
Analytical model of magnetic nanoparticle transport and capture in the microvasculature

E. P. Furlani* and K. C. Ng
Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo, New York, 14260, USA

�Received 21 December 2005; revised manuscript received 24 March 2006; published 27 June 2006�

An analytical model is presented for predicting the transport and capture of therapeutic magnetic nanopar-
ticles in the human microvasculature. The nanoparticles, with surface bound drug molecules, are injected into
the vascular system upstream from malignant tissue, and are captured at the tumor site using a local applied
magnetic field. The applied field is produced by a rare-earth cylindrical magnet positioned outside the body. An
analytical expression is derived for predicting the trajectory of a particle as it flows through the microvascu-
lature in proximity to the magnet. In addition, a scaling relation is developed that enables the prediction of the
minimum particle radius required for particle capture. The theory takes into account the dominant magnetic
and fluidic forces, which depend on the position and properties of the magnet, the size and magnetic properties
of the nanoparticles, the dimensions of the microvessel, the hematocrit level of the blood, and the flow velocity.
The model is used to study noninvasive drug targeting, and the analysis indicates that submicron particles can
be directed to tumors that are several centimeters from the field source.
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I. INTRODUCTION

Magnetic targeting of anticancer agents to malignant tis-
sue using magnetic carrier particles can improve the effec-
tiveness of the treatment while reducing its side effects. The
growing interest in this therapy is due to rapid progress in the
development of functionalized magnetic nanoparticles that
are designed to target a specific tissue, and effect local
chemo-, radio-, and genetherapy at a tumor site �1–4�. In
magnetic drug targeting, magnetic carrier particles with
surface-bound drug molecules are injected into the vascular
system upstream from the malignant tissue, and are captured
at the tumor via a local applied magnetic field. Upon achiev-
ing a sufficient concentration, the drug molecules are re-
leased from the carriers by changing physiological condi-
tions such as pH, osmolality, or temperature, or by enzymatic
activity �5�. The released drug is taken up by the malignant
cells, and the magnetic carriers are ultimately processed by
the body. Since the therapeutic agents are localized to re-
gions of diseased tissue, higher dosages can be applied
which enables more effective treatment. This is in contrast to
conventional therapy in which a drug is distributed in a sys-
temic fashion throughout the body, which can have a delete-
rious affect on healthy tissue

Magnetic drug targeting has been studied primarily using
surface tumors �4,5� and small animal models: rabbits �5�,
swine �6,7�, and rats �8,9�. Clinical trials have produced en-
couraging results that range from the permanent remission of
squamous cell carcinoma in New Zealand White Rabbits �5�,
to the effective treatment of breast cancer in humans
�10–12�.

In addition to the clinical trials, theoretical research has
been conducted to predict magnetic drug targeting for vari-
ous applications. In most of this work numerical methods
such as finite element analysis �FEA� are used to calculate
the magnetic field distribution. The numerical field solution

is used in the equations of motion to predict the particle
trajectory, which is based on Newtonian dynamics �13–16�.
The fluidic force on the particle is usually obtained using
Stokes’ law for the drag on a sphere in a laminar flow field.
As a further simplification, the blood flow is often modeled
as two-dimensional laminar flow of Newtonian fluid between
stationary parallel plates. While these studies are useful for
predicting viable operating parameters for magnetic targeting
systems, there is a need for a more rigorous theory, prefer-
ably one that does not rely on either a numerical field solu-
tion, which is awkward for parametric analysis, or a two
dimensional flow approximation, which is a poor approxima-
tion for flow through a cylindrical vessel.

In this paper we present an analytical model for predicting
the transport and capture of magnetic nanoparticles in the
microvasculature. Magnetophoretic control of the particles is
provided by a rare-earth cylindrical magnet positioned out-
side the body as shown in Fig. 1. The magnet is assumed to
be of infinite extent, with its axis orthogonal to the blood
flow. It is magnetized perpendicular to its axis, and produces
a nonuniform field distribution in nearby tissue. The mag-
netic force that it produces is based on an analytical expres-
sion for the field distribution in the microvessel, combined
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FIG. 1. Noninvasive magnetophoretic drug targeting in a

microvessel.
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with a linear magnetization model for the magnetic response
of particles. The model takes into account the dimensions
and polarization of the magnet, the magnetization and size of
the particles, the dimensions of the microvessel, the hemat-
ocrit level of the blood, and the flow velocity. The fluidic
analysis is based on the assumption of laminar blood flow
through a cylindrical microvessel, and the effect of the blood
cells is taken into account via use of an effective bulk vis-
cosity. The analytical force expressions are used in the equa-
tions of motion, which are solved analytically to predict par-
ticle trajectories within a microvessel, parametrically as a
function of the variables described above. In addition, a scal-
ing relation is developed that enables the prediction of the
minimum particle radius required for particle capture. The
model is used to study particle capture, and the analysis dem-
onstrates the viability of using noninvasive magnetophoretic
control of magnetic nanoparticles to effect drug delivery to
tumors that are a few centimeters from the field source. The
model is ideal for parametric optimization of novel magne-
tophoretic systems for drug delivery, and can be of substan-
tial benefit in improving the effectiveness of magnetic target-
ing apparatus for clinical research.

