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Recently we proposed an extension to the traffic model of Aw, Rascle, and Greenberg. The extended traffic
model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse-� shape
of the fundamental diagram of traffic flow. In the current work we analyze the steady-state solutions of the
model and their stability properties. In addition to the equilibrium flow curve the trivial steady-state solutions
form two additional branches in the flow-density diagram. We show that the characteristic structure excludes
parts of these branches, resulting in the reverse-� shape of the flow-density relation. The upper branch is
metastable against the formation of synchronized flow for intermediate densities and unstable for high densi-
ties, whereas the lower branch is unstable for intermediate densities and metastable for high densities. More-
over, the model can reproduce the typical speed of the downstream front of wide moving jams. It further
reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying
the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling
through the bottleneck.
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I. INTRODUCTION

Modeling vehicular traffic flow using methods from con-
tinuum fluid dynamics has a long history �1–5�, with many
contributions mainly from traffic engineers, physicists, and
mathematicians. The existing models can be subdivided into
first- and higher-order models according to the highest de-
rivative appearing in the partial differential equations de-
scribing traffic flows �6�.1 First-order models, such as the
classical model of Lighthill, Whitham, and Richards �7,8�,
approximate the higher-order models by neglecting diffusion
terms in the same way the Euler equation approximates the
Navier-Stokes equation. As a consequence, discontinuous
data can develop, which have to be dealt with by a numerical
algorithm.

In the existing literature on first-order systems the role of
a source term in the partial differential equations describing
vehicular traffic flow on a road section without entries and
exits has not been studied in depth. Instead, the main focus
has been laid on the principal part of the equations �9�—i.e.,
the collection of terms in the partial differential equation
containing derivatives of order equal to the order of the par-
tial differential equation �10�—and systems with constant re-
laxation time �11–15�. In �16�, we presented the balanced
vehicular traffic model �BVT model�, which generalizes the
model of Aw, Rascle, and Greenberg �9,11� by prescribing a
more general source term subsumed under an effective relax-
ation coefficient. Unlike in earlier studies, this effective re-
laxation coefficient depends on both traffic density and ve-
locity. As we showed in numerical simulations in �16�, the
model can reproduce the observed reverse-� shape of the
fundamental diagram of traffic flow �17�.

In the current work we aim at obtaining a better under-
standing of the numerical results of the BVT model. In par-
ticular we study the appearance of the new branches in the

fundamental diagram in the congested regime, which finally
form the reverse-� shape. Our explanation of the reverse-�
shape differs from earlier explanations, which explained the
reverse � as a part of a single equilibrium flow branch. In
contrast, as we will show, the �meta�stable curve sections of
three steady-state branches form the reverse � in the BVT
model. Hence, the criticism of the one dimensionality of
steady states of fluid-dynamical models �5� does not apply to
the BVT model.

In the BVT model traffic flow is described by the follow-
ing system of balance laws determining the density �
=��t ,x� and velocity v=v�t ,x� of vehicles:

��

�t
+

���v�
�x

= 0, �1�

�„��v − u����…
�t

+
�„�v�v − u����…

�x
= ���,v���u��� − v� .

�2�

As usual, �t ,x� denote the time and space variables. u���
denotes the equilibrium velocity, which fulfills

u���� � 0 for 0 � � � �m, �3�

d2
„�u���…
d�2 � 0 for 0 � � � �m. �4�

The effective relaxation coefficient ��� ,v� fulfills

���,v� � 0 for 0 � �1 � � � �2 � �m, v = u��� , �5�

���,v� � 0 for 0 � � � �1 or �2 � � � �m, v = u��� ,

�6�

lim
v→0,um=u�0�

���,v� � 0. �7�

Note that in moving observer coordinates, Eq. �2� reduces to

1The system studied in this paper is a first-order system consisting
of two equations: see Eqs. �1� and �2�.
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d

dt
�v − u���� = − ���,v��v − u����; �8�

i.e., � can be interpreted as a decay parameter. As an effec-
tive parameter, which takes into account the actual relaxation
time but also the reaction time, the parameter can become
negative for intermediate to high densities �5� �see �16��.
Note that for ��0, the average velocity v departs from the
equilibrium velocity u���; i.e., �v−u���� increases with time.
For ��0, drivers approach the equilibrium velocity u���
with a rate determined by the value of �.

