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We study analytically the effect of metrically structured connectivity on the behavior of autoassociative
networks. The steady state equations are derived for a generic input-output function, and then we focus on their
solutions in the case of networks composed of three alternative simple rate-based model neurons: threshold-
linear, binary or smoothly saturating units. For a connectivity which is short range enough the threshold-linear
network shows localized retrieval states. The saturating and binary models also exhibit spatially modulated
retrieval states if the highest activity level that they can achieve is above the maximum activity of the units in
the stored patterns. We show that this saturation level together with the linear gain of the transfer function are
important parameters that determine the possibility of localized retrieval. If the ratio of the number of stored
patterns to the number of connections per unit goes to zero, while the latter goes to infinity, it is possible to
derive an analytical formula for the critical value of the connectivity width, below which one observes spatially
nonuniform retrieval states. The formula is also shown to offer a good first approximation for higher storage
loads. We show that even in the case of localized retrieval the storage capacity remains proportional to the
number of connections per neurons, with the proportionality constant lower by a factor of 3–4 compared to
uniform retrieval. The approach that we present here is generic in the sense that there are no specific assump-
tions on the single unit input-output function nor on the exact connectivity structure.
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I. INTRODUCTION

Recurrent neuronal networks are able to store patterns of
activity and retrieve them later when provided with partial
cues—a property called autoassociative retrieval. This is be-
lieved to play an important role in memory, as a function of
the real brain. During the past 20 years, several neuronal
network models of autoassociative retrieval have been stud-
ied along the lines of the seminal work by Amit et al. �1�. An
important feature of this approach is that interesting quanti-
ties like storage capacity can actually be calculated, using
methods of statistical physics. There have been various ex-
tension of the model studied by Amit et al., pointing in the
direction of more biologically plausible autoassociative net-
works. For instance, associative memory retrieval has been
extensively analyzed in networks with analog input-output
transfer functions �2,3� and spiking neuron models �4–7�.

Nevertheless, most models of associative retrieval rely on
very simplified assumptions about the pattern of connectivity
in the network. It is usually assumed, in fact, that the prob-
ability of existence of a connection between two units does
not depend on their distance. This is a reasonable assumption
for modelling memory retrieval in parts of the brain—like
the CA3 field of the hippocampus—where the connectivity
between neurons is, to a first approximation, uniform. The
cerebral isocortex, on the other hand, while also thought to
retrieve memories autoassociatively �8�, shows substantially
metrical organization in its connectivity �9�. One study in rat
visual cortex, for instance, suggests that the probability of
connection decreases from 50%-80% for directly adjacent

neurons to 0%–15% for neurons 500 �m apart �10�.
The analytical treatment of even very simplified models

with spatially organized connectivity is however difficult
�11�. First, the distance dependence in the connectivity forces
one to introduce “field” order parameters in the model �12�.
Moreover, asymmetric connectivity makes inapplicable those
methods of equilibrium statistical mechanics which were
originally used to solve classical models of associative re-
trieval �13�. Therefore, associative networks with metrically
structured connectivity have been recently studied only
through simulations, considering special cases, e.g., of bi-
nary units, or with some approximation �12,14–16�. Even
though the effect of a metric connectivity in autoassociative
networks is just starting to be seriously considered, there is a
large literature on the effect of neuronal connectivity patterns
in networks without quenched memory patterns. The local-
ization of activity, for instance, has been extensively ana-
lyzed in ring models for orientation selectivity �17�, head
direction cells �18,19� and spatial working memory �20�. The
effect of geometrically structured connectivity and transmis-
sion delays on the spatiotemporal properties of the activity of
large neuronal networks has been recently studied, too �21�.
However, as we said, such models do not include stored
memory patterns. In the ring models, for instance, all the
relevant information carried by neuronal activity is that re-
lated to its location on the ring. Here, instead, we consider a
network with metrically organized connectivity and stored
memory patterns, and we study the interplay between these
two features.