II. THEORY

A. Equations of motion

Magnet particle transport in the microvasculature is gov-
erned by several factors including �a� the magnetic force due
to all field sources, �b� viscous drag, �c� particle–blood-cell
interactions, �d� inertia, �e� buoyancy, �f� gravity, �g� thermal
kinetics �Brownian motion�, �h� particle-fluid interactions
�perturbations to the flow field�, and �i� interparticle effects
that include magnetic dipole interactions, electric double-
layer interactions, and van der Walls force. In this paper, we
take into account the dominant magnetic and viscous forces,
and the particle–blood-cell interactions via use of an effec-
tive viscosity. We ignore all other forces, which are second
order. For example, the gravitational and buoyant forces Fg
and Fb on a 0.5 �m �Rp=250 nm� iron-oxide �Fe3O4, �
=5000 Kg/m3� particle in water are Fg=3.2�10−3 pN and
Fb=0.641�10−3 pN. These are an order of magnitude
smaller than the magnetic force. A similar analysis applies to
the inertial force mpap, which we discuss in more detail be-
low. We assume that we are dealing with dilute particle sus-
pensions in which the particle volume concentration is small,
i.e., c�1 �c is the total volume occupied by the particles per
unit volume of fluid�. In this case, interparticle effects and
particle-fluid interactions can also be neglected.

We predict particle motion using Newton’s law:

mp
dvp

dt
= Fm + F f , �1�

where mp and vp are the mass and velocity of the particle,
and Fm and F f are the magnetic and fluidic forces, respec-
tively. As noted above, and discussed in more detail later, the
inertial term mp

dvp

dt is small and could be neglected. The mag-
netic force is obtained using the “effective” dipole moment
method in which the magnetized particle is replaced by an

“equivalent” point dipole with a moment mp,eff �17�. The
force on the dipole �and hence on the particle� is given by

Fm = � f�mp,eff · ��Ha, �2�

where � f is the permeability of the transport fluid, mp,eff is
the effective dipole moment of the particle, and Ha is the
�externally� applied magnetic field intensity at the center of
the particle, were the equivalent point dipole is located. If the
particle is in free space, mp,eff=VpMp and Eq. �2� reduces to
the usual form Fm=�0Vp�Mp•��Ha, where Vp and Mp are
the volume and magnetization of the particle, respectively.
The fluidic force is obtained using the Stokes’ approximation
for the drag on a sphere �18�,

F f = − 6��Rp�vp − v f� , �3�

where � and v f are the viscosity and the velocity of the fluid,
respectively.

At this point, we digress briefly to discuss the limitations
of the Newtonian approach. Equation �1� does not take into
account Brownian motion, which can influence particle cap-
ture when the particle diameter Dp is sufficiently small. Ger-
ber et al. �19� have developed the following criterion to es-
timate this diameter:

�F�Dp � kT , �4�

where �F� is the magnitude of the total force acting on the
particle, k is the Boltzmann constant, and T is the absolute
temperature. In order to apply Eq. �4�, one needs to estimate
�F�. If the magnetic field source is specified, one can estimate
�F� for a given particle by taking a spatial average of the
force on the particle over the region of interest. Gerber et al.
have studied the capture of Fe3O4 particles in water using a
single magnetic wire, and have estimated the critical particle
diameter for this application to be Dc,p�kT / �F�=40 nm
�i.e., �F�=0.1 pN� �19�. For particles with a diameter below
Dc,p �which is application dependent� one solves an
advection-diffusion equation for the particle number density
n�r , t�, rather than the Newtonian equation for the trajectory
of a single particle. The behavior of n�r , t� is governed by the
following equation �19–21�:

�n�r,t�
�t

+ � · J = 0, �5�

where J=JD+JF is the total flux of particles, which includes
a contribution JD=−D�n�r , t� due to diffusion, and a con-
tribution JF=vn�r , t� due to the action of all external forces.
Equation �5� is often written in terms of the particle volume
concentration c�r , t�, which is related to the number density,
c�r , t�=4�Rp

3n�r , t� /3. The diffusion coefficient D is given
by the Nernst-Einstein relation D=�kT, where
�=1/ �6��Rp� is the mobility of a particle of radius Rp in a
fluid with viscosity � �Stokes’ approximation�. The drift ve-
locity also depends of the mobility v�r�=�F�r�, where
F�r�=Fm�r�+F f�r�+¯ is the total force on the particle. Thus
Eq. �5� can be rewritten as
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�n�r,t�
�t

=
kT

�6��Rp�
�2n�r,t� −

1

�6��Rp�
� · „F�r�n�r,t�… .

