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We perform molecular dynamics and Monte Carlo simulations of two-dimensional melting with dipole-
dipole interactions. Both static and dynamic behaviors are examined. In the isotropic liquid phase, the bond
orientational correlation length �6 and susceptibility �6 are measured, and the data are fitted to the theoretical
ansatz. An algebraic decay is detected for both spatial and temporal bond orientational correlation functions in
an intermediate temperature regime, and it provides an explicit evidence for the existence of the hexatic phase.
From the finite-size scaling analysis of the global bond orientational order parameter, the disclination unbind-
ing temperature Ti is estimated. In addition, from dynamic Monte Carlo simulations of the positional order
parameter, we extract the critical exponents at the dislocation unbinding temperature Tm. All the results are
in agreement with those from experiments and support the Kosterlitz-Thouless-Halperin-Nelson-Young
�KTHNY� theory.
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I. INTRODUCTION

Two-dimensional melting has been intensively studied in
the past years, but it is still not completely understood �1–3�.
Melting in two dimensions is quite different from its coun-
terpart in three dimensions, for a true long-range positional
order does not exist in two-dimensional systems. The ab-
sence of a conventional long-range order at nonzero tempera-
ture was first pointed out by Mermin and Wagner �4�. Nev-
ertheless, another long-range order, which is called the bond
orientational order, can be observed in the solid phase �5�.

There exist several possible theoretical descriptions of
melting in two-dimensional systems. The Kosterlitz-
Thouless-Halperin-Nelson-Young �KTHNY� theory, devel-
oped by Halperin, Nelson, and Young �6–8�, predicts that a
third phase, the so-called hexatic phase, may exist between
solid and liquid states in a portion of the phase diagram. The
system first melts from the solid state to the hexatic state due
to the unbinding of dislocation at a temperature Tm, and then
melts from the hexatic state to the liquid state at the discli-
nation unbinding temperature Ti. Both transitions are
Kosterlitz-Thouless phase transitions �9�. Naturally, the
KTHNY theory only describes a possible scenario. It is also
possible that anyone or both of the continuous transitions are
of first order, and even that there is a direct first-order tran-
sition from the solid state to the isotropic liquid state.

Even though quite some experiments supported the
KTHNY theory �10–17�, most early works of computer
simulations on two-dimensional melting favored a first-order
phase transition, and the hexatic phase was not observed. For
example, for the systems with dipole-dipole interactions, Ka-
lia and Vashishta �18� observed a superheating and super-
cooling, as well as a latent heat in two-dimensional melting,
and concluded that the phase transition is of first order. Later,
Bedanov, Gadiyak, and Lozovik �19� found that both the
positional and bond orientational order vanished simulta-
neously at the melting point, and the hexatic phase did not
exist. Similar results have been found for other systems
�20–23�. Even for the simplest system, the hard disk model,
there was no consensus about the melting mechanism
�23–27�.

In 1996, Bagchi et al. �28� carried out a finite-size scaling
analysis of the bond orientational order parameter in a sys-
tem interacting via a repulsive 1/r12 potential, and found that
the results were in agreement with the KTHNY theory, even
though no conclusive evidence for the hexatic phase was
observed. Later, extensive Monte Carlo simulations of the
hard disk model were performed by Jaster �29,30�. Numeri-
cal behaviors of the susceptibility, spatial bond orientational
correlation length and pressure, support the KTHNY theory.
But the algebraic decay of the bond orientational correlation
function was still not shown �31�. Recently, Monte Carlo
simulations of a two-dimensional electron system with a 1/r
interacting potential have been performed by He et al. �32�.
An algebraic decay of the bond orientational correlation
function is observed, and it explicitly reveals the existence of
the hexatic phase. In principle, however, the finite-size effect
and coexistence of liquid and solid phases may also lead to
such an algebraic decay. One needs to carefully rule out
these possibilities. On the other hand, in all these numerical
simulations of the bond orientational order, the static behav-
ior of the melting is mainly concerned, and the dynamics is
not touched so much.

