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Large-scale simulations of the two-dimensional melting of hard disks
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Large-scale computer simulations with more than four million particles have been performed to study the
melting transition in a two-dimensional hard disk fluid. The van der Waals loop previously observed in the
pressure-density relationship of smaller simulations is shown to disappear systematically with increase in
sample size, but even with these large system sizes, the freezing transition still exhibits what appears to be
weakly first-order behavior, though the scaling of the bond orientation order is consistent with the Halperin-
Nelson-Young picture. Above this freezing transition region, scaling analysis of the translational order yields a
lower bound for the melting density that is much higher than previously thought and provides compelling
evidence that the solid phase first melts into a hexatic phase via a continuous transition, before it goes into the

isotropic phase.
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A system of hard disks in two dimensions (2D) is one of
the simplest models of a classical fluid. But beneath the de-
ceptive simplicity of this model, 2D hard disks exhibit a set
of surprisingly rich behaviors. Unlike in three dimensions, a
2D solid possesses only quasi-long-range translational order
which decays algebraically to zero at large distances [1].
Instead of the usual first-order transition in three dimensions,
a 2D solid is also expected to melt into a liquid via two
continuous transitions. The intervening phase called the
“hexatic” was predicted by Halperin and Nelson [2,3] and
Young [4] to possess quasi-long-range bond orientation order
but no long-range translational order.

Given the simplicity of the hard disk model, it would
seem easy to either prove or disprove the Halperin-Nelson-
Young (HNY) theory by detailed computer simulation stud-
ies. But 25 years after the HNY theory was first proposed,
simulations that could definitively identify the nature of the
melting transition are still lacking [5]. The first simulation of
2D hard disks was carried out by Alder and Wainwright [6].
Based on the appearance of a van der Waals loop in the
pressure, they concluded that the melting transition must be
first order. Since then, as more computing power has become
available, simulations have been carried out with increas-
ingly larger system sizes [5,7-25], but instead of clarifying
the picture, these simulations have provided conflicting con-
clusions about the nature of the melting transition. One con-
sensus that did emerge from the more recent simulation stud-
ies is that the 2D hard disk system is very sensitive to finite-
size effects near the melting transition. This is not
unexpected if the transition is continuous, but compared to
fluids with a soft potential [26] the hard disk system is much
more prone to finite-size errors and boundary effects. In a
simulation of up to N=128? particles, Zollweg and Chester
[9] observed that the equilibration time increased dramati-
cally for densities very close to the melting transition—
systems of this size were apparently not large enough to
reach the scaling limit.

The largest simulation that has been performed to date
was carried out by Jaster with up to N=256 particles
[16,17], and more recently for two higher densities with up
to N=1024? [24]. Even though a van der Waals loop was
observed in the pressure at densities between p=0.895 and
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0.910 (solid squares in Fig. 1), Jaster showed using a scaling
analysis that his data were also compatible with the HNY
scenario. A van der Waals loop is often the sign of a first-
order transition, but it may also arise from finite-size errors
close to a critical transition. To definitively rule out a first-
order scenario, one must demonstrate that the van der Waals
loop would disappear with larger-size simulations where the
pressure increases continuously and monotonically with den-
sity [5]. Curiously, the same van der Waals loop was ob-
served for two different sizes in Jaster’s data—the pressure
for N=128? (not shown in Fig. 1) and 256> coincide almost
completely—suggesting that the van der Waals loop may not
be related to finite-size effects [5].

In this paper, we describe a Monte Carlo study of 2D hard
disks for up to N=20482=4 194 304 particles. The calcula-
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FIG. 1. Pressure of the hard disk fluid as a function of density.
Solid squares are N=256> data from Jaster [17], and crosses and
plus, respectively, are N=5122 and 1024? data from Jaster [24].
Open diamonds, triangles, and squares are data from the present
work for N=5122, 10242, and 20482, with error bars as indicated.
Open circles show data from the largest system size N=20482. All
lines are guide to the eye. The inset shows an expanded view of the
apparent van der Waals (vdW) loop between p=0.895 and 0.910,
which becomes shallower for increasingly larger size simulations.
The two arrows indicate the approximate locations of the isotropic-
hexatic and hexatic-solid boundaries.
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tions were carried out in the canonical ensemble, in a square
box with periodic boundary condition and in a rectangular
box with aspect ratio v3:2 for the higher densities. We
worked with densities in the range p=0.880 to 0.920, which
according to previous estimates should span the transition
region [5,6,9,11,17]. Densities p are given in reduced units
with the hard disk diameter being 1.