�6�

B. Magnetic force

To determine the magnetic force, we need a model for the
magnetic response of the particle. We use a linear magneti-
zation model with saturation. Specifically, below saturation,

Mp = 	pHin, �7�

where �p and 	p=�p /�0−1 are permeability and suscepti-
bility of the particle. Above saturation Mp=Msp, where Msp
is the saturation magnetization of the particle. In Eq. �7�,
Hin=Ha−Hdemag is the field inside the particle, which is dif-
ferent than the �externally� applied field, because the magne-
tization of the particle itself gives rise to a self-
demagnetization field Hdemag that opposes Ha �see pp. 23–27
in Ref. �22��. For example, for a uniformly magnetized
sphere with magnetization Mp in free space, Hdamag=

Mp

3 is
the field inside the sphere due to the “magnet change” 
m
=Mp · n̂ at its surface �n̂ is the unit vector normal to the
surface�. According to the linear model, the magnetic field
intensity required to saturate the particle is Hin,sat=Msp /	p.

We now determine the magnetic force using the “effec-
tive” dipole moment method as described by Jones �17�. The
effective moment of the particle �the equivalent point dipole
moment� is obtained as follows: �i� first solve the magneto-
static boundary value problem for the particle �sphere� im-

mersed in a fluid, with its magnetization Mp parallel to the
applied field; and then �ii� determine the equivalent point
dipole moment mp,eff that, when positioned at the center of
the particle, produces the same field distribution outside the
particle as that produced by the particle itself.

The fields inside and outside the particle can be repre-
sented in terms of scalar potentials, �in=−�Hin and �out=
−�Hout where

�in�r,�� = − Cinr cos��� �r 
 Rp� , �8�

�out�r,�� = − Har cos��� + Cout
cos���

r2 �r � Rp� . �9�

In Eqs. �8� and �9�, �r ,�� are spherical polar coordinates
taken with respect to the center of the particle, with the z axis
in the direction of the applied field. It is instructive to note
that the magnitude of the field intensity inside the particle is
Hin,z=−��r�in�r ,���cos���+ 1

r ��r�in�r ,���sin���=Cin. The
unknown coefficients Cin and Cout are obtained from the
boundary conditions for the potential �in�r ,��=�out�r ,��,
and for the normal component of B=�0�H+M�, �0�−�r�in

+Mp�=−� f�r�out, which are evaluated at r=Rp. These give

Cin =
3� f

�0 + 2� f
Ha −

�0

�0 + 2� f
Mp, �10�

and

Cout =
�0 − � f

�0 + 2� f
Rp

3Ha +
�0

�0 + 2� f
Rp

3Mp. �11�

Now, the potential due to a point dipole of magnitude mp,eff
is of the form

�ef f = mp,eff
cos���
4�r2 . �12�

Thus by comparing Eqs. �9� and �12� we find that the mag-
nitude of the “equivalent” dipole for the particle is mp,eff
=4�Cout, and from Eq. �11� we have

mp,eff = 4�Rp
3� �0 − � f

�0 + 2� f
Ha +

�0

�0 + 2� f
Mp� . �13�

Since Hin=Cin, we also find that

Hin =
3� f

�0 + 2� f
Ha −

�0

�0 + 2� f
Mp. �14�

Now, if the particle is below saturation, Mp=	pHin. We sub-
stitute this into Eqs. �13� and �14� and obtain

Hin =
3�	 f + 1�

��	p − 	 f� + 3�	 f + 1��
Ha, �15�

and

Mp =
3	p�	 f + 1�

��	p − 	 f� + 3�	 f + 1��
Ha, �16�

and

FIG. 2. Geometry and reference frame for analysis: �a� coordi-
nate systems and reference frames, �b� magnetic flux lines for a
cylindrical magnet, cross section of microvessel with reference
frame.
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mp,eff = Vp
3�	p − 	 f�

��	p − 	 f� + 3�	 f + 1��
Ha, �17�

where Vp is the volume of the particle. Finally, we substitute
Eq. �17� into Eq. �2� and obtain the force on the magnetized
particle in a fluid of permeability � f,

Fm = � fVp
3�	p − 	 f�

��	p − 	 f� + 3�	 f + 1��
�Ha · ��Ha. �18�

Now, when �	 f��1 �i.e., � f 	�0�, Eq. �18� reduces to

Fm = �0Vp
3�	p − 	 f�

�	p − 	 f� + 3
�Ha · ��Ha. �19�

It also follows that

Hin =
3

�	p − 	 f� + 3
Ha, �20�

and that

mp,eff = Vp
3�	p − 	 f�

�	p − 	 f� + 3
Ha. �21�

If we take saturation into account, the effective dipole mo-
ment can be written as

mp,eff = Vpf�Ha�Ha, �22�

where

f�Ha� = 

3�	p − 	 f�

�	p − 	 f� + 3
Ha 
 � �	p − 	 f� + 3

3	p
�Msp

Msp/Ha Ha � � �	p − 	 f� + 3

3	p
�Msp


 ��	 f� � 1� , �23�

and Ha= �Ha�.
In this analysis, the magnet is assumed to be of infinite

extent in the y direction, and therefore the y components of
the magnetic field and force are zero, i.e.,

Ha = Hax�x,z�x̂ + Haz�x,z�ẑ , �24�

and

Fm�x,z� = Fmx�x,z�x̂ + Fmz�x,z�ẑ , �25�

where

Fmx�x,z� = �0Vpf�Ha��Hax�x,z�
�Hax�x,z�

�x

+ Haz�x,z�
�Hax�x,z�

�z
� , �26�

and

Fmz�x,z� = �0Vpf�Ha��Hax�x,z�
�Haz�x,z�

�x

+ Haz�x,z�
�Haz�x,z�

�z
� . �27�

To evaluate Fm�x ,y� we need an expression for the field dis-
tribution Ha�x ,y�.

C. Magnetic field and force of a cylindrical magnet

The source magnet has a radius Rmag and is centered with
respect to the origin in the x�-z� plane as shown in Fig. 2.
The magnet is magnetized to a level Ms through its cross-

section, and its field components in cylindrical coordinates
are �p. 179 of Ref. �17��

Hr��r�,��� =
Ms

2

Rmag
2

r�2 cos���� , �28�

and

H���r�,��� =
Ms

2

Rmag
2

r�2 sin���� . �29�

We convert these to Cartesian coordinates,

Hx��x�,z�� =
MsRmag

2

2

�x�2 − z�2�
�x�2 + z�2�2 , �30�

Hz��x�,z�� =
MsRmag

2

2

2x�z�

�x�2 + z�2�2 , �31�

and obtain the field gradients,

�Hx��x�,z��

�x�
=

MsRmag
2 x��3z�2 − x�2�
�x�2 + z�2�3 , �32�

�Hx��x�,z��

�z�
=

MsRmag
2 z��z�2 − 3x�2�
�x�2 + z�2�3 , �33�

�Hz��x�,z��

�x�
=

MsRmag
2 z��z�2 − 3x�2�
�x�2 + z�2�3 , �34�
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�Hz��x�,z��

�z�
=

MsRmag
2 x��x�2 − 3z�2�
�x�2 + z�2�3 . �35�

For the force analysis, we rewrite Eqs. �32�–�35� in terms of
the �x ,z� coordinates that are fixed with respect to the mi-
crovessel �Fig. 2�a��. Specifically, we transform Eqs.
�30�–�35�, substitute into Eqs. �26� and �27�, and obtain

Fmx = − �0Vpf�Ha�Ms
2Rmag

4 �x + d�
2��x + d�2 + z2�3 , �36�

and

Fmz = − �0Vpf�Ha�Ms
2Rmag

4 z

2��x + d�2 + z2�3 . �37�

The force component that governs particle capture is Fmx,
and from Eq. �36� we find that it is always attractive �to-
wards the magnet� as d�x.