Recently, more progress in computer simulations has been
made in understanding two-dimensional melting, for ex-
ample, on the roles of the polydispersity �33,34� and external
fields �35�, and on the structural change during the melting
�36�. Especially, some experiments show much interest in a
two-dimensional system with dipole-dipole interactions
�17,37�. The algebraic decay of the spatial and temporal cor-
relation functions are observed and the dynamic behavior is
found to be very relevant for two-dimensional melting. From
the view of numerical simulations, the two-dimensional sys-
tem with dipole-dipole interactions is not much understood.
The purpose of this paper is to present systematic computer
simulations of two-dimensional melting with dipole-dipole
interactions. Main results are obtained with molecular dy-
namics simulations, and Monte Carlo simulations are also
performed in some cases and for confirmation. Both static
and dynamic behavior will be examined, and an emphasis is
given to the algebraic decay of both the spatial and temporal
bond orientational correlation functions in the hexatic phase.
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The paper is organized as follows. In Sec. II, the model
and numerical methods will be described. In Sec. III, nu-
merical results will be presented for both static and dynamic
behavior. Finally, it comes the conclusion.

II. MODEL AND METHOD

A. The model

In this paper, we consider a two-dimensional dipolar sys-
tem whose Hamiltonian can be written as
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where pi ,�i, and mi
� are the momentum, mass and magneti-

zation of the ith dipole, respectively, and N is the total num-
ber of particles. In order to mimic the experiments in Refs.
�17,37� and to simplify the problem, we assume the dipoles
are aligned perpendicular to the surface. Thus, Eq. �1� can be
reduced to
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For convenience in numerical simulations, we rewrite Eq. �2�
as
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where we have assumed the mass and magnitude of the mag-
netization of the dipoles are identical. For simplification, the
reduced units are adopted, in which the parameters � and
�, Boltzmann constant kB, and mass � of the dipoles are set
to 1. The thermodynamic observables are determined only by
a dimensionless constant �=��3��n�3/2 /kT �38�, where
n=N /V is the two-dimensional �2D� volume fraction of the
dipoles.

The reasons we choose this model are: �i� this model lacks
extensive numerical study, and the existing results do not
favor the KTHNY theory and �ii� there are unambiguous
experimental results of such system �17,37�, to which we
may compare our results.

B. Numerical methods

In our simulations, particles are put in a rectangular box
with a size ratio 2:�3, the density of the particles is fixed to

be 1/ �2�3�, and the number of the particles is taken to be
from 1024 to 32 768. The linear size L of the system is
related to the total number N of particles by L=2�N. Peri-
odic boundary conditions are used in simulations, and the
dipole-dipole potential is truncated at 10. In two dimensions,
such a truncation is reasonable. Actually, the correction of
the potential to the truncation is uc=�0

2��rc

+�g�r��� �
r

�3rdrd	;
assuming g�r�=1, it leads to uc=2���3 /rc, which decays to
zero with rc. In fact, the main parts of the simulations are
carried out in the hexatic and liquid phases where g�r�
quickly stabilizes at a constant which is smaller than 1 �see
Fig. 4�b��.

In order to confirm the truncating procedure, we have
performed the simulations at different truncating distances,
and find that the difference is negligibly small. In addition,
extra simulations using the Ewald Summation technique
�39,40�, which is known for transferring long-range interac-
tions to short-range ones, are also performed to further jus-
tify our truncation. Within statistical errors, the results for the
global bond orientational order parameter 
6 and suscepti-
bility �6 obtained with different truncating distances and the
Ewald summation are in good agreement with each other.
Relevant data with L=64 are compiled in Table I for com-
parison. Additional simulations with L=128, and measure-
ments of the pair distribution function g�r� also confirm the
reliability of the truncation.

In this paper, most simulations are performed with mo-
lecular dynamics. All results are obtained at a constant tem-
perature with the NVT ensemble based on the Nosé-Hoover
Chain thermostat �41,42�. The equation of the motion is
solved via the five-point Nordsieck-Gear predictor-corrector
method. The time step �t in all the simulations is set to 0.01.
A shift of the conserved total energy is within 0.00 01%.

