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Cellular aggregates may be considered as collections of membrane enclosed units with a pressure difference
between the internal and external liquid phases. Cells are kept together by membrane adhesion and/or confined
space compression. Pattern formation and, in particular, intercellular spacing have important roles in control-
ling solvent diffusion within such aggregates. A physical approach is used to study generic aspects of cellular
packings in a confined space. Average material properties are derived from the free energy. The appearance of
penetrating intercellular void channels is found to be critically governed by the cell wall adhesion mechanisms
during the formation of dense aggregates. A fully relaxed aggregate efficiently hinders solvent diffusion at high
hydrostatic pressures, while a small fraction ��0.1� of adhesion related packing frustration is sufficient for
breaking such a blockage even at high a pressure.
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Broadly defined, granular materials include all materials
which are divided into discrete cells on a scale significantly
larger than the atomic one. They include, e.g., all porous
materials, emulsions, foams, with one or several characteris-
tic length scale for the pores, and all living matter. From the
statistical physics point of view the first three have received
a lot of attention in the context of granular matter, while the
last one, the living matter, has so far been largely neglected.

During its initial stages of existence, multicellular organ-
isms grow by generating cellular aggregates. Such aggre-
gates may grow in a way that minimize surface area if adhe-
sion is strong �1�. In a confined geometry dense aggregates
may form as a result of internal pressure, irrespective of
adhesion. The ultimate porosity and coordination number,
and their fluctuations within such an emerging structure, will
affect, e.g., the permeability of solutes to the cells from the
surrounding solution. This may apply to growing tumors �2�
and is of particular importance in the nutrient uptake of
plants �3,4�.

A cellular aggregate consists of discrete solid and deform-
able membranes with a pressure difference between internal
and external liquid phases. In physical terms, this type of
system is a hybrid of a foam and solid granular matter. The
differences lie mainly in the physical state of the matter
forming the grains. Solid granular matter consists of solid
grains with a liquid phase in between grains. The “grains” in
foams are liquid with a solid or liquid phase separating cells.

The texture of a liquid foam is governed by surface ten-
sion and the degree of drainage. A wet aqueous foam has low
porosity and no elastic rigidity. A dry foam has a high density
of bubbles �i.e., a high porosity� which are interlocked, or
jammed, such that they cannot flow past each other �5�. This
leads to nonzero bulk and shear stiffness determined by in-
ternal compressibility and surface tension. In cellular aggre-
gates the surface tension has no counterpart and, in contrast
to cellular aggregates, aqueous foams tend to coarsen with
time.

Similar to aqueous foams, the stiffness of a solid granular
material is zero below the jamming transition. At the jam-
ming transition the distribution of contact forces is broad
�i.e., exponential� and a complex network of force chains
appears �6,7�. When pressure is increased beyond the jam-
ming threshold, the deformations of the grains increase and
local rearrangements occur. The force chain network then
becomes denser and the distribution of the contact forces
narrower. Eventually, the exponential distribution should
transform into a Gaussian-like distribution �8–10�. Typically,
the porosity, and thus the permeability, remains high in a
packing of solid grains �11� in contrast to a packing of soft
grains. The transformation in the distribution of contact
forces is difficult to investigate numerically as there is no
easy way to efficiently model large deformations of solid
grains. Commonly, Hertz contact forces are applied in nu-
merical simulation models �11,12�. Here, cellular aggregates
provide a possibility to model arbitrary large deformations.
This motivates the use of the term soft grains.

It is thus clear that soft grains form their own class of
granular materials. As will be demonstrated, the average me-
chanical behavior of soft aggregates can in general be de-
rived from the free energy and there is little difference be-
tween low and high friction membranes. In contrast, the
fluctuations of the contact forces differ qualitatively. A high
friction aggregate can never become compact, thereby leav-
ing relatively open paths for, e.g., nutrient diffusion through
the packing even at a high hydrostatic pressure. In the oppo-
site case, a low friction aggregate rapidly becomes compact
with increasing pressure, thus efficiently closing all paths.

