and a=0.39 [93]. Note that since the scaling in the inset looks poor and the early growth of
the width does not fit to (w?) o 72 one can say that the system has not reached the scaling regime yet, i.e., the systems simulated are not big
enough. Also note the log-log scales in both. (b) Steady-state width of the 2D BCS scheme as a function of the linear system size. The dashed
line corresponds to the asymptotic 2D KPZ scaling with roughness exponent 2a=0.78 as obtained by high-precision simulations of the
RSOS model [93]. Note the log-log scales. (c) The scaled width distributions for the 2D BCS scheme. The solid curve is the asymptotic 2D
KPZ scaled width distribution, again from high-precision RSOS simulations [90]. Note the log-normal scales.

corrections to scaling for the system sizes we were able to
study in 2D. Looking directly at the small-|k| behavior of
S(|k|) is, of course, undisturbed by the larger-|k| modes,
hence the relatively good agreement with the 2D KPZ
scaling.

The steady-state utilization (density of local minima) in
the 2D BCS synchronization landscape approaches a non-
zero value in the limit of an infinite number of nodes,
(u(0))=0.1201 as can be seen in Fig. 18. This is consistent
with the general approximate behavior (u(%))=const/d on
hypercubic lattices in d dimension [62,89], i.e., (u()) is
approximately inversely proportional to the coordination
number. As shown in Fig. 18 (inset), for a two-dimensional
BCS scheme, the steady-state utilization scales as [Eq. (6)]
W(N)y = (u())+ 22 where we have used the 2D KPZ

Nl.229
roughness exponent a=0.39 [93].

V. SMALL-WORLD SYNCHRONIZATION SCHEME IN 2D

The desynchronization (roughening of the virtual time
horizon) again motivates the introduction of the possibly
long range, quenched random communication links on
top of the 2D regular network. Each node has exactly one
(bidirectional) random link as illustrated in Fig. 14(b).
The actual “microscopic” rules are analogous to the 1D SW
case: with probability p each node will check the local simu-
lated times of all of its neighbors, including the random
one, and can increment its local simulated time by an
exponentially distributed random amount, only if it is a “lo-
cal” minimum (among the four nearest neighbors and its
random neighbor). With probability (1—-p), only the four
regular lattice neighbors are checked for the local minimum
condition.
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The effect of the synchronization through the random
links is, again, to stop kinetic roughening and to suppress
fluctuations in the synchronization landscapes. Contour plots
of the synchronization landscapes are shown in Figs. 15(b)
and 15(c) for p=0.1 and p=1, respectively. Our results indi-
cate that for any nonzero p the width of the surface ap-
proaches a finite value in the limit of N— oo [Fig. 19(a)]. At
the same time, the width distribution approaches a & function
in the large system-size limit as shown in Figs. 19(b) and
19(c). The scaled distributions (to zero mean and unit vari-
ance) again show that at least for the finite systems we ob-
served, the shape of these distribution differs from a Gauss-
ian (Fig. 20). The deviation from the Gaussian around the
center of the distribution is stronger for a larger value of p
where the influence of the quenched random links are stron-
ger. Note that for the 1D SW landscapes as well, the width
distribution only displayed a crossover to Gaussian behavior
for smaller values of p and for very large linear system sizes
[N>O(10%]. In the 2D SW case, these linear system sizes
are computationally not attainable, and the convergence to a
Gaussian width distribution, or the existence of an inherently

PHYSICAL REVIEW E 73, 066115 (2006)

FIG. 17. (Color online) Struc-
ture factor for the BCS scheme in
2D. (a) As a function of the wave
number components k, and k. (b)
As a function of the magnitude of
the wave number for different sys-
tem sizes. The dashed line shows
the asymptotic 2D KPZ behavior
for small values of |k| [Eq. (20)]
with @=0.39 [93]. Note the log-

log scales.
T T J T T T ; T T
OZE‘ o_oN:8 0.126 T T T T I/Q‘ ] |
| =8aN=16 ]
| o-oN=32 é0124 0/ -
018;! aaN=64 £ o/, 14
T N=128 Vo

FIG. 18. (Color online) The time evolution of the steady-state
utilization in 2D BCS scheme for various system sizes. The inset
shows the steady-state utilization in the 2D BCS scheme as a func-
tion of 1/N2-® with the 2D KPZ roughness exponent a=0.39.
The dashed line is a linear fit to Eq. (6) with a=0.39, (u(N))
~0.1201+0.1585/N"?2.
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FIG. 19. (Color online) (a) The average steady-state width as a
function of linear system size for different p values in the 2D SW
synchronization scheme. The data for p=0 corresponds to the 2D
BCS scheme on a regular network with only nearest-neighbor con-
nections. Steady-state width distributions in the 2D SW synchroni-
zation scheme for (b) p=0.1 and for (¢) p=1 for various system
sizes.
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FIG. 20. (Color online) Steady-state width distributions in the
2D SW synchronization scheme scaled to zero mean and unit vari-
ance for (a) p=0.1 and for (b) p=1. The dashed curves are similarly
scaled Gaussians for comparison.

different strong-disorder regime (as a result of strong random
links), remains an open question.