The initial configurations in our simulations consist of
particles uniformly distributed over the system box on a tri-
angular lattice. Before collecting data for the measurements
of physical observables, the system is carefully equilibrated,
especially in the critical regime. We monitor the global bond
orientational order parameter, and begin our measurement
after this order parameter reaches a steady value. For the
larger system �N=16 384�, for example, it takes 5�105 time
steps to thermalize the system. Only the configurations in
equilibrium are used for the measurements of observables,
extending over 9�106 time steps. In order to obtain inde-
pendent configurations, the autocorrelation function of the
global bond orientational order parameter is measured, and
the correlation time is estimated to be 

2400 time steps in
the critical regime. Then the measurement is performed ev-
ery 2500 time steps.

TABLE I. The global bond orientational order parameter 
6 and susceptibility �6 measured by truncating
the potential at rt=10, rt=20 and with the Ewald summation to deal with the potential. The linear size is
L=64, and the temperature is T=0.0150 and T=0.0125.


6�T=0.0150� 
6�T=0.0125� �6�T=0.0150� �6�T=0.0125�

rt=10 0.0842�25� 0.684�4� 9.14�49� 479�6�
rt=20 0.0849�35� 0.680�4� 9.34�38� 475�5�
Ewald summation 0.0859�37� 0.680�1� 9.50�84� 474�2�
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In order to confirm our molecular dynamics simulations,
standard Monte Carlo simulations are additionally per-
formed. For example, the bond orientational correlation
functions from both molecular dynamics simulations and
Monte Carlo simulations are shown in Fig. 1�a�. Both meth-
ods provide consistent curves, and it shows that our molecu-
lar dynamics simulations indeed generate proper ensemble
distributions. Furthermore, dynamic Monte Carlo simula-
tions are carried out to extract the critical exponents for the
positional order parameter at the dislocation unbinding tem-
perature Tm.

C. Observables

The bond orientational symmetry of a solid can be de-
scribed by the six-fold global bond orientational order pa-
rameter 
6 defined as


6 =�� 1

N
�
k=1

N

�6,k�� , �4�

where N is the total number of the particles, �· · · � denotes the
ensemble average or the time average in molecular dynamics
simulations and Monte Carlo simulations, and the �6,k is the
local bond orientational order parameter defined as

�6,k =
1

Nk
�

j

exp�i6	kj� . �5�

Here the sum j is over the neighbors of the particle k, and 	kj

is the angle between rkj
� �the relative position vector of the

particle k and j� and an arbitrarily fixed reference axis.
Neighbors are obtained with the Voronoi polygon �43�. The
susceptibility of the bond orientational order is defined as

�6 = N�
6
2� . �6�

The hexatic phase is characterized by an algebraic decay
of the bond orientational correlation function defined as

g6�r1
� − r2

�� = ��6,k
* �r1

���6,k�r2
��� . �7�

In order to obtain an accurate value of the bond correlation
length, we smooth the bond orientational correlation function
following Ref. �30�. We divide the volume of the system into
stripes with a width of �x and measure the bond orienta-
tional correlation between different stripes

g6�x� =�� 1
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dy��
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and L is the linear size of the system in the y direction. The
temporal bond orientational correlation function character-
izes the time correlation of the bond orientational order pa-
rameter, and is defined as

g6�t� = ��6,k
* �t0��6,k�t0 + t�� , �11�

where �6,k�t0� and �6,k�t0+ t� are the local bond orientational
order parameters measure at the time t0 and t0+ t, respec-
tively, and the average is over t0 in equilibrium. In the
hexatic phase, g6�t� also decays by a power law �37�.

The positional symmetry of solid can be described by a
positional order parameter defined as


pos =� 1

N
�
j=1

N

exp�iG� · rj
��� , �12�

where G is a reciprocal-lattice vector which gives the first
Bragg peak. In practice, we average the order parameter over
the six reciprocal vectors which correspond to the six vectors
connecting the six neighbors from the lattice site j. The po-
sitional correlation function is defined as

FIG. 1. �a� g6�x� obtained with molecular dynamics �MD� and
Monte Carlo �MC� simulations at T=0.0150 plotted vs x on a semi-
log scale. The smoothed curve is shifted upward for clarity. The
smoothing technique is described in Section II. �b� 
6 plotted vs T
on a linear plot. The bond orientational order parameter increases
abruptly around T=0.0125. The line fitted to the circles is a guide to
the eyes.
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gG��r� − r���� = �exp�iG� · �r� − r����� . �13�

In the hexatic phase, the positional correlation function de-
cays exponentially. Finally, the pair distribution function is
defined as

g�r� =
V

N2 �
i,j�i

��r� − rij
�� , �14�

where V is the volume of the system.