In �16� we used parameter functions and values which
describe traffic flow only qualitatively. In the current work
we use the equilibrium velocity of Newell �18�:

u��� = um�1 − exp�−
�

um
�1

�
−

1

�m
	
� , �9�

with parameter values um=160 km/h, �=3600 �1/h / lane�,
and �m=160 �1/km/ lane� and an effective relaxation coeffi-
cient

���,v� =�
ac

u − v
, if �̃��,v��u��� − v� − ac � 0,

dc

u − v
, if �̃��,v��u��� − v� − dc � 0,

�̃��,v� , otherwise,

�10�

�̃��,v� =
1

T̂um

��u��� − v + 	1
v���� + 	2
v���� , �11�

and


v��� = tanh�	3
�

�m
	�u��� + c�m�1

�
−

1

�m
	
 , �12�

with parameters ac=2 m/s2, dc=−5 m/s2, T̂=0.1 s,
	1=−0.2, 	2=−0.8, 	3=7, and c=−14 km/h. The density
values, which determine the sign of � according to Eqs. �5�
and �6�, are �1=19.09 �1/km/ lane� and �2=�m. Throughout
this work, we model two-lane sections of a highway without
entries and exits with the above parameter set. In comparison
to �16� these parameters describe traffic flow more realisti-
cally, although we have not used experimental traffic data to
determine them for a specific highway section. Note that the
general conditions �5�–�7� are sufficient to obtain multival-
ued fundamental diagrams. However, the quantitative details
depend on the precise choice of �. As our simulations show,
the analytically derived properties of the model of Aw,
Rascle, and Greenberg—that the velocity does not become
negative and collisions do not occur—carry over to our sys-
tem. For the numerical simulations of the model equations
�1� and �2� we used a high-resolution shock-capturing
scheme with an approximate Riemann solver. We chose a
spatial resolution of 20 m and dynamically adapted the tem-
poral resolution to half the value obtained from the Courant

condition. The numerical method is described in detail in
�16�.

In order to obtain a deeper insight into the structure of the
BVT model we study the smooth steady-state solutions in
Sec. II. Our numerical simulations produce more general so-
lutions approximating steady-state solutions, which will be
discussed in Sec. III. In Sec. IV, we assess the stability prop-
erties of the steady-state solutions. With theses results we
classify the traffic states of the BVT model according to the
three traffic phases of Kerner �5� in Sec. V and apply the
BVT model to simulate traffic flow at a bottleneck in Sec.
VI. We conclude the paper in Sec. VII.

II. SMOOTH STEADY STATE SOLUTIONS OF THE BVT
MODEL

For smooth solutions the balance equations describing
traffic flow, Eqs. �1� and �2�, can be rewritten as

��

�t
+ v

��

�x
+ �

�v
�x

= 0, �13�

�v
�t

+ �v + �u�����
�v
�x

= ���,v��u��� − v� . �14�

In the following, we study the smooth steady-state solutions
of the BVT model. In comparison to the study by Lee, Lee,
and Kim �19�, our analysis—being performed on a first-order
system—is considerably simpler. Note, however, that due to
the possibility of dealing with discontinuous solutions, we
can in principle have more general solutions in the balanced
system �1� and �2� �see also �1� and references therein�.

Let us repeat that for a steady-state solution, there is a
coordinate system �t̃ ,z� and a constant velocity w,

x = z − wt̃ , �15�

t = t̃ , �16�

such that

��

� t̃
= 0, �17�

�v

� t̃
= 0. �18�

It follows from the continuity equation �13� that for all
steady-state solutions there is a constant q such that

�v = q + �w . �19�

Hence steady-state solutions are restricted to straight lines in
the fundamental diagram of traffic flow. Moreover, the mini-
mum and maximum speed of information propagation in sys-
tem �1� and �2� limit the physically admissible steady-state
solutions—i.e., the velocity w—as

�1 = v + �u���� � w � �2 = v . �20�

Let us assume that v−w�0 �otherwise q=0�. Then we can
solve Eq. �19� for the density
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� =
q

v − w
�21�

and substitute it into Eq. �14�, yielding the ordinary differen-
tial equation for steady state solutions in the BVT model:

��1 − w�
dv
dz

= �� q

v − w
,v	�u� q

v − w
	 − v
 . �22�

A. Trivial steady-state solutions

We first study the trivial �constant� solutions of this ordi-
nary of differential equations �ODE�—i.e., solutions fulfill-
ing dv

dz =0. The solutions are the following.
�i� The equilibrium velocity curve

v = ve = u��� . �23�

�ii� The jam line �compare to the line J of Kerner �5��

v = v j = u��� + �	1 + 	2�
v��� for �1 � � � �2. �24�

Note that �v��u���.
�iii� The high-flow branch

v = vh = u��� + �	1 − 	2�
v��� for �1 � � � �2. �25�

Note that �v��u��� in this case.
We summarize the trivial steady-state solutions in Fig. 1.

