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The dynamics of intracellular Ca2+ is driven by random events called Ca2+ puffs, in which Ca2+ is liberated
from intracellular stores. We show that the emergence of Ca2+ puffs can be mapped to an escape process. The
mean first passage times that correspond to the stochastic fraction of puff periods are computed from a novel
master equation and two Fokker-Planck equations. Our results demonstrate that the mathematical modeling of
Ca2+ puffs has to account for the discrete character of the Ca2+ release sites and does not permit a continuous
description of the number of open channels.
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I. INTRODUCTION

Understanding the emergence of cellular processes from
molecular interactions is one of the most fundamental quests
in contemporary cell science. Since the number of reactions
as well as the total number of molecules that participate in
these reactions span orders of magnitude, no universal ap-
proach exists. That holds in particular when we consider the
number of reacting molecules. On the one hand, there are
processes that involve macroscopically large quantities, so
that their dynamics is correctly described by deterministic
equations �1,2�. On the other hand, recent experiments have
revealed that some reactions affect only tens of molecules.
Irvine et al. have reported that T cells react to the binding of
even a single agonist �3�. Such a small number of interacting
molecules demands a stochastic approach, because fluctua-
tions cannot be neglected anymore as does deterministic
modeling. In the MinCDE system for example, only a few
thousand molecules are expressed �4�. It exhibits oscillations
where the deterministic equations decay to a stationary fixed
point. Research of recent years revealed several systems in
which noise shapes the dynamics essentially and induces be-
havior that is not present without fluctuations �see �5,6� for
examples from gene expression and signal transduction�.

Another reason for the commitment of only a few mol-
ecules is the heterogeneity of cells. The number of reaction
partners may exhibit strong spatial and temporal variations
due to heterogeneously spatial distributions of molecules or
large concentration gradients. These large gradients create a
dynamic compartmentalization of the cell with largely differ-
ent concentrations between the compartments. If only a small
number of elements is in one of these dynamic compart-
ments, fluctuations remain large, despite the fact that many
copies of that element may be present in the cell. That is the
case with intracellular Ca2+ dynamics �see later�.

The dynamics of the Ca2+ concentration in the cytosol of
a cell is determined to a large degree by release and uptake
of Ca2+ by intracellular storage compartments, in particular
the endoplasmic reticulum �ER�. Release is controlled by
inositol-1,4,5-trisphosphate �IP3� receptor channels �IP3R�.
They are arranged in clusters that comprise between 1 and 40
channels and that are randomly distributed on the membrane
of the ER with distances between 1–7 �m �7,8�. IP3Rs have
the important property that their open probability depends on

the Ca2+ concentration in the cytosol. The details of this
dependency will be discussed in Sec. II. A moderate increase
in the cytosolic concentration—i.e., on the outside of the
storage compartment—increases the opening probability.

Single channels behave, of course, stochastically �9�. The
most important fluctuations arise from the stochastic closing
and opening of the Ca2+ channels �10�. They lead to random
elemental release events called puffs. A puff is the spontane-
ous opening of channels of a single cluster. Experimental and
theoretical studies have suggested that puffs play a pivotal
role in intracellular Ca2+ dynamics �8,11�. These investiga-
tions put forward the idea that all global patterns like Ca2+

waves foot on Ca2+ puffs. To envisage the underlying mecha-
nism, we start with a Ca2+ puff in a neighborhood of closed
clusters. The Ca2+ released by the puff diffuses to adjacent
clusters, where channels may open due to the Ca2+ dependent
activation. If they do so, the liberated Ca2+ may induce
neighboring clusters to open, too, and release spreads
through the whole cell. That represents a single spike of an
oscillation. However, there is no guarantee that a puff ini-
tiates a wave spreading throughout the cell, since activation
is truly random, as we will show later.

The dynamic behavior of deterministic models using re-
alistic concentration gradients provides further relevance of
fluctuations for intracellular Ca2+ dynamics. Stochastic simu-
lations and the bifurcation analysis of deterministic models
have demonstrated that Ca2+ oscillations that agree with ex-
perimental findings vanish in the deterministic limit �10–12�.
The reason is in the high Ca2+ concentration and large gra-
dients that occur at an open cluster. They lead to a saturation
of all control processes at the open cluster that regulate Ca2+

liberation in a deterministic model, so that no oscillations
can occur �13,14�. Random fluctuations allow the cluster to
escape from that saturation. The large gradients around an
open cluster generate a dynamic compartment and keep the
volume with high concentrations small. Consequently, only a
small number of active elements experiences strongly stimu-
lating concentrations. That precludes deterministic behavior
in the dynamic compartment.

Given the vital part of Ca2+ puffs in intracellular Ca2+

dynamics and the importance of fluctuations, a stochastic
description of a single cluster is the focus of the present
work. We will apply it to the initiation of Ca2+ puffs, which
represents the first step for any Ca2+ pattern. Our findings
suggest that puff initiation can be mapped to an escape pro-
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cess and that the mathematical description has to account for
the integer number of open channels per cluster. A continu-
ous model of the fraction of open channels that incorporates
realistic fluxes does not permit Ca2+ puffs for parameter val-
ues that agree with experimental data. The mean first passage
times can be represented as an infinite series of exponentials.
However, already the first terms in the expansion yield ex-
cellent convergence. That hints at a Poissonian character of
puff initiation. Although noise is intrinsically multiplicative
for intracellular Ca2+ dynamics, we provide evidence that
additive noise may serve as a reasonable approximation.

We will introduce a Ca2+ model for an IP3 receptor chan-
nel cluster in the next section. It serves as input for a master
equation in Sec. III, from which we will derive two Fokker-
Planck equations in Sec. IV. Finally, we will employ these
equations to characterize the initiation of Ca2+ puffs.

II. Ca2+ MODEL

The IP3 receptor channel is a tetramer the subunits of
which have binding sites for Ca2+ and IP3. We implement a
model for a single subunit that is based on ideas of De
Young’s and Keizer’s �15�. They assume a subunit to possess
three binding sites: an activating Ca2+ binding site, an inhib-
iting Ca2+ binding site, and an activating IP3 binding site.
The occupation of the binding sites controls the state of the
subunit. When IP3 and Ca2+ are bound to their activating
binding sites, a subunit is in the activated state. As soon as
Ca2+ binds to the inhibiting binding site, a subunit is inhib-
ited, independent of the state of the other binding sites. It can
only be activated again upon dissociation of Ca2+ from the
inhibiting binding site. Experiments have indicated that an
IP3R channel is conducting when at least three subunits are
activated �16,17�. Random binding and unbinding of Ca2+

and IP3 and therefore random state changes of the receptor
are the source of stochasticity of intracellular Ca2+ dynamics.