D. Fluidic force

To evaluate the fluidic force in Eq. �3� we need an expres-
sion for the fluid velocity v f in a microvessel. We choose a
coordinate system with the z axis along the axis of the vessel,
and with the x-y plane centered with respect to its cross
section. We assume fully developed laminar flow parallel to
the z axis,

v f�x,y� = 2v̄ f�1 − � �x2 + y2�1/2

Rv
�2� , �38�

where v̄ f is the average axial fluid velocity in a microvessel
of radius Rv. We substitute Eq. �38� into Eq. �3� and obtain
the fluidic force components

Ffx = − 6��Rpvx, �39�

Ffy = − 6��Rpvy , �40�

and

Ffz = − 6��Rp�vz − 2v̄ f�1 − � �x2 + y2�1/2

Rv
�2�� . �41�

To evaluate Eqs. �39�–�41� we need an expression for blood
viscosity �. Blood is a suspension of red and white blood
cells �erythrocytes and leukocytes�, and platelets in plasma.
Blood plasma �absent the cells and platelets� is an incom-
pressible Newtonian fluid with a viscosity �plasma
=0.0012 N s/m2. Red blood cells have a biconcave discoid
shape with a diameter of 6–8 �m, and a thickness of 2 �m.
These cells account for approximately 99% of the particulate
matter in blood. The hematocrit, which is the percentage by
volume of packed red blood cells in a given sample of blood,
is nominally 40–45 %. The rheological properties of blood in
the microvasculature depend on many factors including the
diameter of the blood vessel, the flow velocity, the hemat-
ocrit, the finite size of the blood cells, their elastic properties,
the aggregation and deformation of the blood cells, etc. �23�.
A rigorous prediction of these properties is beyond the scope
of this work. Here, we use an analytical empirically based

expression for the viscosity � in vivo that applies for medium
to high shear rates,

v f/D � 50/s . �42�

Specifically, the apparent blood viscosity �relative to that of
plasma� can be estimated using �24�

�rel = �1 + ��0.45 − 1�
�1 − HD�C − 1

�1 − 0.45�C − 1
� D

D − 1.1
�2�

�� D

D − 1.1
�2

. �43�

In Eq. �43�, D is the diameter of the vessel in microns, HD is
the hematocrit �nominally 0.45�, and

�0.45 = 6e−0.085D + 3.2 − 2.44e−0.06D0.645
, �44�

and

C = �0.8 + e−0.075D�� 1

1 + 10−11 · D12 − 1� +
1

1 + 10−11 · D12 .

�45�

Parametric plots of �rel are shown in Fig. 3. More extensive
plots can be found in Ref. �24�. Notice that �rel decreases
with vessel diameter, and obtains a minimum value for di-
ameters between 10 and 100 �m. This is known as the
Fahraeus-Lindqvist effect and is due to the fact that blood
cells are displaced towards the axis of a narrow vessel as
they pass through it thereby creating a cell-depleted region
near the wall of the vessel and a relatively fast moving core
of cells near the center, which results in a decrease in appar-
ent viscosity. It is important to note that Eq. �43� gives the
viscosity relative to that of the plasma. Thus the effective
blood viscosity � in Eqs. �39�–�41� is given by

� = �rel�plasma. �46�

FIG. 3. Relative apparent viscosity vs blood vessel diameter and
hematocrit.
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E. Analytical equation for particle motion

The equations of motion can be written in component
form by substituting Eqs. �36�, �37�, and �39�–�41� into Eq.
�1�,

m
dvx

dt
= − �0Vpf�Ha�Ms

2Rmag
4 �x + d�

2��x + d�2 + z2�3 − 6��Rpvx,

�47�

m
dvy

dt
= − 6��Rpvy , �48�

and

m
dvz

dt
= − �0Vpf�Ha�Ms

2Rmag
4 z

2��x + d�2 + z2�3

− 6��Rp�vz − 2v̄ f�1 −
x2 + y2

Rv
2 �� . �49�

Since the magnetic force has no y-component, we can sim-
plify the analysis by assuming that there is no motion in the
y-direction, which means that we ignore Eq. �48�, and focus
instead on Eqs. �47� and �49� with y=0, which govern mo-
tion in the x-z plane. These equations can be further simpli-
fied. To this end, we scale the distance d �from the magnet to
the microvessel� in terms of the magnet radius, d= �1
+��Rmag, and introduce the dimensionless parameters,

x̄ =
x

Rv
,

z̄ =
z

�1 + ��Rmag
,

t̄ =
t2v̄ f

�1 + ��Rmag
,

v̄x = vx
�1 + ��Rmag

2v̄ fRv
,

v̄z =
vz

2v̄ f

. �50�

Using these definitions, Eqs. �47� and �49� can be rewritten
in nondimensional form,