We further show in this figure the results of simulation runs
for constant initial data in equilibrium, �=�0, �0
=1 ,2 , . . . ,159 �1/km/lane�, v=u��0�, on a 7-km-long stretch

of a highway with periodic boundary conditions, prescribing
a small-amplitude perturbation of the density ��=sin��x�
initially located between 2 and 3 km on top. The data points
were extracted from the simulations at five equidistantly dis-
tributed virtual detectors after an evolution time of 10 h,
without applying a temporal aggregation. As one can see
from the plot many data points of the numerical solutions are
closely related to branch sections of trivial steady-state solu-
tions, in particular for the jam line.

B. Nontrivial steady-state solutions

Let us compare the equation of steady states, Eq. �22�, in
analogy to the dynamics in classical mechanics presented in
�19� to the following equation:

��1 − w�
dv
dz

= −
d

dv
U�v,w,q� , �26�

with a potential energy U. We find that the potential U�v , . . . �
has a functional form which is camelback shaped for a wide
range of constant values w and q as in �19�. However, unlike
in �19�, we do not obtain an acceleration term in our first-
order system. Note that according to Eq. �20� �1−w�0.

In the following we restrict the discussion to the physi-
cally admissible smooth solutions �in particular we do not
consider solutions with infinite gradient�. In the limit
z→ ±
 all maximally extended steady-state solutions ap-
proach one of the following curve sections: �A� free equilib-
rium flow, v=u��� and ���1; �B� unstable equilibrium flow,
v=u��� and �1����2; �C� jam line �see Eq. �24��; and �D�
high-flow branch �see Eq. �25��.

We classify the nontrivial maximally extended steady so-
lutions according to the behavior in the limit z→ ±
, using
the letters of the corresponding branches. Due to the charac-
teristic structure of the BVT model �see Fig. 2�, only five
solution classes can appear. These are the classes AD, BC,
BD, CC, and DD.2 Schematically, all these steady-state so-
lutions have the form indicated in Fig. 3; i.e., solutions lying
in the regions II and IV of Fig. 2 fulfill the condition
dv
dz �0, solutions in regions I and III obey dv

dz �0, respec-
tively, and limz→±


dv
dz =0. Comparing our classification to the

classification of Lee, Lee, and Kim �19� for cases where the
parameters q and w lead to a camelback-shaped profile of the
potential U, the solutions correspond to minimum-saddle so-
lutions �without oscillations�. The possible appearance of the
different solution classes in the flow-density diagram is
shown in Fig. 4.

III. QUASI-STEADY-STATE SOLUTIONS

In principal, some of the nontrivial steady-state solutions
described before can be glued together to form discontinu-
ous, periodic steady-state solutions �14,15�. Steady-state so-
lutions can be linked by a shock wave if the quantities �− and

2For the parameters used in �16�, for which �2��m, we would
have an additional branch section �E� of stopped equilibrium flow
v=u��� for �2����m and a sixth solution class DE.

FIG. 1. �Color online� The trivial steady-state solutions �i.e.,
solutions with dv

dz =0� of the BVT model. These solutions are the
equilibrium solution v=u��� �solid black curve� and the two
branches fulfilling ��� ,v�=0 �dashed curves�. Moreover, we
present the results of simulation runs of perturbed equilibrium data.
The simulated data points in the fundamental diagram are closely
related to sections of trivial steady-state solutions fulfilling
��� ,v�=0.
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v− left to the interface and the corresponding quantities �+
and v+ right of the interface satisfy the following conditions
�9,11�:

�+ � �−, �27�

�+�v+ − u��+�� = �−�v− − u��−�� . �28�

With the equation of steady-state solutions,

�±v± = q + �±w , �29�

we obtain, from Eq. �28�,

w��+ − �−� = �+u��+� − �−u��−� . �30�

The monotonicity of the velocity of steady-state solutions,
which follows from Eq. �22� �see also Fig. 3�, relates to the
monotonicity of the density according to d�

dz
= −

�

v − w

dv
dz

. �31�

Therefore, condition �27� restricts periodic steady-state solu-
tions linked by shock waves to regions II and IV of Fig. 2.