The number of open IP3R channels determines the Ca2+

flux from the ER to the cytosol. Since the release channels
are tightly packed within a cluster, a relation between the
number of channels in the cluster and cluster size exists.
Consequently, we can map the number of open channels to
the size of a conducting area �or volume� equal to the area
occupied by all open channels. A change in the number of
releasing IP3R channels corresponds to a modulation of the
conducting area of a cluster. This region is usually not con-
nected. However, Swillens et al. showed that the spatial ar-
rangement of IP3R channels does not influence the Ca2+ dy-
namics at an open cluster �7�. Therefore, we map the area of
all conducting release channels to an area of the same size
concentric to the cluster area. Let a denote the radius of this
region, N the total number of channels per cluster, and no the
number of open channels, then a=a0

�3no /N. That reflects the
above notion that the volume of the conducting sphere cor-
responds to the volume that is occupied by the fraction no /N
of open channels. If no=0 then a=0, and a takes the maxi-
mal value a0 if all N channels are open.

The deterministic dynamics of this cluster model has been
investigated in �13,14�. In addition to IP3 mediated Ca2+ lib-
eration, we considered sarcoendoplasmic reticulum calcium

ATPase �SERCA� pumps, which transport Ca2+ from the cy-
tosol to the ER, and a leak flux. The stationary Ca2+ concen-
tration profile that results from these three fluxes is

c�r� = �A�a�
sinh�k1r�

r
+ e1���a − r�

+ �B�a�
exp�− k2r�

r
+ e2���r − a� , �1�

where

A�a� =
l�k2a + 1�

cosh�k1a�k1 + sinh�k1a�k2
, �2a�

B�a� =
l�sinh�k1a� − cosh�k1a�k1a�

exp�− k2a��cosh�k1a�k1 + sinh�k1a�k2�
, �2b�

with

l =
− kckpE

�kl + kp + kc��kl + kp�
, k1 =�kl + kp + kc

D
,

k2 =�kl + kp

D
, �3�

and e1ª �kl+kc�E / �kl+kp+kc�, e2ªklE / �kl+kp�. The con-
stants kl, kp, and kc denote the leak flux coefficient, the
strength of the SERCA pumps, and the channel flux coeffi-
cient, respectively. The diffusion coefficient is given by D. E
denotes the concentration of free Ca2+ in the ER.

Simulations have demonstrated that the Ca2+ concentra-
tion rapidly equilibrates upon a change in the number of
open channels �12�. Hence, we will approximate the Ca2+

dynamics by its stationary value in the remainder of this
work. The number of open channels no uniquely determines
the Ca2+ concentration according to Eq. �1� and a
=a0

�3no /N. The focus of the two subsequent sections is the
calculation of no.

III. MASTER EQUATION

The number of open channels no depends on the state of
the subunits of the IP3Rs. A state of a subunit is determined
by the occupation of its binding sites. The De Young Keizer
�DK� model has three binding sites per subunit and hence
eight subunit states. We reduce these eight states in two steps
to three states. First, we eliminate the IP3 dynamics adiabati-
cally since IP3 binding and unbinding are much faster than
the Ca2+ dynamics in the framework of this model. The re-
sulting four states are labeled by a binary pair ij, where the
first index represents the Ca2+ activating binding site and the
second the Ca2+ inhibiting binding site �11�. An index equals
1 when the binding site is occupied and 0 otherwise, e.g., 10
corresponds to the activatable state of a subunit. The second
approximation uses the fact that we are interested in activa-
tion starting from a stationary state. Transitions among the
inhibited states 11 and 01 have little impact on that activation
process. Moreover, these states are rarely populated during
puff initiation. Consequently we lump the two inhibited
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states into one state h̄. Figure 1 depicts the transition scheme
for this three state model. The transition rates follow from
�15,11�.

Modeling the dynamics of an IP3R on the basis of its
subunits leads to various consequences for a cluster of N
IP3Rs. As long as every IP3R is treated individually and sub-
units are assigned to individual channels—as has been done
in stochastic simulations �11�—the state of the cluster is
uniquely determined by the states of its subunits. However,
an approach based on a population of subunits not grouped
into individual channels is more suitable for the derivation of
master equations and Fokker-Planck equations that we would
like to use. That requires to determine the number of open

channels from the total number of activatable subunits in the
subunit population. We assume that the activatable subunits
are randomly scattered across the channels. The distribution
of the n10 activatable subunits on the 4N subunits of a cluster
decides upon the value of no and hence the Ca2+ concentra-
tion. We show in the Appendix that this distribution is
sharply peaked around its mean value. Therefore, we set no
= �no	=na. na is defined in Eq. �A18�.

The stochastic nature of Ca2+ release through IP3Rs en-
tails that the exact number of subunits in either of the three

states 10, 00, or h̄ at a given time t, i.e., the triplet
�n10�t� ,nh̄�t� ,n00�t��, cannot be specified exactly anymore.
On the contrary, only the probability P�n10,nh̄ ,n00; t� to find
a certain realization of �n10,nh̄ ,n00� at time t is accessible.
Since the total number of subunits is fixed, the values of n10
and nh̄ suffice to specify the triplet �n10,nh̄ ,n00; t�, so that
P�n10,nh̄ ,n00; t�= P�n10,nh̄ ; t�.

The probability P�n10,nh̄ ; t� changes in the time interval
�t , t+dt� due to two opposing processes: Being in �n10,nh̄� at
time t, binding or unbinding of Ca2+ alters n10 or nh̄ during dt
and hence reduces P�n10,nh̄ ; t�. On the other hand, transi-
tions from states as �n10+1 ,nh̄� or �n10−1 ,nh̄� into �n10,nh̄�
increases P�n10,nh̄ ; t�. Taking all possible reactions accord-
ing to Fig. 1 into account, the time evolution of P�n10,nh̄ ; t�
is captured by the master equation �18�,

Ṗ�n10,nh̄;t� = − �n10�b5 + a6c�n10�� + nh̄b6�P�n10,nh̄;t� − �hN − n10 − nh̄�a5c�n10�P�n10,nh̄;t� − �hN − n10

− nh̄�a6c�n10�P�n10,nh̄;t� + �n10 + 1�a6c�n10 + 1�P�n10 + 1,nh̄ − 1;t� + �hN − nh̄ − n10 + 1�a5c�n10 − 1�P�n10

− 1,nh̄;t� + �n10 + 1�b5P�n10 + 1,nh̄;t� +
b6c�n10 − 1��nh̄ + 1�

c�n10 − 1� + d5
P�n10 − 1,nh̄ + 1;t� +

b6d5�nh̄ + 1�

c�n10� + d5
P�n10,nh̄ + 1;t�

+ �hN − nh̄ − n10 + 1�a6c�n10�P�n10,nh̄ − 1;t� . �4�

For instance, being in �n10,nh̄�, the term proportional to a6c

in the first line denotes a transition from 10 to h̄, so that the
final state is �n10−1 ,nh̄+1�. The Ca2+ concentration is given
by Eq. �1�. The Ca2+ concentration in the master equation
depends on n10, which is indicated by the notation c�n10�.
The radius a in Eq. �1� follows from the number of activat-
able subunits as a=a0

�3na /N according to the preceding dis-
cussions. The adiabatic elimination of the IP3 dynamics leads
to noninteger values for the number of open channels. That
demands a careful interpretation of the size of the conducting
membrane patch, which was assumed to take only discrete
values due to the discreteness of no. One approach is to trun-
cate the rational values of no as �no�+, where �no�+ denotes
the largest integer that is less or equal no. It entails c=cb as
long as n0�1, where cb denotes the base level of the Ca2+

concentration. This approach favors the closed configuration
during puff initiation. In another approach we will keep the
noninteger value of no and consider a as a quasicontinuous

function. We will discuss the effects of both approaches with
respect to puff initiation.