While the rationale for going to larger system size is to
eliminate finite-size effects, larger simulations also take
longer to equilibrate. We have focused on N=5127 to try to
carry out detailed simulations covering a large range of den-
sities between p=0.880 and 0.920. At this size, one run at
each density took several months of CPU time. Additional
larger simulations with N=1024% and 2048 were performed
for four densities between p=0.895 and 0.910 in the vicinity
of the van der Waals loop previously observed in smaller
simulations. These larger simulations took up to one year of
CPU time for each data point. (In contrast, Jaster’s recent
simulations [24] focuses on a different region in the phase
diagram, offering data for p=0.918 at N=1024? and two den-
sities, p=0.914 and 0.918, for N=5122)

Two different types of Monte Carlo moves were used for
our simulations. The first is a conventional Metropolis move,
where each particle is displaced in a random direction by a
random amount. A second Monte Carlo move based on the
cluster algorithm proposed by Dress and Krauth [27] and Liu
and Luiijten [28] was also used. At the densities we worked
with, neither algorithm is particularly efficient in causing
very large rearrangements in the system configuration. But
by mixing two different algorithms that have vastly different
properties, we hope to minimize equilibration problems char-
acteristic of any single algorithm. One Monte Carlo step
(MCS) in our simulation is defined as having moved each
particle on the average once using the Metropolis algorithm,
plus having made one global cluster update. The simulations
for N=5122 reported here were carried out with no fewer
than 5 X 10® MCS for each density. Depending on the equili-
bration rate, results from the last 1X 10° to 3 X 10° MCS
were used to collect statistics. Two to four independent simu-
lations were carried out for each density for simulations with
a square box, and five to six for those with a rectangular box.

The pressure P was calculated using the virial formula
PA/NkT=[1+mpg(1*)/2]\3p/2, where g(1%) is the contact
value of the pair correlation function and Ay=v3N/2 is the
close-packed area of the system. The calculated pressure P is
shown in Fig. 1 as a function of density p for N=5122 (open
circles) and for N=1024° (open triangles). Comparing the
N=512% and 1024? data to those from Jaster’s simulation
with N=2562, the two sets of data are almost identical for
p=0.890, but inside the range p=0.895 to 0.910, the larger
size simulations produced a smaller pressure for p=0.895 but
larger pressures for p=0.900 to 0.910. It is therefore clear
that the apparent van der Waals loop in the pressure is a
result of finite-size effects, and using even larger size simu-
lations, this slight nonmonotonic decrease in the pressure
should eventually vanish altogether. For the N=20482 simu-
lations, the van der Waals loops has almost completely flat-
tened out between p=0.895 and 0.905, with a slight dip in P
still visible for p=0.910. As expected, finite-size effects are
indeed very pronounced in the transition region even for
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FIG. 2. The bond orientation order parameter ) derived from
the subblock analysis as a function of density for the N=5122 simu-
lations. For p=<0.895, ¢ scales to O with larger system sizes. For
p=0.905, ¢ appears to scale to a nonzero value.

simulations of this magnitude, but the dynamic corerlation
time for the pressure measurements were of the order of only
10° MCS.

Even though the evidence in Fig. 1 is clear that the van
der Waals loop is an artifact of finite-size effects, these data
alone cannot rule out a first-order melting transition. In fact,
the observed high compressibility in the transition region is
not predicted by HNY theory and is more consistent with a
weakly first-order behavior. To further examine the finite-
size effects, a detailed scaling analysis was performed on the
simulation data. For this purpose, we have found a subblock
scaling analysis [11,26] to be useful. With this method, a
single large-size simulation provides information on multiple
length scales simultaneously. The subblock scaling analysis
was applied to the bond orientation order as well as the trans-
lational order.