III. COMPUTER SIMULATION

In this paper, we perform extensive simulations of two-
dimensional melting in the NVT ensemble with system sizes
up to 32 786 atoms, and find a strong evidence for the exis-
tence of the hexatic phase in the dipole-dipole interacting
system. We first measure the spatial bond orientational cor-
relation function and susceptibility in the isotropic liquid
phase and compare the results with the predictions of the
KTHNY theory. This gives us estimates of the isotropic-
anisotropic transition temperature Ti. With this critical tem-
perature in hand, we further scan the parameter space, and
observe an algebraic decay of the spatial bond orientational
correlation. We also measure the temporal bond orientational
correlation function, and its behavior is in good agreement
with the KTHNY theory. In order to rule out a possible co-
existence phase and the finite-size effect, we perform a ho-
mogeneous test and finite-size scaling analysis of the bond
orientational order parameter. The result is compatible with
previous measurements. At last, with Monte Carlo methods
we simulate the short-time dynamics of the positional order
and estimate the exponent �m, and the value is also in agree-
ment with the theoretical prediction. All our results are com-
patible with the experiments and KTHNY theory, and the
hexatic phase is explicitly observed.

A. Bond orientational order

The bond orientational order parameter 
6 offers a direct
description of the bond orientational order �23�. Assuming Ti
is the transition temperature of the bond orientational order
and Tm is the transition temperature of the positional order,
the bond orientational order parameter should vanish for
T�Ti. and take a finite value less than 1 for T�Tm. The
behavior of 
6 at the temperatures between Ti and Tm de-
pends on the underlying melting scenario. If the transition at
Ti is of first order, 
6 increases linearly from Ti to Tm. If the
melting scenario is of KTHNY, i.e., the transition at Ti is a
Kosterlitz-Thouless phase transtion, 
6 then vanishes
throughout the hexatic phase for there does not exist a true
long-range bond orientational order. However, the finite-size
effect in the simulations blurs this distinction and prevents us
drawing a clear conclusion. Nevertheless, the measurement
of the bond orientational order parameter 
6 does give us an
estimated value of Ti
0.012 50. In the Fig. 1�b�, 
6 vs T is
shown.

To further understand the phase transition at Ti, we mea-
sure the correlation length and susceptibility of the bond ori-
entational order parameter in the isotropic liquid phase for

different temperature T. For the measurements are carried
out in the isotropic liquid phase, the spatial bond orienta-
tional correlation function is independent of the spatial direc-
tions. We extract the correlation length � from the exponen-
tial decay of the bond orientational correlation function
smoothed with the technique described in Eq. �8�,

g6�x� � exp�− x/�� . �15�

Subsequently, we compare our results with the predictions of
the KTHNY theory, i.e., an exponential singularity of the
correlation length and susceptibility,

�6�
� = a�exp�b�

−1/2� , �16�

�6�
� = a�exp�b�
−1/2� , �17�

as 
=T−Ti→0+. In Fig. 2, the numerical data are fitted to
the above exponential forms. The best fit of the correlation
length and susceptibility gives Ti=0.012 37�16� and
Ti=0.012 43�4�, respectively. These two values are in agree-
ment with each other within statistical errors, and are also
consistent with the previous estimated value of Ti from the
global bond orientational order parameter. Therefore, our re-
sults support the KTHNY prediction, even though the statis-
tical errors of the correlation length and susceptibility are
relatively large.

B. The hexatic phase

According to the KTHNY theory, the hexatic phase is
characterized by an algebraic decay of the bond orientational
correlation function and an exponential decay of the posi-
tional correlation function. Therefore, we scan the parameter
space between Ti and Tm, and measure the bond orientational
correlation function and positional correlation function. The
bond orientational correlation function is shown in Fig. 3�a�.
A clear evidence for the existence of the hexatic phase is
observed.