Equation �4� is an accurate description of the stochastic
dynamics represented by the scheme in Fig. 1. We will de-
rive approximations like Fokker-Planck equations to calcu-
late escape time characteristics from this master equation.

IV. FOKKER-PLANCK EQUATIONS

The discrete nature of master equations often impedes an
analytic treatment. That holds in particular for master equa-
tions with nonlinearities or artificial boundary conditions. In
these cases, several approximations have been put forward
�18–22�. Despite the plethora of methods, there is still no
consensus which approximation is best �23�. Each of them
possesses advantages and drawbacks, so that the problem at
hand finally decides which procedure to use. We will con-
centrate on van Kampen’s � expansion and a method that is

FIG. 1. Transition scheme for the three state model of the IP3

receptor. d5=b5 /a5 is the dissociation constant for Ca2+ activation,
b6 the dissociation rate of Ca2+ from the inhibiting site averaged
over both IP3 binding states. We denote the number of subunits in
one of the three states by n10, n00, and nh̄.
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similar to a Kramers-Moyal expansion. The latter keeps the
nonlinearities of the master equation in the fluctuations,
whereas the former approximates them in a linear fashion.
Moreover, van Kampens’s expansion is only valid when the
macroscopic equation displays a single stable fixed point.

The � expansion requires a small parameter 1 /� in the
master equation, which for our purposes is the inverse num-
ber of subunits, i.e. �=4N. The systematic expansion of Eq.
�4� in powers of � is based on the transformations n10
=���t�+�1/2� and nh̄=���t�+�1/2	. They decompose the
variables of the master equation into macroscopic parts
�� ,�� and fluctuations �� ,	�. Inserting this ansatz into Eq.
�4�, the first nonvanishing order of � yields the macroscopic
equations,

��

�t
= − ��a5c + a6c + b5� + �� b6c

c + d5
− a5c� + a5c ,

�5a�

��

�t
= − �a6c + b6�� + a6c , �5b�

with c=c�a0
�3�a� and �aªr3�3�4−3r��. r denotes the frac-

tion of subunits in the state 10 that are activated: rª I / �I
+d1�. Equations �5� correspond to the rate equations that are
associated with the transition scheme in Fig. 1, when the
conservation condition n10+nh̄+n00=4N is applied. Note that
�a is the continuous limit �N→
� of Eq. �A18�. Therefore,
�a is the probability that at least three of the four subunits of
an IP3R are activated. The solutions of Eq. �5� represent the
deterministic part of the above transformation of variables.
They have the stationary values

�̄ =
d6c

�c + d5��c + d6�
, �̄ =

c

c + d6
, �6�

which agree with results in �14�. d6=d2�I+d1� / �I+d3� is an
effective dissociation constant. d2 denotes the dissociation
constant for Ca2+ inhibition when the IP3 binding site is li-
gated, d1 and d3 represent the dissociation constants of IP3
binding �15�.

The next order in � determines the fluctuations
through the probability P�n10,nh̄ ; t�= P���+�1/2� ,��
+�1/2	 ; t�¬��� ,	 ; t�, according to

��

�t
= − �g11

�

��
+ g21

�

�	
����� − �g12

�

��
+ g22

�

�	
��	��

+
1

2
�h11

�2

��2 + 2h12
�2

�	 ��
+ h22

�2

�	2�� . �7�

The matrices �gij� and �hij� with h12=h21 are defined as

g11 ª b6d5�c1/�c + d5�2 − a6�c + �c1�

− b5 − a5�c − �1 − � − ��c1� , �8a�

g21 ª a6c1 − a6�c1, �8b�

g12 ª b6c/�c + d5� − a5c , �8c�

g22 ª − �a6c + b6� , �8d�

and

h11 ª a5�1 − � − ��c + b6�c/�c + d5� + a6�c + b5� ,

�9a�

h21 ª − b6�c/�c + d5� − a6�c , �9b�

h22 ª a6�1 − ��c + b6� , �9c�

with

c1
ª

dc

da
�a0

�3 �a�
a0

3
�3 �a

−2�18r4�3 − 12r3�3 − 12r3�2� .

�10�

Equation �10� arises from inserting Eq. �A18� into a
=ao

�3na /N and then expanding c�a� in powers of �. The
matrix �gij� coincides with the matrix of the linearized mac-
roscopic equations �5�. The fluctuations enter through the
matrix �hij�. The Hurwitz criterion �24� assures that this ma-
trix is positive semidefinite, which means that Eq. �7� is a
linear multivariate Fokker-Planck equation.

The linear treatment of the noise in Eq. �7� has cast some
doubt on the validity of the � expansion. Therefore, a dif-
ferent class of Fokker-Planck equations have been proposed
that keep the nonlinearities of the master equation. Kramers
and Moyal have treated the shifts n10±1 ,nh̄±1 of n10 and nh̄
in Eq. �4� by means of a Taylor expansion �19,20�. Following
this procedure and defining the new variables �ªn10/� and
�ªnh̄ /�, we obtain a Fokker-Planck equation for the prob-
ability p= p�� ,� , t�:

�p

�t
=

�

��
��a6c + �b5 − �1 − � − ��a5c −

b6c

c + d5
��p

+
�2

2� ��2��a6c + �b5 + �1 − � − ��a5c +
b6c

c + d5
��p

+
�

��
�b6 − �1 − ��a6c�p +

�2

2� ��2 �b6 + �1 − ��a6c�p

−
�

� �� ��
��a6c +

b6c

c + d5
�p . �11�

The nonlinearities are introduced through c=c�a0
�3�a� with

�a defined as after Eq. �5�. Equations �4�, �7�, and �11� con-
stitute the starting point for a systematic study of puff fre-
quencies. Given a configuration �n10

0 ,n
h̄

0� at time t=0, they all

yield the probability for a configuration �n10
t ,n

h̄

t � at time t

�0. If we identify �n10
0 ,n

h̄

0� with the resting state of a cluster

and �n10
t ,n

h̄

t � with the first channel opening, such a transition
in the configuration space gives the probability for a Ca2+

puff. Consequently, we interpret a puff as an escape process
from the state �n10

0 ,n
h̄

0� to the state �n10
t ,n

h̄

t �. Although the
previous equations allow the calculation of this escape prob-
ability, no general solutions are known for two dimensional
escape processes �see �25� for a recent result�. However, the
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time scale separation between Ca2+ activation and Ca2+ inhi-
bition leads to a reduction of the two dimensional equations
to one dimension. Since the inhibiting processes are much
slower than binding and unbinding of Ca2+ to the activating
binding site, we assume that nh̄ remains unchanged during
the initiation of a puff. That is identical to setting nh̄=const,
and the master equation simplifies to