In the following we focus on steady-state solutions of
type CC in region II. In particular, steady-state solutions ly-
ing inside region II have to approach the jam line at velocity
values for which the condition

„�v j���…� � 0 �32�

is fulfilled. For the chosen parameter values, this implies
�−�36.51 �1/km/lane�. A necessary requirement to fulfill Eq.
�30� is the condition

FIG. 2. �Color online� Characteristic structure and steady-state
solutions of the BVT model. As solid lines we plot the trivial
steady-state solutions bordering the regions I–IV. On top �dashed
curves� we plot the characteristic curves with slope �1 and �2, re-
spectively. As the speed of steady-state solutions is limited by the
characteristic speeds �1 and �2, physically admissible steady-state
solutions lie inside the characteristic cones spanned by these two
speeds at every point �� ,�v� in the flow-density diagram.

FIG. 3. Sketch of the nontrivial steady-state solutions. The
steady-state solutions fulfill dv

dz �0 �or dv
dz �0, respectively� and

limz→±

dv
dz =0.

FIG. 4. �Color online� Upper panel: regions covered by the
smooth maximally extended non-trivial steady-state solutions link-
ing different branches, which are consistent with the characteristic
structure of the BVT model. The solutions link the free-
equilibrium-flow solution with the high-flow branch �class AD�, the
unstable equilibrium solution with the jam line �class BC�, and the
unstable equilibrium solution with the high-flow branch �class BD�.
Lower panel: regions covered by the smooth maximally extended
nontrivial steady-state solutions linking identical branches, which
are consistent with the characteristic structure of the BVT model.
For class CC the nontrivial steady states link data points lying on
the jam line, for the class DD they link data points of the high-flow
branch.
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„�u���…���=�−
� „�v j���…�=�−

� , �33�

which results in our particular case in �−�61.57 �1/km/
lane�. Therefore, for the chosen parameter values there is
only a very small parameter range where periodic steady-
state solutions of type CC linked by shock waves are pos-
sible. However, in our numerical simulation, we find quasi-
steady-state solutions in a much larger region of parameter
space �see Fig. 1�. To obtain a more detailed picture of these
quasistationary solutions, we plot the simulation results of
unstable equilibrium data in Fig. 5, focusing on the evolution
between 8 and 10 h simulation time. We started the simula-
tion of Fig. 5 with constant initial data �=�0=100 �1/km/
lane�, v=u��0�, and a sinusoidal density perturbation on top.
After a long evolution time we obtain a quasi steady
state close to the jam line, propagating with a velocity
w
−14 km/h upstream. This quasi-steady-state solution is
not a true steady-state solution, the amplitude slowly de-
creasing with time, as can be scarcely noted in the figure.
The solution consists of different branches close to the trivial
steady-state solutions lying in regions I and II of Fig. 2.
Thus, for quasi-steady-state solutions the quantities q and w
of steady-state solutions �see Eq. �19�� are only approxi-
mately constant.

Similar quasi-steady-state solutions also exist for a sec-
tion of the high-flow branch �see Sec. IV below�. They con-
sist of approximate steady-state solutions lying in regions III
and IV of Fig. 2. These quasi-steady-state solutions travel
downstream with a velocity approximately given by the tan-
gent of the high-flow branch.

IV. STABILITY ANALYSIS OF THE STEADY-STATE
SOLUTIONS

Due to the importance of steady-state solutions at the jam
line and the high-flow branch �see Fig. 1�, we focus the sta-

bility analysis on the trivial steady-state solutions of the BVT
model. In principal the code can be applied to study the
stability of the nontrivial solutions as well, although more
accurate results may be obtained using specialized methods
for this aim �see, e.g., �20��.