FIG. 2. Bond orientational correlation length �full symbols�
and susceptibility �open symbols� as a function of temperature. The
curves show the best fits of Eqs. �16� and �17� according to
the KTHNY theory. The fitted transition temperatures are
Ti=0.012 37�16� and 0.012 43�4� for the correlation length and
susceptibility, respectively.
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�i� In the solid phase �T=0.0119�, the correlation func-
tion rapidly stabilizes to a constant, and it indicates that there
is a true long-range order of the bond orientational symme-
try.

�ii� In the hexatic phase �T=0.012 52 and 0.012 53�,
the correlation function shows an algebraic decay

g6�x� � x−�6, �18�

and it indicates that there is a quasi-long-range order of the
bond orientational symmetry.

�iii� In the liquid phase �T=0.0127�, the correlation
function decays exponentially, and it indicates an isotropic
state.

After smoothing the correlation function at T=0.012 53,
we obtain an exponent �6=0.252�6� from the slope of the
curve, and it is close to the value �6=0.25 at the transition
temperature Ti predicted by the KTHNY theory. If we

assume T=0.012 53 is just the transition temperature Ti, it is
quantitatively in agreement with the previous measurements
in the preceding subsection. Nevertheless, to obtain a more
accurate value of Ti, we need to consider more carefully the
finite-size effect. In the next subsection, we will locate the
transition temperature from the finite-size scaling.

In Fig. 4, the positional correlation function and pair dis-
tribution function are shown respectively. One may observe
two different behaviors.

�i� In the solid phase �Ti=0.0119�, the positional cor-
relation function shows an algebraic decay, indicating a
quasi-long-range positional order in a two-dimensional solid,
while the oscillation in the pair distribution function persists
over the entire range.

�ii� In the hexatic phase �Ti=0.012 53�, the positional
correlation function decays quickly to zero, indicating that
there exists no positional order in the hexatic phase, and the
oscillation in the pair distribution function dies off rapidly.
The behaviors of the positional correlation function and pair
distribution function in the liquid phase are qualitatively the
same as in the hexatic phase.

The recent experiment reported in Ref. �37� shows that
the dynamic behavior is also very important in understanding

FIG. 3. �a� The spatial bond orientational correlation function
g6�x� plotted vs x on a double decimal log scale. The temperature
T=0.0119 is just before melting, T=0.0127 is typically in the liquid
phase, and T=0.012 52 and 0.012 53 are in the hexatic phase. The
straight line with a slope of −1/4 is a guide to the eyes. �b� The
temporal bond orientational correlation function g6�t� plotted
vs t on a double-log scale. The temperature T=0.0119 is just before
melting, T=0.0131 is typically in the liquid phase, and
T=0.012 53 is in the hexatic phase. g6�t� at another T=0.012 57,
which is slight above the estimated Ti, is also shown. Lines fitted to
the data are to guide the eyes.

FIG. 4. �a� The positional correlation function gG�x� at
T=0.012 53 in the hexatic phase �lower curve� and 0.0119 in the
solid phase �upper curve� plotted vs x on a linear scale. �b� The pair
distribution function g�x� plotted vs x on a linear scale. The upper
two curve are shifted upward for clarity. The curves at T=0.0119,
T=0.012 53, and T=0.0127 show features in the solid, hexatic, and
liquid phases.
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the melting mechanism in two dimensions. According to the
KTHNY theory, in the solid phase the temporal bond orien-
tation correlation function will rapidly stabilize to a constant,
in the hexatic phase it shows an algebraic decay with an
exponent equal to �6 /2,

g6�t� � t−�6/2, �19�

and in the liquid phase the temporal correlation function de-
cays exponentially �44�. Such a behavior is indeed observed
in experiments, and it provides a strong evidence for the
existence of the hexatic phase. To our knowledge, such mea-
surements have not been performed in numerical simula-
tions.

In order to deepen our understanding of two-dimensional
melting and further confirm our observation in numerical
simulations of static properties, the temporal bond orienta-
tion correlation function is measured in our molecular dy-
namics simulations. The result is shown in Fig. 3�b�. Obvi-
ously, as the temperature changes from T=0.0119 to
0.012 53, then to 0.0131, the temporal bond orientation cor-
relation function follows the prediction of the KTHNY
theory, and are well consistent with the experimental obser-
vation �37�. The exponent measured from the slope of the
curve at T=0.012 53 is 0.0843, somewhat smaller than the
theoretical prediction 0.125 at Ti. This probably suggests that
the anisotropic-isotropic transition temperature Ti should be
still slightly above the value 0.012 53, and our measurements
of the spatial and temporal bond orientational correlation
functions may still carry certain finite-size effects.