Ṗ�n10;t� = −
b6c�n10�

c�n10� + d5
nh̄P�n10;t� +

b6c�n10 − 1�
c�n10 − 1� + d5

nh̄P�n10

− 1;t� − �4N − n10 − nh̄�a5c�n10�P�n10;t� + b5�n10

+ 1�P�n10 + 1;t� − b5n10P�n10;t� + �4N − n10 − nh̄

+ 1�a5c�n10 − 1�P�n10 − 1;t� − a6c�n10�n10P�n10;t�

+ a6�n10 + 1�c�n10 + 1�P�n10 + 1;t� . �12�

For a later analysis, it is convenient to rewrite Eq. �12� in the
form

Ṗ�n10;t� = − �gn10
+ rn10

�P�n10;t� + gn10−1P�n10 − 1;t�

+ rn10+1P�n10 + 1;t� , �13�

with

gn10
=

b6c�n10�
c�n10� + d5

���̄� + �4N − ���̄� − n10�a5c ,

rn10
= b5n10 + a6c�n10�n10, �14�

and �̄ defined as in Eq. �6�. From Eq. �12�, we could again
derive Fokker-Planck equations in the same manner as be-
fore. However, a more direct approach for the one dimen-
sional � expansion is setting 	 equal to zero in Eq. �7� due
to nh̄=const. Keeping only the derivatives with respect to �
in Eq. �11� gives the nonlinear Fokker-Planck equation. Note
that these one dimensional equations are only valid during
the initiation phase of a puff, whereas Eqs. �4�, �7�, and �11�
capture the full time evolution. Nevertheless, we will con-
centrate on Eq. �12� and the entailing Fokker-Planck equa-
tions in the remainder of this work, because they admit ana-

lytic solutions and provide far reaching insights into puff
frequencies. The existence of analytic solutions is one of the
most prominent features of van Kampen’s expansion, so that
we will treat the corresponding Fokker-Planck equation most
generally in the next section.

V. ESCAPE TIMES

The initiation of a Ca2+ puff corresponds to an escape
from the stationary state to the first channel opening. That
requires the definition of the boundaries of the phase space
area from which the escape occurs. Since we restrict the
discussion to one dimension in phase space, the boundary
consists of two points. We see from Eq. �12� that the lower
boundary d is at n10=0 and that it is reflecting. That agrees
with the interpretation of n10 as the number of activatable
subunits, which is always positive. The value of the upper
boundary b is chosen such that the number of open channels
no=1. The upper boundary corresponds to the escape site, so
that the boundary condition is of absorbing type �26�.

The time t to reach the absorbing boundary is a stochastic
variable. It is described by the probability density 
�t�, i.e.,

�t�dt is the probability that the stochastic process reaches b
between t and t+dt. 
 is most conveniently computed from
G�x , t�=1−
0

t 
�x ,��d�, which represents the probability that
d�n10�b at time t when it started at x=n10

0 at t=0. The time

evolution of G is governed by L̃, which is the adjoint of the
Fokker-Planck operator L �26�. Up until now, no general
solution has been obtained for arbitrary L. Yet, an analytic
expression exists for G in the case of a linear Fokker-Planck
operator, e.g., van Kampen’s � expansion. Since the follow-
ing derivation always holds and is not restricted to the cur-
rent problem, we introduce new constants v and w. They are
given by v=−g11 and w=h11 defined as in Eqs. �8a� and �9a�,
respectively, in the present study. G obeys the linear back-
ward Fokker-Planck equation �26�,

�G�x,t�
�t

= − vx
�G�x,t�

�x
+

w

2

�2G�x,t�
�x2 , v,w � 0, �15�

with initial and boundary conditions

G�x,0� = �1, d � x � b ,

0, otherwise,
� �G�d,t�

�x
= 0, " t, G�b,t� = 0, " t . �16�

The initial condition states that d�x�b at t=0 with prob-
ability one. The reflecting boundary condition at x=d in the
adjoint Fokker-Planck equation is expressed by a no-flux
boundary condition. Setting G
0 at the right boundary cor-
responds to an absorbing boundary. We solve Eq. �15� with
the ansatz G�x , t�=exp�−�t�u�x�, ��0 so that it reduces to
the ordinary differential equation,

d2u

dx2 −
2vx

w

du

dx
+

2�

w
u = 0. �17�

Applying the transformation zªx2 /4, we find for ū�z�
ªu�x�,
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z
d2ū

dz2 + �1

2
−

4vz

w
�dū

dz
+

2�

w
ū = 0. �18�

It equals Kummer’s equation for ũ�z̃�ª ū�z� with z̃
ª4vz /w,

z̃
d2ũ

dz̃2 + �1

2
− z̃�dũ

dz̃
+

�

2v
ũ = 0. �19�

Two independent solutions of Eq. �17� are �27�

u1�x� ª M�−
�

2v
,
1

2
,
vx2

w
�, u2�x� ª xM�1

2
−

�

2v
,
3

2
,
vx2

w
� .

�20�

M designates the confluent hypergeometric function,

M�a,b,x� ª �
k=0



�a�k

�b�k

xk

k!
, �21�

where �a�0ª1 and �a�kªa�a+1� . . . �a+k−1�. The boundary
condition at n10=b entails that a solution of Eq. �17� is

v�x� ª C1�u1�x� −
u1�b�
u2�b�

u2�x�� = u1�x� −
u1�b�
u2�b�

u2�x� .

�22�

Without loss of generality, we set C1=1 because it merely
serves as a normalization. The second boundary condition
fixes the still unknown eigenvalues �. They constitute an
infinite countable set ��n� due to the finiteness of d and b.
Therefore, the general solution of Eq. �15� can be expressed
as

G�x,t� = �
n=0




an exp�− �nt�vn�x� . �23�

The subscript of vn�x� indicates that Eq. �22� has to be evalu-
ated at �=�n �see Eq. �20��. The coefficients an are deter-
mined by the initial condition G�x ,0�, which results in

an = �
d

b

r�x�vn�x�dx��
d

b

r�x�vn
2�x�dx ,

r�x� ª
2

w
exp�−

v
w

x2� . �24�

Here we used the orthogonality relation of the eigenfunctions
vn�x�:

�
d

b

vn�x�vm�x�r�x�dx = �m,n�
d

b

vn
2�x�r�x�dx . �25�

The probability 
�x , t� that the absorbing state is reached
between t and t+dt is readily computed from G�x , t� as

=−�tG�x , t�. Note that 
 is already normalized due to the
initial condition G�x ,0�. Hence, the mean first passage time
T�x� equals

T�x� ª �t�x�	 = �
0




t
�x,t�dt

= − �
0




t �tG�x,t�dt

= �
n

anvn�x�
�n

. �26�

Equation �26� includes an infinite number of eigenvalues. We
found that the first three terms of the sum over n were suf-
ficient to achieve results indistinguishable from the exact re-
sults of Eq. �30�.

An alternative approach to the mean first passage time
follows from the differential equation �26�,

− vx
dT�x�

dx
+

w

2

d2T�x�
dx2 = − 1, �27�

with the solution

T�x� =
2

w
�

x

b dy

h�y��d

y

h�z�dz, h�x� ª exp�−
v
w

�x2 − d2�� .