m̄
dv̄x

dt̄
= − C

�x̄ + 1

���x̄ + 1�2 + z̄2�3 − v̄x, �51�

m̄
dv̄z

dt̄
= − C�

z̄

���x̄ + 1�2 + z̄2�3 − �v̄z − �1 − x̄2�� , �52�

where

C =
�0Rp

2 f�Ha�Ms
2

18�Rvv̄ f�1 + ��4 , �53�

and

m̄ =
4v̄ f�pRp

2

9��1 + ��Rmag
, �54�

and

� =
Rv

�1 + ��Rmag
. �55�

For practical applications, it is easy to verify that m̄�1,
which implies that inertial effects are negligible. Thus we
can neglect the first term in Eq. �51�. Similarly, ��1, which
implies that viscous drag dominates motion in the z direc-
tion. Thus we also ignore the first term on the right-hand side
of Eq. �52�, and Eqs. �51� and �52� reduce to

dx̄

dt̄
= − C

1

�1 + z̄2�3 , �56�

and

dz̄

dt̄
= �1 − x̄2� . �57�

We divide Eq. �56� by Eq. �57�,

dx̄

dz̄
= −

C

�1 + z̄2�3�1 − x̄2�
, �58�

and integrate Eq. �58� to obtain an analytical equation for the
particle trajectory,

�x̄ −
x̄3

3
� = �x̄0 −

x̄0
3

3
� − C�3

8
�tan−1�z̄� − tan−1�z̄0��

+
1

8
� z̄�3z̄2 + 5�

�1 + z̄2�2 −
z̄0�3z̄0

2 + 5�
�1 + z̄0

2�2 �� , �59�

where x̄0 and z̄0 are the initial normalized coordinates of the
particle. Note that we have ignored the spatial dependence of
f�Ha� in the parameter C. This amounts to assuming that the
particles are either magnetically biased below saturation, or
magnetically saturated, throughout their range of motion.
These conditions can be tested by evaluating the magnitude
of the magnetic field along the axis of the microvessel, and
applying Eq. �23�. For noninvasive drug targeting the par-
ticles are typically biased below saturation.

Equation �59� is an analytical expression for predicting
particle motion within a microvessel, and is one of our key
results. It is convenient to rewrite it as

x̄3 − 3x̄ + 3f�x̄0, z̄0, z̄� = 0, �60�

where

f�x̄0, z̄0, z̄� = �x̄0 −
x̄0

3

3
� − C�3

8
�tan−1�z̄� − tan−1�z̄0��

+
1

8
� z̄�3z̄2 + 5�

�1 + z̄2�2 −
z̄0�3z̄0

2 + 5�
�1 + z̄0

2�2 �� . �61�

Equation �60� can be solved explicitly for x̄ in terms of z̄.
Specifically, for a given value of z̄ it has three roots x̄1, x̄2,
and x̄3, one of which is physical,
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x̄1 = S + T , �62�

x̄2 = −
1

2
��S + T� − i�3�S − T�� , �63�

x̄3 = −
1

2
��S + T� + i�3�S − T�� , �64�

where

S = �3 R̂ + �R̂2 − 1, T = �3 R̂ − �R̂2 − 1, �65�

and

R̂ = −
3

2
f�x̄0, z̄0, z̄� . �66�

The physical solution of Eq. �60�, which we denote as x̄�z̄�, is
real-valued with �x̄��1 and satisfies the initial condition
x̄�z̄0�= x̄0. We use Eq. �60� to study particle capture. A par-
ticle is captured when its position equals the radius of the
blood vessel, i.e., when x̄2=1. Let z̄c denote the normalized
point of capture, then x̄2�z̄c�=1, or x̄�z̄c�= ±1. If a particle is
captured, a unique physical solution will exist for z̄0� z̄
� z̄c. If the particle is too small to be captured, a unique
physical solution with �x̄�z̄��
1 will exist for z̄0� z̄
�.

We can estimate the conditions for particle capture as fol-
lows. First, we obtain a bound for Eq. �58�,

�x̄ −
x̄3

3
� − �x̄0 −

x̄0
3

3
� = − C�

z̄0

z̄ dz̄

�1 + z̄2�3 �
− C3�

8
.

�67�

Next, assume that the particle starts at top of the blood vessel
�farthest from the magnet� at x̄0=1, which gives

�x̄ −
x̄3

3
� �

2

3
−

C3�

8
. �68�

Now, evaluate Eq. �68� for the condition of particle capture
�x̄=−1�, and obtain

C �
32

9�
, �69�

or

�0�Rp
2 f�Ha�Ms

2

64�v̄ fRv�1 + ��4 � 1. �70�

Lastly, we assume that the particle has a susceptibility much
greater than that of blood �	p�	 f�, and that it is magneti-
cally biased below saturation, which gives

�0�Rp
23�	p/�	p + 3��Ms

2

64�v̄ fRv�1 + ��4 � 1. �71�

It is important to note that the scaling relation �71� is based
on the assumption that z̄0=−�. For practical applications this
means the particle starts far enough upstream where the mag-
netic field and force are negligible. Equation �71� can be

used determine viable values for the parameters Rp, 	p, Ms,
and �, for achieving efficient particle capture.