C. Finite-size scaling analysis

Our measurements of the spatial and temporal bond cor-
relation functions provide us an explicit evidence for the
existence of the hexatic phase in two-dimensional melting.
However, it is difficult to extract an accurate transition tem-
perature Ti from the correlations functions. One may directly
measure the correlation length in the isotropic liquid phase
and then fit the data to the ansatz in Eq. �16� and obtain the
transition temperature Ti. But this approach also suffers from
the difficulty that one can not obtain the correlation length at
the temperatures very close to Ti �45,46�. Meanwhile, due to
the finite-size effect, distinguishing between an algebraic and
an exponential decay might be problematic if the correlation
length is finite but much larger than the system size. There-
fore, to extract a more accurate disclination unbinding tem-
perature Ti and to confirm the previous observation of the
hexatic phase, we perform a finite-size scaling analysis of the
bond orientational order parameter.

From the finite-size scaling form, the second moment of
the bond orientational order parameter can be written as

�
6
2� � L−�6f�L/�6� , �20�

where L=2�N is the linear size of the system and �6 is the
bond correlation length. Since �6 is divergent in the hexatic
phase, �
6

2� thus shows a power-law behavior with respect to
L in the hexatic phase. In the liquid phase, the power-law
behavior will be modified by the scaling function f�L /�6�.

We measure the second moment of global bond orienta-
tional order parameter with system size L=64,128,256 at
T=0.012 57 and perform finite-size scaling analysis men-
tioned above. The open circles shown in Fig. 5 are the re-
sults. In order to save computation time, we use the sub-
system method introduced by the authors of Refs. �23,28�.
Here, a brief comment about the above nonstandard finite-
size scaling analysis is needed. In principle, the subsystem
procedure still carries a second-order finite-size effect in-
duced by the finite bulk system size L. But this second-order
finite-size effect is negligibly small in practical simulations
�23�, and the procedure has been proved to be reliable and
may reduce computer times �28�. We also carried out the
finite-size scaling analysis using subsystem method at
T=0.012 57 to further justify this procedure, the result is
shown in Fig. 5. It is easy to observe that within statistical
errors, the data with periodic boundary conditions and from
subsystems are well consistent. With the subsystem method,
we measure �
6

2� at different temperatures with a bulk linear
size L=256 or 512, and a total number of particles ranging
from N=163 84 to 327 68. Then the system is divided into
small subsystems with a linear size LS �23� and the bond
orientational order parameter of each subsystem is measured.
The result is shown in Fig. 5.

To locate Ti, we assume �6=1/4. In other words, we
search for a temperature which yields �6=1/4, and then as-
sign this temperature to be Ti. The requirement of �6=1/4
yields the upper limit of Ti �44�. Combining the results
obtained in the preceding subsections, we conclude
0.012 53�Ti�0.012 57. To compare our results with those
in literatures, we convert Ti to the dimensionless parameter
�i, and obtain 68.707��i�68.927. It improves the values
Ti=62±3 with a small system N=256 �18� and Ti=67.750
with a relatively larger system N=961 �47�. In Refs. �18,47�,
the phase transition is supposed to be of first order, and the
values of Ti are obtained from the hysteresis in the tempera-
ture dependence of energy, the existence of latent heat and
the thermodynamic nucleation of the solid from the super-
cooled liquid. Our estimate of Ti is based on the KTHNY

FIG. 5. The finite size scaling analysis of 
6
2. L=256 or 512 is

the bulk linear size and Ls is the size of the subsystem. The dotted
line with a slope of −1/4 is a guide to the eyes. Open circles are the
results from independent simulations with periodic boundary con-
ditions at L=64,128,256.
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theory, and is much less affected by the finite-size effect.