�28�

Performing the z integration, we find

T�x� =� �

vw
�

x

b

dy exp� v
w

y2�erf�� v
w

y� +
�

2v
erf�� v

w
d�

��erfi�� v
w

x� − erfi�� v
w

b�� . �29�

The functions erf�x� and erfi�x�=erf�ix� / i denote the Gauss-
ian error function and the imaginary Gaussian error function,
respectively. The remaining integral can be solved by series
expansion so that the final expression for the mean first pas-
sage time takes the form

T�x� =
b2

w
F2;2�1,1;

3

2
,2;

v
w

b2� −
x2

w
F2;2�1,1;

3

2
,2;

v
w

x2�
+

�

2v
erf�� v

w
d��erfi�� v

w
x� − erfi�� v

w
b�� .

�30�

We employed the generalized hypergeometric function,

Fp;q�a1, . . . ,ap;b1, . . . ,bq;x� = �
l=0



�a1�l ¯ �ap�l

�b1�l ¯ �bq�l

xl

l!
, �31�

and used the identity

j!

2j + 2�
l=0

j
�− 1�l

�2l + 1��j − l�!l!
=

1

2

�1� j�1� j

�3

2
�

j
�2� j

. �32�

We defer the proof to the Appendix. The reason for present-
ing two methods for evaluating the mean first passage time is
based on their different scopes of applicability. If we were
only interested in T, then Eq. �30� would be preferable be-
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cause it requires less computation. However, we are limited
to the first moment �26�. The advantage of the first approach
is that we obtain any moment by one integration. Moreover,
we have access to the time evolution of the escape process,
which allows for a more detailed analysis.

The previous results could only be obtained analytically
because the corresponding Fokker-Planck equation was lin-
ear. In the case of a nonlinear Fokker-Planck equation, all
quantities have to be computed numerically. The mean first
passage time is evaluated best from a generalization of Eq.
�28�. For L=−�xA�x�+�x

2B�x� /2 we find �26�

T�x� = 2�
x

b dy

h�y��d

y h�z�
B�z�

dz, h�x� ª exp��
d

x 2A�y�
B�y�

dy� .

�33�

The study of Fokker-Planck equations instead of master
equations is often motivated by easier treatment. That holds
in particular in higher dimensions, because a broader spec-
trum of tools is available for Fokker-Planck equations than
for master equations �28� and even analytical calculations
may be possible as in the case of Eq. �12�. That constitutes
one of the reasons for the derivations in Sec. IV. However,
Fokker-Planck equations always represent approximations.
The only way to test their quality is a comparison with re-
sults obtained from a master equation.

To this end, we consider a general one step process, to
which class Eq. �12� belongs. We assume that this jump pro-
cess starts at a site m at t=0. Being at site n the particle hops
to the right with a rate gn and to the left with a rate rn,
respectively. When it reaches the left boundary L, it is re-
flected. Then, the mean first passage time to arrive at a site
R�m reads �18� as

TR,m = �
i=m

R−1 � 1

gi
+ �

l=L+1

i
riri−1 ¯ rl

gigi−1 ¯ gl

1

gl−1
� . �34�

That allows us to estimate the validity of the preceding ap-
proximations. The transition rates ri and gi follow from Eq.
�14� for the current investigation.

VI. RESULTS

A. Mean first passage time

The calculation of the mean first passage times according
to Eqs. �26�, �33�, and �34� necessitates a further specifica-
tion of the boundaries. Since we consider a cluster with N
channels, the upper boundary �b for the nonlinear Fokker-
Planck equation is given by the solution of �r�b�3�4−3r�b�
=1/N. The left hand side corresponds to the fraction of open
channels, as discussed after Eq. �5�. For the lower boundary,
we have �=0. This value holds for the master equation as
well. The upper boundary for the master equation is obtained
by rounding off ��b to its nearest integer value ���b�. Be-
fore specifying the boundary conditions for van Kampen’s
expansion, we note that it describes the strength of the fluc-
tuations � around the fixed point �̄. The left boundary is
imposed by n10�0, whereas the right boundary has to satisfy

�b= �̄+�−1/2�. Consequently, the boundaries of � are
−�1/2�̄ and ��b− �̄��1/2, respectively, with �̄ given by Eq.
�6�.

The mean first passage time depends strongly on the Ca2+

concentration �see, e.g., Eqs. �14� and �34��. The results pre-
sented throughout Secs. VI A–VI C are calculated with a
constant base level concentration. The number of open chan-
nels is an integer variable and there is no Ca2+ channel flux
before the first channel opens. The Ca2+ concentration re-
mains at a steady value until a Ca2+ puff occurs. That leads to
c1
0 in Eq. �10� and to coefficients linear in � and � in Eq.
�11�.

Figure 2 depicts the mean first passage time as a function
of the IP3 concentration for two different values of the basal
Ca2+ concentration.

The master equation and the two Fokker-Planck equations
exhibit an increase of the mean first passage time with de-
creasing IP3 concentration. This increment diverges for lower
values of the IP3 concentration.

The nonlinear Fokker-Planck equation interpolates the
master equation very efficiently. The results agree well with
experimental findings for puff periods, although the mean
first passage time only constitutes its mean stochastic frac-
tion �8�. The discreteness of the master equation leads to
discontinuities in the mean first passage time. The plateaus
correspond to ranges of �b that are mapped to a single inte-
ger for the absorbing boundary of the master equation.
Whenever that integer increases by 1, a jump occurs in the
mean first passage time. van Kampen’s expansion yields

FIG. 2. Mean first passage time for cb=50 nM �a� and cb

=80 nM �b� computed from the master equation �solid�, the � ex-
pansion �dashed�, and the nonlinear Fokker-Planck equation �dot-
ted� for d1=0.13 �M, d2=3 �M, d3=0.9434 �M, d4=0.4133 �M,
d5=0.24 �M, a2=a4=0.2��Ms�−1, a5=5��Ms�−1, and N=25. The
dots in �a� represent the variance of the � expansion. The inset in
�b� shows a blowup of the plot for large IP3 concentration.
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good results for higher IP3 concentrations, but overestimates
the escape times otherwise �Fig. 2�.

Figure 3 depicts the influence of the base level on the
mean first passage time. The higher the basal concentration
in this regime, the faster the first channel opens. van Ka-
mpen’s expansion improves with increasing base level as a
comparison between Fig. 2�a� and �b� and Fig. 3�b� shows.
The zigzag behavior of the relative difference �ª �TvK

−TME� /TME results from the discontinuities of TME; see Fig.
2. Additionally, this quantifies the finding that the difference
of the mean first passage time between the master equation
and the � expansion diminishes with increasing IP3 concen-
tration.

B. Role of fluctuations

The most important difference between the nonlinear
Fokker-Planck equation �11� and van Kampen’s expansion
�7� is in the diffusion term. It is constant in van Kampen’s
expansion—describing additive noise—and linear in � and �
in the nonlinear Fokker-Planck equation, thus describing
multiplicative noise. As expected intuitively, the results in
Fig. 2 show a better agreement between the nonlinear
Fokker-Planck equation and the master equation than be-
tween van Kampen’s expansion and the master equation.
However, van Kampen’s expansion approximates the master
equation results rather well for high IP3 and high base level
of Ca2+. That is quantified in Fig. 3. Consequently, additive

noise is probably a good approximation in these parameter
areas.