III. RESULTS

We use Eq. �60� to study the transport and capture of
therapeutic magnetite �Fe3O4� nanoparticles in the microvas-
culature. For this analysis, we assume that the susceptibility
of blood is essentially that of free space, but it is important to
note that in general, the susceptibility of the suspending me-
dium can have a significant effect on the magnetic force
�25–27�. Fe3O4 particles are biocompatible, and have a den-
sity �p=5000 kg/m3, and a saturation magnetization Msp
=4.78�105A/m. We adopt a magnetization model for Fe3O4
described by Takayasu et al. �20�, which is consistent with
Eq. �23� when 	p�1,

f�Ha� = � 3 Ha 
 Msp/3

Msp/Ha Ha � Msp/3
� . �72�

According to this model, if the particle is below saturation
then Hdemag	Ha �Hin	0�, and Mp=3Ha. This model is
consistent with a reported volume susceptibility 	Fe3O4

for
magnetite of between 1 and 6. The reported values for 	Fe3O4
are different than the value used here for 	p because 	Fe3O4

is
measured with respect to the applied field, rather than the
internal field �28�. Throughout this analysis we use the Car-
tesian coordinate system fixed to the microvessel as shown in
Fig. 2 �i.e., the z axis is along the axis of the microvessel�.

First, we use Eqs. �30� and �31�, and Eqs. �36� and �37� to
compute the magnet field and force along the axis of the
microvessel �−4Rmag�z�4Rmag� which is located 1.5 cm
from the surface of a rare-earth NdFeB magnet. The magnet
is 4 cm in diameter �Rmag=2.0 cm, d=3.5 cm� with a mag-
netization Ms=1�106 A/m �remanence Br=1.256 T�. The
force is computed on a Fe3O4 nanoparticle with a radius
Rp=100 nm. Plots of Bx, Bz, Fmx, and Fmz, along with corre-
sponding data obtained using finite element analysis �FEA�,
are shown in Figs. 4 and 5. The FEMLAB program from
COMSOL was used for the FEA. Notice that Bx obtains its
maximum value at the center of the magnet �z /Rmag=0�,
whereas Bz peaks at the edges �z /Rmag= ±1�, and alternates

FIG. 4. Magnetic field components along the axis of a microves-
sel �analytical vs FEA analysis�.
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in sign from one edge to the other. The horizontal component
of the magnetic force Fmz has a profile similar to Bz, but with
an opposite polarity of sign �Fig. 5�. Thus, as a particle
moves horizontally above the magnet �left-to-right� it expe-
riences a horizontal acceleration as it passes the leading edge
of the magnet, followed by a deceleration as it passes the
trailing edge. The vertical force Fmx, which is responsible for
particle capture, is always negative �attractive towards the
magnet�, and is strongest above the center of the magnet
�z /Rmag=0�.

Next, we study particle transport through a microvessel.
To demonstrate the theory, we choose a microvessel with a
radius Rv=75 �m, and an average flow velocity v̄ f
=15mm/s �shear rate v̄ f /Dv=100/s�. For the calculation of
effective viscosity, we assume �plasma=0.0012 N s/m2, and a
hematocrit of 45%. We use the same magnet parameters
above. The initial conditions for the particles are as follows.
They start on the axis of the microvessel �x̄0= ȳ0=0�, far
enough upstream so that the magnetic force is initially neg-
ligible, at z�0�=−4Rmag �z̄0=−4/ �1+���. Thus they have an
initial velocity equal to the axial flow velocity �i.e., vx�0�
=0, vy�0�=0, and vz�0�=2v̄ f =30 mm/s�.