A. Linear stability analysis

As presented in �16� the equilibrium flow curve �v
=�u��� is linearly stable for ���1 and linearly unstable in
the intermediate- to high-density regime �1����2. Here we
extend the linear stability analysis to all steady-state solu-
tions obtained from setting ��� ,v�=0—i.e., steady-state so-
lutions �24� and �25�. We denote the corresponding constant
states (�0 ,v j/h��0�). Plugging the ansatz

� = �0 + �̃ exp�ilx + ��l�t� , �34�

v = v j/h��0� + ṽ exp�ilx + ��l�t� �35�

into the evolution equations �13� and �14� we obtain, as char-
acteristic equations for the existence of solutions ��̃ , ṽ�
� �0,0�,

�� + ilv j/h�2 + �� + ilv j/h��ilu��0 + �v j/h − u�
��

�v
	

− �0il
��

��
�v j/h − u� = 0. �36�

Solving the last equation for � we can distinguish between
the linearly stable and unstable regimes of the trivial steady-
state solutions—i.e., curve sections with Re����0 for arbi-
trary l and curve sections for which Re����0 for some l,
respectively. We find that the jam line is linearly unstable for
�1����̃ j =39.73 �1/km/lane� and linearly stable for
�̃ j ����2, whereas the high-flow branch is linearly stable
for densities �1����̃h=39.73 �1/km/lane� and linearly un-
stable for �̃h����2.

In the following we will give a more intuitive explanation
for the above results. For trivial steady-state solutions with
exactly constant density and velocity profile, the characteris-
tic structure �20� does not give any restrictions. However,
quasi-steady-state solutions with nonconstant density �veloc-
ity� of these trivial steady-state branches travel with a veloc-
ity w which corresponds to the derivative of the flow-density
curve:

w 

d��v j/h�

d�
. �37�

Hence, according to condition �20� the local characteristic
cone has to enclose the corresponding steady-state branch
spanned by the characteristic speeds �1 and �2—i.e.,
�1�w��2. For our parameter values the characteristic con-
dition restricts possible stable �quasi-�steady-state solutions
at the jam line to solutions fulfilling ���̃ j =39.73 �1/km/
lane� and those at the high-flow branch to solutions fulfilling
���̃h=39.73 �1/km/lane� �see Fig. 2�. Note that the two den-
sities need not agree for a general parameterization. For our
parametrization, it follows from the appearance of the term

v��� in both Eqs. �24� and �25�.

FIG. 5. Quasi-steady-state solution at the jam line for a numeri-
cal simulation of perturbed equilibrium data with initial density
�=100 �1/km/lane�. Between a simulation time of 8 and 10 h the
evolution is quasistationary with a propagation speed of about
w
−14 km/h.
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Next we study the nonlinear stability properties in simu-
lations of the full system.

B. Numerical results

We first analyze the stability properties of the high-flow
branch of steady-state solutions, Eq. �25�. To this aim, we
use constant steady-state initial data �=�0, v=vh��0� with a
sinusoidal perturbation �v=vamplsin��x� for 2�x�3 km,
prescribing periodic boundary conditions on a 7-km-long
highway. In order to decide whether synchronized flow ap-
pears during the numerical evolution, we use the criterion
v����u��� or v����vh���− �vampl�.

As our analysis shows, the stability properties of the high-
flow branch depend on the particular perturbation. For the
density regime �1����̃h, the high-flow branch is meta-
stable against the formation of synchronized flow; i.e., for
small-amplitude perturbations, no synchronized flow ap-
pears, whereas for larger-velocity perturbations with negative
amplitude vampl, synchronized flow appears. For the density
regime �̃h����2, the high-flow branch is unstable against
the formation of synchronized flow. We summarize the cor-
responding results in the upper panel of Fig. 6.

Second, we study the stability properties of the jam line,
using constant steady-state initial data �=�0, v=v j��0�, again
with a sinusoidal perturbation �v=vamplsin��x� for
2�x�3 km. In this case, we use the criterion v����u��� or
v����v j���+ �vampl� to identify synchronized flow.

For densities �̃ j ����2 the jam line is metastable against
the formation of synchronized flow; i.e., for small-amplitude
perturbations, the jam line is stable, whereas for larger-
amplitude perturbations �with positive amplitude vampl�, syn-
chronized flow appears. In contrast, for densities �1����̃ j
�1/km� the jam line is unstable against the formation of syn-
chronized flow. We show the results in the lower panel of
Fig. 6.

We summarize the results of the stability analysis in
Fig. 7. The figure shows the observed gap between free and
congested flow in the fundamental diagram of traffic flow
separating the �meta�stable branch sections.