C. Distribution of first passage time

van Kampen’s expansion allows a direct computation of
the probability density of the first passage time 
�0, t�.

�0, t�dt is the probability that the absorbing boundary is
reached between t and t+dt. The starting point of the escape
process in the � expansion is �=0. The IP3R cluster is ex-
actly in the macroscopic state �̄ at t=0, so that the noise
vanishes at t=0. The results for 
 are depicted in Fig. 4. A
convergence of the probability density according to Eq. �23�
requires less than ten eigenvalues. The curves show the well
known rising phase of 
 and the exponential decay. We find
a maximal probability that shifts toward shorter times for
higher IP3 concentrations. The two graphs in Fig. 4 illustrate
again the influence of the base level. Lowering cb from
60 to 40 nM leads to an extreme broadening of the probabil-
ity distribution and hence to an increase of the mean first
passage time �see Fig. 3�.

The probability density 
 permits an efficient computation
of all moments of t for the escape process. Since the eigen-
values �n and the coefficients an are known, we immediately
arrive at �tm	=�nm!an�n

−m, in analogy to Eq. �26� due to
vn�0�=1 for all n. The dots in Fig. 2 depict the results for the
variance. The first six eigenvalues suffice for an excellent
convergence. That is a direct consequence of the spectrum of
the backward Fokker-Planck operator in Eq. �15�.

FIG. 3. Mean first passage time for the master equation �a� and
the relative difference �ª �TvK−TME� /TME of the mean first pas-
sage time between van Kampen’s method TvK and the master equa-
tion TME �b� in dependence on the base level cb for different values
of the IP3 concentration: I=0.4 �M �solid�, 0.5 �M �dotted�, and
0.6 �M �dashed�. Parameter values as in Fig. 2 and a5=1��Ms�−1.

FIG. 4. Probability density 
�0, t� for van Kampen’s expansion.
Parameter values as in Fig. 2 and I=0.5 �M. �a�: cb=0.06 �M. �b�:
cb=0.04 �M.
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Figure 5 shows the ratio of the first two eigenvalues
�1 /�0. �1 is only a few times larger than �0 for large IP3 and
d5. However, the ratio increases with decreasing IP3 concen-
trations and spans more than one order of magnitude for IP3
concentrations smaller than 1 �M. Hence, already the sec-
ond term in the expansion �23� is considerably damped in the
parameter range in which we are interested �IP3�1 �M�.
Since the eigenvalues constitute a strictly increasing series,
i.e. �i�� j for i� j, the subsequent terms in the expansion
decay even more rapidly. The prominent role of the first term
is additionally supported by the expansion coefficients ai.
The ratio a1 /a0 is depicted in Fig. 5�b�. It decreases upon
lowering the IP3 concentration and tends to zero for very
little concentrations. a1 is much smaller than a0 in parameter
ranges where �1 /�0�1 holds, i.e., where the second term of
the series in Eq. �23� decays much faster than the first one.
Consequently, higher terms only contribute marginally in this
parameter regime. A detailed analysis of the spectrum and
further implications will be provided in an upcoming report.

D. Continuous Ca2+ model

The results presented so far have been based on a discrete
description of the number of open channels. The most im-
portant consequence is that the Ca2+ concentration remains
constant as long as no channel opens. In the past, investiga-

tions on stochastic properties of IP3R clusters often em-
ployed a continuous model of the ratio of open channels
�29–31�. In these models, the Ca2+ concentration changes,
even for fractions of open channels corresponding to less
than one channel. Therefore, we have analyzed the impact of
a continuously modulated number of open channels on the
mean first passage time. The nullclines of the deterministic
dynamics for such an ansatz with the same parameter values
as before are displayed in Fig. 6�a�. There is only one sta-
tionary state, which is linearly stable for all IP3 concentra-
tions. A prerequisite for a puff is that a sufficient number of
subunits can be activated during the escape process from this
fixed point. The value of � indicates that a large fraction of
subunits is inhibited at already moderate IP3 concentrations.
It turns out that the remaining fraction of subunits is too low
to induce a Ca2+ puff. The high degree of inhibition results
from the large Ca2+ fluxes that occur at an open cluster �12�.
These fluxes entail Ca2+ concentrations already in the �M
range for sizes of the conducting area that are much smaller
than that of a single channel. Since these concentrations ex-
ceed the dissociation constants for inhibition, most of the
subunits are inhibited. Lowering the IP3 concentration does
not invoke puffs, either. Although the fraction of inhibited
subunits diminishes, the number of subunits that can be ac-
tivated decreases as well.

We compensate for the elevated Ca2+ concentrations with
an increase in the dissociation constant for Ca2+ activation,
d5. The ensuing nullclines are depicted in Fig. 6�b�. The left
stationary state is linearly stable and corresponds to a low
degree of inhibition. The motion of � in phase space pro-
ceeds along an almost horizontal line through this fixed point

FIG. 5. Ratio of the first two eigenvalues �a� and the ratio of the
first two expansion coefficients �b� of Eq. �23� in dependence on the
IP3 concentration. Parameter values as in Fig. 3 and d5

=0.08234 �M �solid�, 0.13234 �M �dotted�, 0.183234 �M
�dashed�, and 0.23234 �M �chain-dotted�. Insets show a blowup for
small IP3 concentrations.

FIG. 6. Nullclines of Eq. �5�. Parameter values as in Fig. 3 and
kl=0.002 s−1, kc=34500 s−1, kp=80 s−1, E=750 �M, a0=0.03 �m,
D=40 �m2 s−1, d5=0.1646 �M, I=0.06 �M �a�, d5=1.6468 �M,
I=0.053 �M �b�.
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during puff initiation. These dynamics are bistable as the
potential in Fig. 7 highlights. A Ca2+ puff parallels an escape
process from the left well over the barrier to the first channel
opening.

The time for such an escape process depends on the po-
sition of the absorbing boundary with respect to the barrier
of the potential. Figure 7 shows the mean first passage time
in dependence on the location � of this boundary. � varies
from the value of the potential maximum �see the inset� to
the value of the first channel opening �b �see Sec. VI A�. The
steep increase of T for small � reflects the influence of the
left well. As long as the absorbing boundary is close to the
maximum of the potential, reentrance in the left well is pos-
sible. That becomes less dominant with increasing �, so that
the mean first passage time reaches the plateau. For the upper
range of IP3 concentrations in Fig. 7, the value of the plateau
equals the mean first passage time. Consequently, the time
scale of the puff is set by the properties of the left well. The
strong increase of the mean first passage time for smaller IP3
concentrations is due to two reasons. On the one hand, the
left well of the bistable potential becomes broader and
deeper with lower values of I. On the other hand, the absorb-
ing boundary increases in a disproportionally high manner
and moves higher on the right branch of the potential.

We exclude van Kampen’s expansion in the above analy-
sis, because its validity requires a single stationary state
throughout the stochastic motion �18�. In contrast to a con-
stant Ca2+ concentration, the nonlinear Fokker-Planck equa-
tion underestimates the results of the master equation. Nev-
ertheless, the results in Fig. 7, which correspond to the
stochastic fraction of the puff frequency, are in the same
range as experimentally determined puff periods �8�.