In our numerical model, cell membranes are modeled as
closed loops of spring-mass chains �13�. The equations of
motion for a membrane of mass points connected by linear
elastic springs �i.e., a minimal model of a single polymer
loop� can be written as

m��̈ i = �i�� i − �i+1�� i+1 + P�l0/2��� i + P�l0/2��� i+1, �1�
where m is the mass of the points i located at �� i, and con-
nected by springs with tension forces �i. P is the inflation
pressure and l0 is the length of the unstretched springs. �� i is
a unit vector along spring i, and �� i is the outward directed
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orthogonal unit vector for the same spring. We set the pres-
sure P to be independent of the area inside the membrane
�e.g., like a osmotic pressure�.

Aggregates are formed by slowly increasing the pressure
difference for a set of membranes confined within a two-
dimensional box with stiff boundaries. A very stiff short-
range harmonic potential between the mass points belonging
to different membranes is implemented in order to prevent
membranes from penetrating each other �the range of this
potential is approximately that of the distance between mass
points�. We focus on two cases: �I� There is a central force
potential around each mass point, i.e., the membranes are
prevented from sliding on each other as a result of interlock-
ing �“high” friction�. �II� The potential has only a nonzero
component orthogonal to the membrane surface meaning that
the membranes can freely slide on each other. Snapshots of a
small packing of type �I� at different inflation pressures are
shown in Fig. 1. An animation of a packing inflation is also
available �17�.

Our simulation results are because of computational rea-
sons limited to rather small systems. Before analyzing the
simulation results we therefore give an analytical description
of the force distributions inside a packing starting from the
free energy. The free energy does not contain any connection
to the finite size of the box used in the simulations and
should therefore be valid in the “thermodynamic limit.” The
temperature is set to zero, which means that the free energy
does not contain an entropy term. The equlibrium condition
for the free energy is then reduces to a force balance equa-
tion.

Let N be the number of membranes contained within a
two-dimensional box of size L2 having stiff boundaries. Each
membrane consists of n mass points of mass m connected by
n springs with spring constant �. A pressure P is used to
inflate each membrane, which means that a pressure force Pl

pushes each mass point in the outward direction. The spring
length is denoted by l. The free energy F of a circular mem-
brane as a function of its radius r can be written as

F = nPl�r0 − r� + n�l0r0sin��

n
�� r − r0

r0
�2

, �2�

where r0 is the equilibrium radius at P=0 and l= l0 at P=0.
The first term is the work done by the inflation pressure,
while the second term is the radial component of the elastic
energy stored in the springs. Differentiating with respect to r
gives the force on a isolated membrane as a function of P
and r as

f�P,r� = n2�l0sin��

n
�� r − r0

r0
� − nPl . �3�

Thus, there is force balance between the stretched membrane
and the inflation pressure P, when r�re=r0

+ Plr0 /�2�l0sin� �
n

��. The space filling factor 	 of the mem-
branes before the contact formation starts is thus 	d
= �N�re

2� /L2. The corresponding porosity �1−	d� goes to
zero at P	lr0=2�l0sin� �

n
�� L

	N�
−r0�.

Ideally, the membranes in a packing would rearrange
themselves into the most optimal configuration �i.e., a hex-
agonal lattice� as P is increased and the membranes begin to
push on each other. A hexagonal lattice will not quite be
formed as can be seen, e.g., in the small system in Fig. 1. In
particular, at the boundaries of the system the membranes are
forced to arrange themselves beside each other along the
walls, but there is also “frozen in” disorder in the bulk. As
the membranes are pressed flat against the wall at high pres-
sures, it is easy to estimate the total force on the walls, Fw.
If the membranes would arrange themselves as a square
lattice the force on the walls would be Fsq= P lnw, where
nw
	Nn�1− �P	l� / Pl�.

Fsq and the space filling factor 	d are compared to simu-

FIG. 2. �a� Fw as a function of Pl0. The dotted line is the free
energy estimate of Fw at low porosity. �b� The porosities 1−	 as
functions of Pl0. The dotted line is the free energy estimate of the
porosity at high porosity. �c� Z�P� as function of Pl0. �d� The dis-
tribution of membrane surfaces Nai /L2 at P=50. �
� frictional
packings, �+� zero friction packings. Broken lines represent fric-
tional packings and full lines represent zero friction packings in
�a�–�c�.