We predict the trajectories of five different sized Fe3O4
particles: Rp=150, 200, 250, 300, 350 nm, for a range of
magnet-to-vessel distances d= �1+��Rmag where �=0.25,
0.5, and 0.75. In these plots the radial position r= �x� of the
particle is normalized with respect to the microvessel radius
Rv, and the axial position z is normalized with respect to the
magnet radius Rmag. The �=0.25 trajectory, along with the
magnetic geometry, is shown in Fig. 6. This plot shows that
all the particles except the smallest �Rp=150 nm� are cap-
tured by the magnet when the microvessel is 0.5 cm from the
surface of the magnet �d= �1+��Rmag=2.5 cm�. The �=0.5
and 0.75 trajectories are shown in Fig. 7. Notice that as the
distance from the magnet increases, fewer particles are cap-
tured, and at d=3.5 cm ��=0.75� only the largest particle
�Rp=350 nm� is captured. This is because the magnetic force
is proportional to the volume of the particle �Vp�Rp

3�. Hence
larger particles experience a stronger capture force, and can
be captured at farther distances. We study the particle size
and capture dependency in more detail by analyzing the tra-
jectories of five larger Fe3O4 particles: Rp=400, 450, 500,

550 and 600 nm, with the microvessel farther from the mag-
net, i.e., �=1.0 and 1.25 �Fig. 8�. As before, larger particles
are captured at farther distances.

We can estimate the minimum particle radius that will
result in capture using Eq. �71� The minimum capture radius
depends on the initial position x̄0, ȳ0, and z̄0 of the particle.
As for the z̄0 dependence, the derivation of the inequality Eq.
�71� is based on the assumption that z̄0=−�. For practical
applications this means the particle starts far enough up-
stream where the magnetic field and force are negligible.
From our analysis above, this occurs when z0
−4Rmag, or
z̄0
−4/ �1+��. In the following, we assume that this condi-

FIG. 5. Magnetic force components on a Fe3O4 nanoparticle
�analytical vs FEA analysis�.

FIG. 6. Trajectories of Fe3O4 nanoparticles in a microvessel
with �=0.25 �cross section of bias magnet shown for reference�.

FIG. 7. Trajectories of Fe3O4 nanoparticles in a microvessel: �a�
�=0.5, �b� �=0.75.
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tion is satisfied. Now, for particles that start at the top of the
microvessel �x̄0=1 , ȳ0=0�, farthest from the magnet, we
have

Rp,capture =
�1 + ��2

Ms

�64�v̄ fRv

�03�
�x̄0 = 1� . �73�

A similar analysis applies to particles that start on the axis of
the microvessel �x̄0=0�, and yields

Rp,capture =
�1 + ��2

Ms

�32�v̄ fRv

�03�
�x̄0 = 0� . �74�

To obtain Eqs. �73� and �74�, we have used 	p / �	p+3��1.
We evaluate these equations for a range of values 0.25��
�2.5 �Fig. 9�. The values obtained for the x̄0=0 case are
consistent with the trajectory analysis above. Specifically,
from Eq. �74� we find that the minimum particle radius re-
quired to ensure particle capture is Rp,capture=156 225, 305,
400, and 505 nm for �=0.25, 0.5, 0.75, 1.0, and 1.25, re-
spectively. From the trajectory analysis, we found that par-
ticles with a corresponding radius of Rp=150, 200, 300, 400,
and 500 nm or below, were not captured, which is consistent.

Lastly, note from Eq. �73� that the minimum particle ra-
dius required for capture does not depend on the distance to

the capture site per se, but rather on the ratio d2 /Rmag
2

through the term �1+��2. Specifically, let dtumor denote the
distance of the tumor inside the body, then dtumor=d−Rmag
=�Rmag. Thus to effect particle capture at dtumor, we first
compute �=dtumor /Rmag, and then use Eq. �73� to compute
the minimum particle radius needed for capture. This would
seem to imply that noninvasive magnetic drug targeting
could be implemented at arbitrary depths in the body by
simply choosing a larger magnet. However, recall that the
initial position of the particle z0 needs to be far upstream,
outside the influence of the magnet, which occurs when z0

−4Rmag. Thus, as Rmag increases, the particles need to be
injected at a distance that might not be practical. Moreover,
Rmag is limited to several centimeters for practical rare-earth
magnets, and this sets a practical upper limit for dtumor.

IV. CONCLUSION

We have developed an analytical model for predicting the
transport and capture of magnetic nanoparticles in the human
microcvasulature. The theory applies to noninvasive therapy
in which the magnetophoretic control is provided by a cylin-
drical magnet positioned outside the body. It takes into ac-
count the dominant magnetic and fluidic forces that govern
particle motion, and is well suited for parametric analysis of
practical drug delivery systems for anticancer treatment. We
have used the model to study drug delivery, and our results
indicate that malignant tissue can be targeted several centi-
meters within the body using submicron Fe3O4 particles. The
model developed herein is well suited for the design and
optimization of novel magnetophoretic drug targeting appa-
ratus.

FIG. 8. Trajectories of Fe3O4 nanoparticles in a microvessel: �a�
�=1.0, �b� �=1.25.

FIG. 9. Minimum particle capture radius for x0=Rv and
x0=0.
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