VII. DISCUSSION

We have derived a master equation and two Fokker-
Planck equations for channel cluster behavior in IP3 medi-
ated Ca2+ dynamics. Among the different approaches to ap-
proximate a master equation by a Fokker-Planck equation we
have chosen van Kampen’s � expansion and an ansatz based
on the Kramers-Moyal expansion. Master equations and cor-
responding Fokker-Planck equations for intracellular Ca2+

dynamics have been investigated in the past �29–31�, but the
study at hand is founded on different ideas. Most of the
previous contributions employ the Li-Rinzel model �32� for
the dynamics of a single subunit of an IP3 receptor. It de-
scribes the time evolution of the fraction of subunits that are
not inhibited yet, taking advantage of the time scale separa-
tion between IP3 activation, Ca2+ activation, and Ca2+ inhi-
bition. We have used a state scheme for one subunit that only
eliminates the IP3 dynamics adiabatically. It focuses on Ca2+

activation, which is the driving force behind puff initiation.
Therefore, we consider Ca2+ activation as the fluctuating
variable, whereas Ca2+ inhibition is the random variable in
the Li-Rinzel model.

Our approach respects that time scale separation between
Ca2+ activation and Ca2+ inhibition does not necessarily al-
ways hold.

The Ca2+ concentration plays a pivotal role in the initia-
tion of Ca2+ puffs. On the one hand, it fixes the resting state

of a cluster, i.e., the starting point of the escape process. On
the other hand, it determines the transition rates. The present
work has demonstrated that the Ca2+ concentration needs to
stay at the base level until the first channel opens. Theory
provides Ca2+ puffs that are in agreement with experimental
results �8� at physiological parameter values only if the Ca2+

concentration remains constant during the entire escape pro-
cess. These findings underline the discrete character of IP3R
channels in a cluster �13,14�.

We use a realistic value for the channel flux constant kc in
difference to earlier studies �29–31�. That value is based on
detailed simulations �12� and leads to Ca2+ concentrations
two to three orders of magnitude larger than base level at an
open channel. That causes models with a continuous number
of open channels to fail. The nonvanishing Ca2+ flux at frac-
tions of open channels smaller than 1 resulted in highly el-
evated Ca2+ concentrations at a cluster due to the large flux
density �12�. In turn, that induced a high degree of inhibition.
Decreasing the IP3 concentration reduced the level of inhibi-
tion, but the number of subunits that could be activated de-
creased, too. The lack of Ca2+ puffs was resolved by increas-
ing the dissociation constant for Ca2+ activation d5. The
ensuing mean first passage times again complied with ex-
perimental results, but at unphysiological values of d5. These
results demonstrate that parameter values may decide upon
the underlying mechanisms. The large Ca2+ fluxes demand a
discrete modeling of the Ca2+ release channels. This discrete
modeling is one of the aspects of this study, setting it apart
from previous investigations of stochastic cluster dynamics
�29,31�.

At a constant Ca2+ concentration, the main difference be-
tween van Kampen’s expansion and the nonlinear Fokker-
Planck equation is in the character of fluctuations. They cor-
respond to additive noise for the � expansion and to
multiplicative noise in the latter approach. Although the
noise is intrinsically multiplicative, van Kampen’s expansion
provides a reasonable approximation, which improves with
an increasing base level and growing IP3 concentration. It
opens up the opportunity for further studies since the � ex-
pansion is the only method that yields analytic expressions
for the probability density and all higher moments. That dis-
tinguishes it from the master equation and the nonlinear
Fokker-Planck equation, for which only the first moment is
directly accessible.

The dependencies of the mean first passage time on the
Ca2+ concentration as well as on the IP3 concentration com-
ply with physiological findings. An increase of the basal Ca2+

concentration enhances the open probability of the IP3R
channel �16�. Consequently, the mean first passage time is to
decrease with growing Ca2+ concentration. Our results fully
agree with this activating role of Ca2+ �see Fig. 3�. The same
tendency was observed when we increased the IP3 concen-
tration, which agrees with the activating role of IP3.

The present study has provided a framework for the quan-
titative determination of Ca2+ puff frequencies. The mean
first passage times correspond to the stochastic fraction of
the interpuff interval, which is governed by the activation of
the IP3Rs. The second contribution to the interpuff interval is
a deterministic part controlled by puff duration, inhibition,
and recovery from it. Taking into account that Ca2+ puffs
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represent the fundamental building blocks of global Ca2+ pat-
terns, our calculations may serve as a starting point to com-
pute periods of Ca2+ waves. Experiments and theoretical
studies suggest that the initiation of Ca2+ waves occurs by a
nucleation process. Therefore, knowledge of the frequency
of Ca2+ puffs is the first step in the calculation of wave
frequencies and leads to a deeper understanding of intracel-
lular Ca2+ dynamics.
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APPENDIX A: COMBINATORICS FOR SUBUNITS

Measurements on the IP3 receptor channel have revealed
that a minimum number of subunits hm needs to be activated
for the channel to open �16�. A single IP3R possesses a non-
zero open probability only if at least hm subunits are in the
state 10. Activation in the cell occurs of course for a subunit
already associated with a certain receptor. With our model,
the number of open channels depends on the arrangement of
n10 activatable subunits on the receptors. Here, we derive the

distribution of open channels resulting from such a random
scattering of activatable subunits and its properties, whereas
the mean was used earlier. To this aim we consider N recep-
tors with h subunits each. Let ni , i=1, . . . ,h denote the num-
ber of receptors with i activatable subunits, then the number
of possible configurations for a given set �ni�ª�n1 , . . . ,nh�
that satisfies

n0 + . . . + nh = N, n1 + 2n2 + . . . + hnh = n10, �A1�

is

M��ni�� ª
N!

n0! ¯ nh!
�h

0
�n0�h

1
�n1

. . . �h

h
�nh

. �A2�

The fraction represents the number of permutations for the
set �ni�, whereas the binomial coefficients take into account
the number of ways how to distribute i activatable subunits
on a single receptor. The total number of configurations is
given by

� ª �
�ni�

�
M��ni�� . �A3�

The asterisk indicates the summation with the restrictions of
Eq. �A1�. To evaluate Eq. �A3�, we introduce a generating
function,

f1�z� ª �
�ni�

�M��ni��zl, l = n1 + . . . + hnh. �A4�

The prime refers to the restriction n0+ . . . +nh=N. Therefore,
the total number of configurations follows from the generat-
ing function as

� =
1

n10!
� dn10

dzn10
f1�z��

z=0
. �A5�

Due to the identity

FIG. 7. �Color� �a�: Potential U��� for I=0.0483 �M. The inset
depicts an enlarged view for ��0. Note the difference in scale
for the axis. �b� �color�: Mean first passage time computed from
the master equation �solid lines� and the nonlinear Fokker-Planck
equation �dotted lines� for I=0.0553 �M �black�, 0.0513�M �red�,
0.0473 �M �green�, and 0.0433 �M �blue� in dependence on
the position of the absorbing boundary �. Parameter values as in
Fig. 6�b�.