FIG. 1. An aggregate of closed inflated membranes in an elastic
box. Friction between membranes is large. The snapshots are taken
at pressure forces Pl=5,10,20,40.
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lation results in Figs. 2�a� and 2�b�, respectively, for packings
with N=50. As P is increased, the packing undergoes a
change from a dilute state in which 	
	d and Fw
0 to a
dense state in which Fw
Fsq and 	
0. A transition region
between the two states is entered at Pl0
15. This should be
compared to the average coordination number, Z�P�, in Fig.
2�c�. The transition region is entered when Z
2, which is
roughly the point at which membranes in contact percolate.
This is in contrast to frictionless solid grains for which the
jamming transition, and thereby non-zero forces, appear at
Z
4. The appearance of nonzero contact forces for cellular
aggregates already at Z
2 is a result of slow relaxation. If
two membranes collide they are very slowly pushed away
from each other �this is seen, e.g., in Fig. 1 for Pl=10�.

When Z approaches 4 the packings already enter the
dense state. In the dilute region all the membrane areas are
similar. In the dense region the membrane areas �a� fluctuate.
The fluctuations are Gaussian, which is demonstrated in Fig.
2�d�. The average membrane area is �a��
Nai /L2
0.91
with a standard deviation of 0.15. This distribution is not
particularly broad, which suggest that it might be feasible to
describe the forces on the membranes by an estimation of the
average.

Equation �3� can be used as an approximation of the total
force on a membrane as a function of pressure P and effec-
tive radius ri=	ai /�. However, the total force on a mem-
brane does not compare easily with simulation results be-
cause of boundary effects. The average of the contact forces
on a membrane is much less sensitive in this respect. Figures
3�a� and 3�b� show Fa�P ,r�= f�P ,r� /Z�P� compared with the
average of the contact forces recorded in the simulations, Fs,
�i.e., averaged over �Fa ,Fa+�f� using the results of several

runs�. It is obvious that Fa�P ,r� describes very well the av-
erage of the contact forces. This means that the only missing
piece for a full description of the distribution of contact
forces are the fluctuations of Fs.

At the jamming transition the fluctuations of the contact
forces in granular media have a characteristic distribution
�9–11,14,15�. The characteristic distribution reaches a maxi-
mum at a small force and decays exponentially for large
forces. In Fig. 3�c� we compare the contact force fluctuations
�f / f*� f /Fa�P ,r�� at Z�P�
2 for both frictional and fric-
tionless packings. The two distributions are approximately
similar and have the characteristic shape of granular pack-
ings at the jamming transition.

In Fig. 3�d� the same distributions are displayed at Z�P�

4.5. Here the force distribution for frictional packings is
described by an exponential function, exp�−f / f * �, while the
distribution for frictionless particles is well approximated by
a Gaussian �in the latter case it is also possible that the decay
of the probability distribution for large forces is linear expo-
nential �exp�−f / f * �� as in Ref. �15� instead of Gaussian
�exp�−�f / f * �2��.

The most important result here is the dramatic difference
in the development of the contact force distributions in the
small �−f / f * � limit for zero and high friction. While the
fraction of small contact forces have clearly decreased for
zero friction packings it has actually increased for high fric-
tion packings. The �almost� Gaussian curve for frictionless
particles at high pressures implies that the force chains have
been relaxed. The exponential force fluctuations at high Z for
type �I� particles �high friction� means that the force chain
network is persistent and that the force distribution is “fro-
zen” in a state of maximum entropy �this can be derived
analogously to the derivation of the Maxwell-Boltzmann dis-
tribution of kinetic energy in an ideal gas�. This is a result
which may have important biological implications as will be
discussed below.