D. Ruling out the coexistence phase

In principle, the NVT molecular dynamics simulation can
not obviate the coexistence phase, and the superposition of
the solid and liquid phases may also produce the hexaticlike
behavior. In order to exclude this possibility, we apply the
homogeneous test. We divide the system into small sub-
systems and compute the susceptibility �6 for all subsystems
�21�. If the system exhibits an inhomogeneous two-phase
coexistence, the probability distribution of �6 at a sufficiently
small length scale could be modeled by a curve with two
peaks, which reflects a combination of solid and fluid distri-
butions. On the other hand, if the system is homogeneous,
varying the size of the subsystems should not lead to any
qualitative change in the probability distribution of �6, i.e.,
the curve should always remain with a single peak.

We have measured the possibility distribution of �6 in the
hexatic phase at T=0.012 57, 0.012 53, 0.012 52, and in or-
der to compare the result with that in the homogeneous
phase, we also perform a simulation at an extra temperature
T=0.0100 corresponding to the cool solid phase. No qualita-
tively change is found at these temperatures. This test rules
out the existence of a coexistence phase, and confirms the
observation of the hexatic phase in the previous subsections.
The result at T=0.012 52 is shown in Fig. 6. It is clearly seen
that varying the system size does not change the shape of
distributions, but only shifts the peak of the probability dis-
tribution.

E. Dynamic Monte Carlo simulations

In the last decade, it has been discovered that already in a
macroscopic short-time regime emerges the universal scaling
behavior �48–52�. Measurements now are carried out at the
early stage of the time evolution, therefore one does not suf-
fer from critical showing down. The dynamic scaling form of
the second moment of the positional order parameter below
the dislocation unbinding transition temperature Tm is


pos
2 �t,L� = b−�m
pos

2 �b−zt,b−1L� , �21�

where t is the evolution time, z is the dynamic critical expo-
nent, and b is an arbitrary rescaling factor. For a sufficient
large L, this dynamic scaling form is reduced to


pos
2 �t� � t−�m/z. �22�

From a finite-size scaling analysis of the time-dependent
Binder cumulant �48�

Upos�t� =

pos

4

�
pos
2 �2 − 1, �23�

one obtains

Upos�t� � td/z/Ld, �24�

where d is the dimension of the system. The dynamic critical
exponent z can be estimated from Eq. �24�, and with z in
hand, the static exponent �m can be obtained from Eq. �22�.

Now, we turn to locate the transition temperature Tm. As
the temperature increases, Tm is characterized by the dislo-
cation unbinding which breaks the quasi-long-range posi-
tional symmetry. Therefore, one may measure the correlation
function of the positional order parameter to estimate Tm, for
the positional correlation become short-range at Tm. Never-
theless, this method suffers from the difficulty that one needs
to do simulations in the critical region. Even for the hard
disk model, in which the thermodynamic quantities are only
determined by the density � of disks, it is still not easy to
locate �m accurately. �m
0.933 is reported in Ref. �50�,
while �m=0.910�2� is given in Ref. �52�.

Alternatively, a dynamic technique for locating Tm is ap-
plied in the experiments reported in Ref. �37�. In our com-
puter simulations, we follow Ref. �37� and adopt the dy-
namic criterion for Tm, since the method is relatively simple,
and may provide direct comparison with experiments. We
first introduce the 2D Lindemann parameter �17,53�

�m = ��u��r� + a0
�� − u��r���2� � �n , �25�

where a0
� is the lattice spacing vector, r� is the positional

vector, u� is the displacement field and n is the 2D volume
fraction of particles. Initially, the system is set on a perfect
triangular lattice. In numerical simulations, we gradually
warm up the system with the velocity rescaling procedure. At
each T, the system is equilibrated to the thermal equilibrium.
Then we measure the Lindemann parameter at different tem-
peratures. In general, a sharp growth of �m indicates vanish-
ing of the positional symmetry. Such a Lindemann criterion
in three-dimensional �3D� systems is a well-established and
justified procedure for locating the melting temperature Tm,
although it was unclear in two dimensions �4�. In 1985, Be-
danov and Gadiyak improved the definition of the Linde-
mann parameter to the form in Eq. �25� and demonstrated in
the simulations of electron and dipole systems that when �m
rises up to a critical value 0.12, the melting takes place �53�.
At the melting point Tm, which is more clearly identified by
the sudden drop of the positional correlation length, a sharp
growth of �m is induced by the leap of disclination number
and self-diffusion constant. Therefore, this local quantity is

FIG. 6. The probability distribution of �6 in the hexatic phase at
T=0.012 52. The symbols in the figure indicate the mean numbers
of particles in different subsystem.
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relevant to the melting. Recently, Zahn et al. applied this
criterion to their experiments �17,37�, and the results are in
agreement with those from numerical simulations �53�. The
Lindemann parameter may provide at least a first estimate of
the melting temperature Tm. Due to its efficiency and sim-
plicity, the Lindemann criterion has been applied to different
systems for locating the melting point �54–56�.