FIG. 8. �Color� Probability distribution p�no� for no=n3, h=3
�solid� and no=n3+n4, h=4 �dotted� for N=25 and different n10.
Values of n10 are 25 �black�, 50 �red�, 60 �green�, and 70 �blue�.
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f1�z� = �
ni=0

N

�
N!

n0! ¯ nh!
�h

0
�n0��h

1
�z1�n1

. . . ��h

h
�zh�nh

= ��h

0
� + . . . + �h

h
�zh�N

= �1 + z�hN = �
j=0

hN �hN

j
�zj ,

�A6�

we finally arrive at �= � hN
n10

�, which complies with the com-
binatorics of choosing n10 subunits from a total of hN sub-
units. Consequently, the probability distribution of nj for a
fixed value of j� �0, . . . ,h� is given by

p�nj� =
1

�
�
�ni�
i�j

� N!

n0! ¯ nh!
�h

0
�n0�h

1
�n1

. . . �h

h
�nh

=
1

�
�N

nj
��h

j
�nj

�
�ni�
i�j

��N − nj�!�
l=0

l�j

h
1

nl!
�h

l
�nl

. �A7�

Equation �A7� is most conveniently computed as

p�nj� =
1

�
�N

nj
��h

j
�nj� 1

n10!

dn10

dzn10
f2�z��

z=0
, �A8�

where we used the generating function

f2�z� ª �
�ni�
i�j

�Ñ!�
l=0

l�j

h
1

nl!
��h

l
�zl�nl

= �
i=0

Ñ

�
l=0

hi �Ñ

i
��hi

l
��− �h

j
��Ñ−i

zl+j�Ñ−i�. �A9�

Here, the prime denotes the restriction

n0 + . . . + nj−1 + nj+1 + . . . + nh = N − nj ¬ Ñ . �A10�

In the case j=0 the derivatives in Eq. �A8� can be performed
explicitly, so that

p�n0� =
1

�
�N

n0
��

j=0

Ñ �Ñ

j
�� jh

n10
��− 1�Ñ−j . �A11�

The previous analysis remains valid, when we interchange
the number of activatable subunits n10 and the number of the
remaining Nh−n10 subunits. Such a transition corresponds to
the exchange of balls and voids in classical combinatorics. In
that picture, Eq. �A11� would represent the probability dis-
tribution of fully occupied receptors, i.e.,

p�nh� =
1

�
�N

nh
��

j=0

Ñ �Ñ

j
�� jh

Nh − n10
��− 1�Ñ−j . �A12�

Equation �A12� arises from Eq. �A11� by substituting n10 by
Nh−n10 and n0 by nh. To gain further insight into the prob-
ability distributions we calculate the first two moments. For
the average we start with

�nj	 =
1

�
�
�ni�

�
njM��ni�� , �A13�

because a closed expression for the probability distribution is
only available for the two cases presented previously. Defin-
ing the corresponding generating function,

f3�z� ª
1

�
�
�ni�

�njM��ni��zl, l = n1 + . . . + hnh,

�A14�

we find

�nj	 = � 1

n10!

dn10

dzn10
f3�z��

z=0
=

N

�
�h

j
��h�N − 1�

n10 − j
� .

�A15�

In the limit N→
, n10→
 we recover the result from �33�.
Analogously an evaluation of the second moments results in

�nlnk	 =
N�N − 1�

�
�h

l
��h

k
�� h�N − 2�

n10 − l − k
�

+ �k,l
N

�
�h

l
��h�N − 1�

n10 − l
� . �A16�

Applying these general expressions to IP3Rs requires values
for h, hm, and N. The tetrameric structure of the receptor
ensues h=4. However, previous results by different groups
are based on h=3. We therefore compute the statistics for
both cases. Experiments on a single channel have shown four
conductance levels, each a multiple of 20 pS, with a pre-
dominance of opening to the third level �16,17�. Thus, we set
hm=3. The number of receptors in a cluster has not been
measured yet. We employ N=25 following recent estimates
by Swillens and Dupont �7�.

The probability distributions p�n3+n4� with h=4 and
p�n3� with h=3 are depicted in Fig. 8. They both agree very
well. This is also supported by their mean and variance, as
shown in Fig. 9. In Fig.9�a� we also include the position of
the maxima of the distributions indicated by dots. They
closely follow the average. Due to the narrowness of the
distributions demonstrated by the small variance as well as
the accordance between the mean and the maximum we cal-
culate the number of open channels nc from the average for a
given value of n10,

na
�3� = Nr3n10

3N

n10 − 1

3N − 1

n10 − 2

3N − 2
, �A17�

na
�3,4� = Nr3n10

4N

n10 − 1

4N − 1

n10 − 2

4N − 2
�n10 − 3

4N − 3
�4 − 3r�

+ 4�1 −
n10

4N
�� . �A18�

Here rªI / �I+d1� denotes the fraction of subunits in the ac-
tivatable state 10 that are activated. The subscripts �3� and
�3,4� indicate that we used p�n3�, h=3 and p�n3+n4�, h=4
for averaging, respectively. Note that in the limit N→
,
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n10→
, Eqs. �A17� and �A18� reduce to the well known
expressions of the deterministic description. All results in
Sec. VI are based on Eq. �A18�, which can be further sim-
plified by approximating all denominators by 4N due to 4N
�1.

APPENDIX B: PROOF OF EQ. (32)

In this section we deal with the proof of Eq. �32�. It is
based on the identity

�
k=0

j � j

k
� �− 1�k

2k + 1
=

22j�j!�2

�2j + 1�!
, �B1�

which we now prove. We transform the left hand side of Eq.
�B1�, according to

�
k=0

j � j

k
��− 1�k�

0

1

t2k dt = �
0

1

�
k=0

j � j

k
��− t2�k dt

= �
0

1

�1 − t2� j dt . �B2�

It can be simplified with Euler’s beta function B�z ,w�. From
its definition,

B�z,w� ª �
0

1

tz−1�1 − t�w−1 dt , �B3�

it follows that

�
a

b

�t − a�z−1�b − t�w−1 dt = �b − a�z+w−1B�z,w� . �B4�

Hence we express the integral in Eq. �B2� through

�
0

1

�1 − t2� j dt =
1

2
�

−1

1

�t + 1� j�1 − t� j dt = 22jB�j + 1, j + 1� .

�B5�

According to �27�, the beta function is related to the gamma
function ��z� via B�z ,w�=��z���w� /��z+w�, so that we find

�
l=0

j � j

l
� �− 1�l

2l + 1
= 22j ��j + 1�2

��2j + 2�
=

22j�j!�2

�2j + 1�!
, �B6�

due to n!=��n+1�, which proves Eq. �B1�. Expanding the
right hand side yields

22j�j!�2

�2j + 1�!
=

2 · 1

2
·

2

3
·

2 · 2

4
·

2

5
·

2 · 3

6
¯

2 · j

2j
·

2

2j + 1
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=
j!

�3

2
�

j

. �B7�

This proves Eq. �32� when we use j!= �1� j.
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