V. IDENTIFICATION OF KERNER’S THREE PHASES
OF TRAFFIC FLOW

Kerner �5,21–23� classifies traffic flow into three phases:
free flow, synchronized flow, and wide moving jams. In this
section we try to relate the traffic states of the BVT model to
Kerner’s three phases. We will first summarize our classifi-
cation before we discuss the motivation.

�i� Free flow: steady-state solutions at the equilibrium ve-
locity curve u=u��� for the density regime 0����1 �free
equilibrium flow� and �quasi-�steady-state solutions close to
the high-flow branch in the metastable regime �1����̃h
make up the free-flow state.

�ii� Wide moving jams: spatially extended �quasi-�steady-
state solutions at the jam line in the metastable regime �̃ j
����2 make up wide moving jams.

�iii� Synchronized flow: all other congested traffic states
including the nontrivial steady-state solutions of types BC
and BD form synchronized traffic flow.

A. Free flow

For small densities �0����1� free flow is stable in the
BVT model. Moreover, the model can reproduce the meta-
stability of free flow against the formation of synchronized
flow �see Fig. 6�, which is observed for traffic states at the
high-flow branch �1����̃h. In the model instabilities only
appear for velocity perturbations with negative amplitude.

FIG. 6. �Color online� Upper panel: stability properties of the
high-flow branch. We study the stability properties by prescribing
constant steady-state solutions �=�0, v=vh��0� and on top a sinu-
soidal velocity perturbation �v=vamplsin��x� for 2�x�3 km. In
the figure, we plot the maximum value of vh��0�+vampl, vampl�0,
for which the initial data are unstable against the formation of syn-
chronized flow, for different evolution times. For densities ��40
�1/km/lane�, the high-flow branch is metastable; it becomes un-
stable against the formation of synchronized flow for sufficiently
small values vampl. For densities ��40 �1/km/lane� the high-flow
branch is unstable against the formation of synchronized traffic
flow. Lower panel: analysis of the stability properties of the jam line
using constant steady-state solutions �=�0, v=v j��0� and on top a
sinusoidal velocity perturbation �v=vamplsin��x� for 2�x�3 km.
In the figure, we plot the minimum value of v j��0�+vampl, vampl

�0, for which the initial data is unstable against the formation of
synchronized flow, for different evolution times. For densities
��40 �1/km/lane� the jam line is metastable; it becomes unstable
only for sufficiently large values vampl. For densities ��40 �1/km/
lane� the jam line is unstable against the formation of synchronized
traffic flow.
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B. Wide moving jams

As our results show wide moving jams as defined above
are stable against small-amplitude perturbations. For the cho-
sen parameter values the propagation speed of wide moving
jams lies in the −16�w�−14 �km/h� for the density region
�̃t����2; i.e., it is nearly constant and reproduces the ob-
served value.

We further analyzed the outflow from wide moving jams
�see Fig. 8�. We find for wide moving jams in the density
region �̃t���125 �1/km/lane� a constant outflow of about
fout=1914 �1/h/lane�. This can be seen in panel d� of Fig. 8,
where we plot the outflow from wide moving jams �=� j, v
=v j�� j� initially located between 2 and 3 km and surrounded
by a region of free flow, �=� f ,v=u�� f�.

C. Synchronized flow

Synchronized flow as defined above covers a wide region
in the fundamental diagram. This can be already seen in Fig.
4 for steady state solutions of type BC and BD. We exem-
plarily show the formation of synchronized flow from free
flow of density �=30 �1/km/lane�. As a nucleus for the emer-
gence of synchronized flow, we use a velocity perturbation
�v=−7 sin��x� located between 2 and 3 km on a highway
with periodic boundary conditions. The evolution of these
initial data leads to states which are widely scattered in the
fundamental diagram, as it can be seen in Fig. 9. We remark
that in an earlier work �24� the scattering was reproduced by
modeling different vehicle types. Here, in contrast, the scat-
tering already follows from the traffic dynamics without

distinguishing between different vehicle types. Including dif-
ferent vehicle types into the BVT model, which is beyond
the scope of the current work, would be expected to further
widen the scattering.

FIG. 7. �Color online� Results of the stability analysis of the
trivial steady-state solutions dv

dz =0. Curve sections represented as
solid black line correspond to the linearly stable-steady state solu-
tions. Curve sections represented as the dotted line and dashed line
correspond to unstable and metastable steady-state solutions,
respectively.