Here we locate Tm with the Lindemann criterion. Four
runs are performed in order to estimate Tm. One of them is
shown in Fig. 7. We estimate Tm=0.0120�2�. The hexatic
phase of the dipolar system lies in a range of the phase dia-
gram, between 0.012 53�Ti�0.012 57 and Tm=0.0120�2�.
This is comparable with that of the hard disk model,
�i=0.899�1� �30�, and �m
0.933 in Ref. �50� while
�m=0.910�2� in Ref. �52�. Ti and Tm may overlap for small
systems, and this is one reason why the hexatic phase was
not observed in some previous studies.

Now we perform dynamic Monte Carlo simulations at the
transition temperature Tm. The reason we perform Monte
Carlo simulations is that the dynamic scaling forms in Eqs.
�22� and �24� may not hold in the dynamic process of Nosé-
Hoover chain molecular dynamics simulations. It seems that
the Nosé-Hoover Chain method is originally devised for
equilibrium simulations and contains techniques violating
the dynamic scaling behavior. In comparison to this, the dy-
namic scaling behavior in Monte Carlo simulations has been
extensively justified.

In Monte Carlo simulations, the system initially at an or-
dered state is released to the dynamic evolution with the
Metropolis algorithm, and then the time-dependent 
pos

2 and
Upos are measured. By fitting 
pos

2 �t� and Upos�t� to Eqs. �22�
and �24�, both the dynamic exponent z and static exponent
�m can be determined. For comparison, we also perform the
same simulations at another temperature T=0.0115. The re-
sults are shown in Figs. 8�a� and 8�b�.

From Upos�t� in Fig. 8�b�, we estimate z=1.910�70�, and
from 
pos

2 �t� in Fig. 8�a�, we measure �m /z=0.143�5�. Com-
bining these results, we deduce �m=0.273�20�. This value is
also in agreement with the prediction �1/4��m�1/3� based
on the KTHNY theory �1�.

IV. CONCLUSION

We present molecular dynamics and Monte Carlo simula-
tions of two-dimensional melting with dipole-dipole interac-
tions. An algebraic decay is observed for both the spatial and
temporal bond orientational correlation functions in an inter-
mediate temperature regime, and this serves as an explicit
evidence for the existence of the hexatic phase.

To obtain a relatively accurate disclination unbinding tem-
perature Ti, we perform a finite-size scaling analysis for the
bond orientational order parameter. The result 0.012 53�Ti
�0.012 57 improves the value from a direct fit of the corre-
lation length to the exponential ansatz. In addition, by ana-
lyzing the probability distribution of the bond orientational
susceptibility �6, a possible coexistence phase is ruled out.

At last, from dynamic behavior of the Lindemann param-
eter, the dislocation unbinding transition temperature is esti-
mated to be Tm=0.0120�2�. We also perform dynamic Monte
Carlo simulations of the positional order parameter and the
time-dependent cumulant. From the power-law behavior of
these quantities, we determine the exponents �m=0.273�20�
and z=1.910�70�.

In summary, a clear evidence for the existence of the
hexatic phase is observed for two-dimensional melting with
dipole-dipole interactions, and all the static and dynamic be-
haviors of the system are compatible with recent experiments
and the KTHNY theory.

FIG. 7. The Lindemann parameter �m vs T. The critical tem-
perature Tm=0.0120 is visualized by the vertical dotted line.

FIG. 8. �a� 
pos
2 �t� plotted vs t on a double-log scale. The lower

curve is shifted downward for clarity. �b� Upos�t� plotted vs t on a
double-log scale. The upper curve is shifted upward for clarity.
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