A force chain network for different pressures �P� is dis-
played in Fig. 4 for the type �I� packing. This figure can be
compared to, e.g., a similar figure in Ref. �7�. The displayed

FIG. 3. The average of the contact forces on a membrane. Simu-
lated results Fs are compared to Eq. �3�, Fa. �a� High friction. �b�
Zero friction. The broken line is Fs=Fa. �c� The fluctuation of the
contact forces �probability distribution P�f�� on a membrane at
Z�P�
2. The dotted line is for high friction and the broken line for
zero friction. The full line is an exponentially decaying function. �d�
The fluctuation of the contact forces on a membrane at Z�P�
4.5.
The distribution for high friction �dotted line� is compared to P�f�
�exp�−f / f*� �full line�, and the distribution for zero friction �bro-
ken line� is compared to a Gaussian distribution �full line�.

FIG. 4. Force chain network in a small packing with high fric-
tion, N=50, at Pl0=5,10,15, . . . ,60 from top left to bottom right.
Notice percolation at Pl0=15.
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contact forces are here the sum of all forces between mass
points of two membranes in contact in opposite to the single
contact normal forces in Ref. �7�. The force chains in Fig. 4
thus include both normal and tangential forces, but a force
chain network reminiscent of the those found in solid grain
packings is nevertheless observed.

Next we turn to the effective stiffness of a dense packing
of membranes. The bulk stiffness K is defined by

1/K = −
1

V

dV

dP
, �4�

where V=L2. To obtain K, dV is defined as dV=−4�L. dP /dr
can be determined from Eq. �3� by using dP=df / �2�r� and
dr=2�r /L. This gives the bulk modulus K=�l0 /2r0. A cor-
responding estimate of the shear modulus of a packing of
membranes gives zero because shearing involves no volume
change for the membranes. This was also checked by simu-
lations. Notice that cellular aggregates have no force corre-
sponding to surface tension which gives a nonzero shear
modulus in dry foams. The estimate for K is compared to
simulation results of type �I� membranes �high friction� in
Fig. 5�a� and for type �II� �freely sliding� membranes in Fig.
5�b�. In both cases K is a fairly linear function of �l0 �r0

=1�. For frictionless particles the proportionality factor is
somewhat smaller than 1/2 but approaches this value as N is
increased. For frictional membranes the proportionality fac-
tor seems to be about 0.37, which means that friction be-

tween membranes decreases bulk stiffness. This is not sur-
prising since frictional membranes are interlocked via
contacts and not all of the pressure contribute to pushing on
the walls.

In summary, we have investigated dense packings of in-
flated membranes for two cases of friction between mem-
branes: zero and high. The porosity at low coverage, the
force on the confining box at high coverage, the average of
the contact forces between membranes, the average bulk
stiffness, and the average shear stiffness of packings can all
be derived from the free energy, and they are all reasonably
similar for both friction cases. A qualitative difference arise
in the fluctuations of the contact forces. A frictionless pack-
ing is relaxed when coverage is increased, while the force
chain skeleton formed at the jamming transition persist to
high coverage for frictional packings.

We finish by discussing the biological implications of our
results. From a life science point of view the most interesting
results are in Figs. 3�c� and 3�d�. Intuitively, one would think
aggregates of living cells be rather relaxed with not much
internal tension. That suggests that the osmotic pressure
within cells induces a Gaussian pressure distribution on the
cell walls in contact. That means that if the osmotic pressure
was high �i.e., excess of salt in the cells� there would be a
high pressure on all cell membrane contacts in the aggregate.
That would effectively hinder the diffusion of large mol-
ecules. Such an effect could also hinder the penetration of
chemotherapy drugs in tumours �2�, harm the development
of embryo �16�, or cause a plant to suffer from a change in
salinity �3,4�. As an opposite, if there would be a small frac-
tion of frustrations in the aggregate �0.1–0.25 is enough for
percolation in three-dimensional �3D� structures�, there
would always be a number of cell membrane contacts that
never experience any pressure. Thus, some paths would re-
main always open for solute penetration even at a high os-
motic pressure �cf. Fig. 4�.
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FIG. 5. �a� The bulk modulus K as a function of membrane
stiffness, �l0, for frictionless membranes. �b� Same as in �a� for
frictional membranes. Simulations results for N=7,15 are
displayed.
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