The bond orientation order is given by glré
=[(6N)"'2 /2, exp(6i6,)|*, where the sum goes over each par-
ticles / and its nearest neighbors j and 6); is the angle be-
tween the line from / to j with some fixed reference axis.
According to HNY theory, ¢/ should have only short-range
order in the isotropic phase and quasi-long-range order in the
hexatic phase with exponent 7s=<1/4. We calculated ; for
subblock sizes of Lg=L/64,L/32,...,L, where L is the full
length of the box, and plot the results in Fig. 2. For p
=0.895, ¢ clearly scales to zero, but for p=0.900, ¥ ap-
pears to scale to a finite value.

To establish the precise scaling behavior, we plot In % VS
the natural logarithm of the length of the subblock Ly in Fig.
3 for the N=512 simulations. According to HNY theory, this
plot should show a slope —7 in the hexatic phase and -2 in
the isotropic phase where there is only short-range order.
Figure 3 shows that for both p=0.880 (solid triangles) and
0.890 (open diamonds), the bond orientation order has no
long-ranged correlations in the large-length-scale limit, and
the size of the simulations was big enough to reach the scal-
ing limit. We can safely conclude that densities p=<0.890 are
in the isotropic phase. On the other hand, for the highest
densities p=0.905 (solid diamonds) and 0.910 (open
squares), the bond orientation order shows an algebraic de-
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FIG. 3. Subblock scaling analysis for the bond orientation order
parameter for the N=512% simulations. The dotted line corresponds
to a slope of -2 and the dashed line a slope of —1/4. The inset
shows an expanded view for p=0.895 and 0.900 in the large-length-
scale region.

cay with an exponent 7, much smaller than 1/4. This is
consistent with the interpretation that these densities are in-
side either the hexatic or the solid phase.

For p=0.895, the interpretation of the subblock scaling
plots is more involved. The inset in Fig. 3 shows an ex-
panded view of their behaviors in the large-length-scale
limit. The subblock scaling plot for p=0.895 (closed squares)
changes slope twice, first at L/2 and then more gradually
between L/4 and L/8. The first abrupt slope change at L/2 is
an artifact of the subblock scaling analysis which has been
discussed by Weber, Marx, and Binder [11]. The reason for
this sudden slope change is that the subblocks and the full
box actually belongs to two different ensembles—the ca-
nonical for the full box and something resembling the grand
canonical for the subblocks. It is therefore possible for the
full box to exhibit a different scaling behavior compared to
the subblocks when the correlation length exceeds the size of
the simulation box, in which case the full box data point
must be excluded from the scaling analysis. When this is
done, the scaling behavior suggests that the orientation order
decays algebraically with an exponent larger than 1/4. But
clearly the scaling limit has not been reached, so it is pos-
sible that this exponent will continue to increase with lengths
beyond the size of the present simulation. These evidence
suggest that p=0.895 must still be inside the isotropic phase
but is very close to the isotropic-hexatic boundary.

p=0.900 is more problematic. The average of several runs
is shown in Fig. 3, but Fig. 4 shows the subblock scaling plot
for two simulations of 5X 10 MCS from different starting
configurations. Clearly, the two runs show different scaling
behaviors, indicating that the bond orientation order may
have very long memory. While one run exhibits scaling be-
havior up to the longest length scale in the system, the other
seems to have different slopes for two separate length scales.
The steeper slope at long length scale is approximately —1/4,
whereas the shallower slope at short length scale is about
—1/8. The discrepancy between these two runs indicate that
the system may have strong hysteresis effect, but the scaling
exponent appears to be consistent with HNY theory for a
density inside the hexatic phase.
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FIG. 4. Subblock scalling plot for the bond orientation order for
p=0.900 for two simulations of 5 X 10° MCS.