FIG. 8. �Color online� Panels a� and b�: simulation of the out-
flow from a wide moving jam. Plotted are the evolution of the
density and velocity as a function of space and time. In the initial
data we prescribe a wide moving jam with density � j =100 �1/km/
lane� between 2 and 3 km, and free flow with density � f =5 �1/km/
lane� elsewhere. During the evolution, the wide moving jam nar-
rows down and finally dissolves. Panel c�: flow-density diagram for
the above simulation results after t=0.02 h. In addition we plot the
curve representing the equilibrium flow as well as the jam line and
the high-flow branch. We determine the outflow of the wide moving
jam at that point for which the velocity of the outflow differs from
the equilibrium velocity by less than 1%. Panel d� : outflow from
wide moving jams, varying the jam density � j of the wide moving
jams between 2 and 3 km. The three different curves correspond to
different values of free flow density � f in the region between 0 and
2 km and 3 and 7 km. As one can see from the plot, the outflow
from the wide moving jams only varies within a very small range of
flow values and it is largely independent of the density of free flow.
The typical outflow from wide moving jams for the chosen param-
eter values is fout
1914 �1/h/lane�, which is far below the maxi-
mum of metastable free flow f =2487 �1/h/lane�.

SYNCHRONIZED FLOW AND WIDE MOVING JAMS FROM¼ PHYSICAL REVIEW E 73, 066108 �2006�

066108-7



VI. TRAFFIC FLOW AT BOTTLENECKS

In this section we study the behavior of traffic flow in the
BVT model at a highway bottleneck. We focus the discussion
on two simulation runs of a two-lane highway with periodic
boundary conditions.3 Again, we use a longitudinal extension
of the highway of 7 km with homogeneous initial free flow
of density �=37.5 �1/km/lane�. We model the bottleneck
simply by a velocity modification �velocity drop for free
flow� between 5 and 6 km, setting the velocity to a modified
value vmod after each numerical evolution step,

vmod = v + �u��� − v − 0.1 km/h��sin��x�� . �38�

We show the numerical evolution in Fig. 10. Despite the
simplicity of the initial setup the numerical evolution shows
a very complicated dynamics. As we will discuss below, we
observe the formation of synchronized flow and wide mov-
ing jams.

As a consequence of the bottleneck, the initial velocity
drops to smaller values in the bottleneck region �dark blue
regions between 5 and 6 km in the velocity plot�, but also
further upstream �dark blue regions between 4 and 5 km at
about 0.1 h�. Both regions correspond to synchronized flow.
The first synchronized flow region stays fixed at the bottle-

neck; however, the upstream front can oscillate in time �e.g.,
between 0.8 h and 0.9 h�. The second region of synchronized
flow travels upstream. It takes some time until an accentu-
ated wide moving jam with velocities close to zero forms.
This wide moving jam travels further upstream and reenters
the numerical domain at 7 km after t
0.4 h due to the pe-
riodic boundary conditions used in the numerical simulation.
When reaching the bottleneck, it simply travels through the
first synchronized region, thus becoming a foreign wide
moving jam. Note that the velocity of the downstream front
of this wide moving jam is nearly constant and has a value of
about −15 km/h.

Between the wide moving jams we observe regions of
low density and high velocity, which correspond to free flow
�see, e.g., the region at x=1 km for t=0.7 h�, and smaller
moving jams. As one can see from the plot there are several
regions �pinch regions� where these additional moving jams
form �see, e.g., the region between 0 and 3 km for
t
0.15 h or at about 1.5 km for t
0.45 h�. For these mov-
ing jams, the downstream front is in general not as robust as
for the wide moving jam described above. At x=3.5 km for
t=0.55 h, we observe the merging of two moving jams,
which are finally swallowed by the wide moving jam at
about x=2 km for t=0.75 h. We also observe an example for
the catch effect of a narrow moving jam; see the region at
x=5.5 km for t
0.15 h.

Figure 11 shows the simulation results for the same initial
setup, except that the bottleneck, Eq. �38�, is only effective
for simulation times t�0.5 h. As a consequence the synchro-
nized flow region pinned to the bottleneck disappears at later
times. The wide moving jam traveling through the former
bottleneck region expands and reaches velocities close to

3Using periodic boundary conditions enables us to study the
propagation of moving jams through a bottleneck modeling only a
single bottleneck.