The underlying reason for the finite width is again a finite
average correlation length between the nodes. The 2D struc-
ture factor exhibits a massive behavior, i.e., S(|k|) ap-
proaches a finite value in the limit of k— 0 [Figs. 21(a) and
21(b)]. For small wave numbers, the approximate behavior
of the structure factor is again S(|k|)= 1/(|k|*+7) as can be
seen in the inset of Fig. 21(b), with strong finite-size correc-
tions to . The relevant feature of the synchronization dy-
namics on a SW network is the generation of the effective
mass . Nonlinearities can give rise to a renormalized mass,
but the relevant operator is the Laplacian on the random
network.

In the 2D SW synchronization scheme the steady-state
utilization is smaller than its purely 2D counterpart (BCS in
2D), as a result of the possible additional checking with the
random neighbors. For small values of p, however, it is re-
duced only by a small amount, and remains nonzero in the
limit of an infinite number of nodes [Fig. 22]. For example,
for p=0.1 {(u),,=0.1198, while for p=1 {(u),.=0.084.
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VI. SUMMARY AND CONCLUSIONS

We studied the large-scale properties of the synchroniza-
tion landscapes of PDES, applicable to certain distributed
and networked computer systems for a large number of sci-
entific problems. We investigated the effects of SW-like ad-
ditional communication links between the nodes added on
the top of 1D and 2D regular networks. With purely regular
short-range connections the synchronization landscape is
rough and belongs to the KPZ universality class (the scaling
exponents are shown in Table I). This property can hinder
efficient data management. To suppress diverging fluctua-
tions (as a function of the number of the nodes) we con-
structed a SW synchronization scheme where the nodes also
synchronize with a randomly chosen one with a possibly
infinitesimal frequency. For an infinitesimally small rate of
communications over the random links, this scheme results
in a progress rate reduced only by an infinitesimal amount,
while the width of the time horizon becomes finite in the
limit of infinitely many PEs. Thus, the scheme is fully scal-
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FIG. 21. (Color online) (a)
Steady-state structure factor for
the 2D SW scheme as a function
of the components k, and k, for
p=1. (b) Structure factor as a
function of |k| for the 2D SW syn-
chronization scheme for p=1. The
inset shows 1/S(k) vs k% for small

values of |k|.
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FIG. 22. (Color online) Steady-state utilization of SW synchro-
nization network in 2D as a function of system-size for three dif-
ferent values of p=0 (BCS), p=0.1 and p=1.
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TABLE 1. Comparison of the exponents from our simulated
BCS landscapes and the KPZ universality class in 1D and 2D. For
the 1D KPZ class, the table includes the analytically known expo-
nents [70]. For 2D KPZ class, we provide the highest-precision
numerical estimates available to date [93]. For the 2D BCS model,
for the system sizes considered, the system still has not reached the
scaling regime. Here, we could only extract the roughness exponent
a, from the small-k behavior of the structure factor.

Case o B z=alB
1D (KPZ) 1/2 1/3 3/2
1D (BCS) 0.53 0.31 1.71
2D (KPZ) 0.393 0.245 1.607
2D (BCS) 0.39

able as the PEs make nonzero and close-to-uniform progress
without global intervention. In obtaining our results, we used
coarse-grained arguments to identify the universality class of
the PDES time horizon, and confirmed those predictions by
actually simulating the simulations, based on the exact algo-
rithmic rules. Our study of the width distributions of SW-
synchronized PDES landscapes also revealed that while they
converge to delta-functions, centered about a finite value,
their shape progressively becomes non-Gaussian for larger
values of p. We could not conclude if these observations
indicate the emergence of a strong-disorder regime, or strong
nonmonotonic finite size effects for our attainable system
sizes. Future work may address these questions.

In this work we considered the simplest (and in some
regards, the worst case) scenario, where each node carries
one site of the underlying physical system, hence synchroni-
zation with nearest neighbor PEs is required at every step. In
actual parallel implementations the efficiency can be greatly
increased by hosting many sites by each PE [41,44,45]. That
way, communication between PEs is only required when lo-

PHYSICAL REVIEW E 73, 066115 (2006)

cal variables are to be updated on the boundary region of the
sites hosted by the PEs (within the finite range of the inter-
actions). While the above procedure clearly increases the uti-
lization and reduces the actual communication overhead, it
gives rise to an even faster growing early time regime in the
simulated time horizon [95]. Since the PEs rarely need to
synchronize, up to some crossover time, the evolution of the
time horizon is governed by random deposition [70], a faster
roughening growth, before eventually crossing over to the
KPZ growth and a subsequent saturation.

Our findings are also closely related to critical and collec-
tive phenomena on networks [1,2,30,96]. In particular, in re-
cent years, a number of prototypical models have been in-
vestigated on SW networks [12,14-16,18-27,32,97-104]. Of
these, the ones most closely related to our work are the XY
model [18], the EW model [20-22], diffusion [20-27], and
current flow [28] on SW networks. The findings suggest that
systems without inherent frustration exhibit (strict or anoma-
lous) [20-22,27,100] mean-field-like behavior when the
original short-range interaction topology is modified to a SW
network. In essence, the SW couplings, although sparse, in-
duce an effective relaxation to the mean of the respective
local field variables, and in turn, the system exhibits a mean-
field-like behavior [100]. This effect is qualitatively similar
to those observed in models with “annealed” long-range ran-
dom couplings [25,105,106], but on (quenched) SW net-
works, the scaling properties can differ from those with an-
nealed interactions [20-22,27,100].
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