Taken together, the pressure data and the subblock scaling
analysis of the bond orientation order reveal a consistent pic-
ture. For densities p=<0.895, the system is in the isotropic
phase. The van der Waals loop in the pressure between p
=0.895 and 0.910 observed in previous simulations is most
certainly due to finite-size effects. The bond orientation cor-
relation length increases when the isotropic-hexatic bound-
ary p; is approached from below and it changes from short-
range correlation to an algebraic decay with 7, close to 1/4
at p;=0.900, which is consistent with previous estimates of
Jaster [17] using N=512% and Watanabe et al. [25] based on
relaxation measurements (but with much smaller system
sizes). Above p;, the exponent 7, decreases quickly from 1/4
to zero when the hexatic-solid boundary p,, is approached
from below. These findings are consistent with the HNY sce-
nario. But the large compressibility near the isotropic-hextic
boundary also suggests that the transition may be weakly
first order instead of continuous, though the existence of the
hexatic phase is clear.

Since 75— 0 for p—0.910, this has been used previously
as evidence that the hexatic-solid boundary is located at p,,
~0.910 [11,17]. The recent data of Jaster, however, have
placed p,, at a much higher value =~0.933 [24]. To more
accurately locate the hexatic-solid boundary p,,, we turn to a
subblock scaling analysis of the translational order %2
=|N"'Z, exp(ik - 7;)|2, where the wave vector k has magnitude
27/(V3/2p)"2. In the solid phase, ¢/ is expected to decay
algebraically with exponent 7, no larger than 1/3 [2]. The
results for three densities p=0.900, 0.910, and 0.920, are
shown in Fig. 5 for the N=5122 simulations in both a square
and a rectangular box with a y3:2 aspect ratio. For p
=0.900 (triangles) and 0.910 (squares), the results are con-
sistent with no long-range translational order in the large-
length-scale limit for both box geometries. This indicates
that both of these densities are inside the hexatic phase. On
the other hand, for p=0.920, the translational order shows
apparently different scaling behaviors for the two box
geometries—no long-range order in the square box but
quasi-long-range translational order with an apparent expo-
nent 7,>1/3 for the rectangular box. In fact, comparing the
two different box geometries, we found that the rectangular
box simulations at this density were much slower to equili-
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FIG. 5. Subblock scaling analysis for the translational order pa-
rameter for the N=512% simulations in a square box and a rectan-
gular box. The dotted line corresponds to a slope of —2 and the
dashed line a slope of —1/3.

brate, leading to the larger error bars on the right panel of
Fig. 5 for p=0.920. Since the translational correlation length
is expected to diverge according to HNY theory as p ap-
proaches the melting density p,, [3], the rectangular box used
for the simulations at p=0.920 was probably too small to
reach the scaling limit. Therefore, we believe that p=0.920 is
most likely still inside the hexatic phase and has not yet
reached the hexatic-solid boundary. This establishes a lower
bound for p,,, one that is much higher than the value previ-
ously suggested [11,17]. But this new lower bound is consis-
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tent with the recent estimate provided by Jaster based on
simulations with N up to 1024% [24]. Since the pressure at
p=0.920 (see Fig. 1) is much higher than the pressure inside
the apparent van der Waals loop, this new lower bound for
p,, provides strong evidence that the hexatic-to-solid transi-
tion is indeed continuous as suggested by HNY theory.

In summary, we have shown using large-scale computer
simulations with more than 4 X 10° particles that the appar-
ent van der Waals loop observed previously in smaller simu-
lations is an artifact of finite-size effects. In conjunction with
a detailed scaling analysis of the bond orientation and trans-
lational order, the data clearly establish the existence of the
hexatic phase and provide strong evidence for the presence
of two separate phase transitions, one for the isotropic-
hexatic transition and a second one for the hexatic-solid tran-
sition. The results further give compelling evidence that the
second transition—the melting of the solid to the hexatic—is
a continuous transition. For the isotropic-to-hexatic transi-
tion, even with the large systems studied, the pressure-
density relationship still shows high compressibility near the
transition, suggesting that the freezing from the isotropic to
the hexatic phase may be a weakly first-order transition, but
the scaling evidence from the bond orientation order is not
inconsistent with HNY theory either. Despite the large sys-
tem sizes used for this study, the question of whether the
isotropic-hexatic transition is actually continuous or not re-
mains inconclusive based on the pressure-density results.
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