FIG. 9. �Color online� Formation of synchronized flow from
metastable free flow of density �=30 �1/km/lane� with an initial
velocity perturbation �v=−7 sin��x� located between 2 and 3 km.
Due to the velocity perturbation, the free-flow state breaks down,
leading to a complicated pattern of synchronized flow which covers
a wide region of states in the fundamental diagram. Finally, moving
jams form, which can in turn lead to free flow of lower density, thus
reproducing the hysteresis effect observed in traffic dynamics. The
plot shows all data points corresponding to the constant time slices
at t= i
t, where 
t=0.1 h, i=0, . . . ,50.

FIG. 10. �Color online� Formation and propagation of wide
moving jams. The upper panel shows the evolution of the density,
whereas the lower panel shows the evolution of the velocity. At the
bottleneck located between 5 and 6 km, synchronized flow forms,
which finally leads to a wide moving jam. This wide moving jam
moves with a velocity of about −15 km/h �i.e., upstream� and swal-
lows moving jams during this propagation. It further travels through
the bottleneck. See the text for a detailed description.
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zero inside the jam. This can be also seen in Fig. 12 where
we plot the time series of the flow rate and the velocity for a
detector located at x=0 km.

VII. DISCUSSION

The BVT model is a macroscopic, deterministic model,
which describes vehicular traffic flow using standard meth-
ods from continuum fluid dynamics. It uses an equilibrium
flow-density curve. In contrast to earlier models, however,
the parameter range of the effective relaxation coefficient is
extended to negative values. As a consequence, the equilib-
rium flow curve does not describe traffic states in the con-
gested regime directly, but still determines the characteristic
structure of the model. An additional consequence of the
negative effective relaxation coefficient is the appearance of
�two� additional branches of trivial steady states. The char-
acteristic structure—i.e., the finiteness of propagation
speeds—restricts the stability of these steady-state solutions.
The high-flow branch is metastable against the formation of
synchronized flow for intermediate densities and unstable for
high densities. We interpret the metastable section of the
high-flow branch as metastable free flow. Stable free flow, in
contrast, corresponds to stable equilibrium flow. The low-
flow branch in the congested regime �i.e., the jam line� is
unstable against the formation of synchronized flow for in-
termediate densities and metastable for high densities. We
interpret spatially extended solutions at the metastable

branch of the jam line as wide moving jams. We further
identify the unstable sections of the high-flow branch and the
jam line, as well as the additional �steady-state� solutions in
the congested regime, which can lead to very complicated
oscillatory patterns, as synchronized flow. Thus, synchro-
nized flow covers a wide region of congested states in the
fundamental diagram, without distinguishing between differ-
ent vehicle types and driver characteristics in the model.

There are some additional results supporting the BVT
model. In particular, the model ensures that wide moving
jams do not form spontaneously from free flow. When the
velocity drops below the critical value in free flow, the ve-
locity is driven to even smaller values at that location, which
results in a strong gradient in the velocity. It is only after
complicated oscillations have occurred, which lead to a rear-
rangement of the density and velocity, that an extended
steady-state solution close to the jam line—i.e., a wide mov-
ing jam—appears.

We further can reproduce the characteristic properties of
real wide moving jams with our model. For the chosen pa-
rameter values, the downstream front of wide moving jams
travels upstream with a nearly constant velocity of about
15 km/h. Moreover, the outflow from wide moving jams is
largely independent of the characteristics of the wide moving
jam. We obtain a typical outflow of 1914 vehicles/h/lane.
Furthermore, we showed, that wide moving jams travel
through bottlenecks, whereas smaller moving jams can be
caught by a bottleneck.
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FIG. 11. �Color online� Formation and propagation of wide
moving jams. The simulation setup is identical to that of Fig. 10,
except that after a time of 0.5 h the bottleneck is not effective any
longer. As a consequence, the synchronized flow region pinned to
the bottleneck region disappears and the corresponding wide mov-
ing jam becomes wider at late times.

FIG. 12. Time series of the flow rate �upper panel� and the
velocity �lower panel� as measured by a detector at location
x=0 km for the simulation results of Figs. 10 and 11. Inside the
wide moving jam, small values of the traffic flow and in particular
the velocity are reached.
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