In this context, we have previously derived the steady
state equations of an autoassociative network comprised of
threshold-linear model neurons �12�. We have shown that in
such a network the spatial organization of the connectivity
can modulate the attractor states that correspond to stored
memory patterns. The interesting scenario arises when the
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connectivity is such that a sufficiently large number of con-
nections to each unit come from nearby units. Then, even
though memory patterns are stored all over the network and
none of them has any preferential spatial location, retrieval
activity can be localized in a certain region, while still being
pattern selective, that is it can convey both spatial informa-
tion and information about the memory pattern that has been
evoked by the external cue. This analysis has been based on
approximating the solutions of the steady state equations in
the case of threshold-linear neurons, together with computer
simulations.

The purpose of this paper is to extend the previous analy-
sis to generic rate-based neuronal networks, describe how
they can generally be solved and analyze their solutions in
the case of different neuronal models in order to figure out
the effect of single neuron parameters on the system. We also
confirm our previous results through a more accurate method
presented here. This will provide us with a more accurate
picture of the system.

We derive the steady state equations for a rate-based net-
work with spatially organized connectivity. We show that the
equations can be analyzed analytically if the ratio of the
number of stored patterns to the number of connections per
unit goes to zero, as the latter goes to infinity. When this ratio
is finite, we provide a numerical method to solve the fixed-
point equations to arbitrary accuracy. We analyze the equa-
tions for three alternative model neurons: binary, threshold-
linear, and smoothly saturating. Including various neuronal
types is an important step forward for two reasons. The first
reason is that it has been argued that it is not possible to get
the same kind of localized retrieval states in a network of
binary neurons �15,22� and integrate-and-fire neurons �14�.
The result that we derive here is that it is important to set the
linear gain and level of saturation of the neurons in the right
regime to get localized memory states. This explains the fail-
ure in getting localized retrieval states in other studies and
makes the picture drawn from different studies more coher-
ent. Second, since real neurons do show firing rate satura-
tion, it is important so see whether localized retrieval states
can be observed in network comprised of such saturating
model neurons and to understand how it affects the localiza-
tion of the activity.

In the case of threshold-linear networks, numerical solu-
tions of the equations show that, as a result of short range
connectivity, localized retrieval states can be observed. This
confirms our previous analysis in Ref. �12�. These localized
solutions are absent in a network with 0–1 binary units when
the maximum activity level in memory patterns is chosen to
be 1. This is consistent with the results of �15,22�. However,
for binary and smoothly saturating units, but with a maxi-
mum activity level above their maximum rates in the stored
patterns, the existence of spatially modulated retrieval states
depends on this saturation level itself and, for smoothly satu-
rating units, on how it is approached, that is, on the gain of
their transfer function.

Numerical solutions show that the level of quenched noise
has a minor effect on the properties of the spatially modu-
lated solutions; and suggest, therefore, that our analytical
solution in the case of low storage load is a good first order
approximation.

II. MODEL

Consider a network of N neurons, in which the firing rate
of unit i is represented by a variable vi�0. The activity of
each neuron is determined through a transfer function
vi=F�hi−Th� where hi is the input to the neuron and Th is a
threshold such that F�hi−Th�=0 for hi�Th, i.e., subthresh-
old inputs elicit no output.

We further assume that the input �local field� to the unit i
takes the following form:

hi = �
j�i

Jijv j + b�x� , �1�

where the first term enables the memories encoded in the
weights to determine the dynamics. In the second term,
x= 1

N�ivi and the function denoted by b�x�, with an appropri-
ate functional form, can regulate the activity of the network,
so that at any moment in time 1

N�ivi=const. While in simu-
lations b�x� will be assigned an explicit functional form, such
exact form is not important for our study of the fixed-point
equations. The reason is that the contribution from b�x� is
constant across units, when the fixed-point equations are sat-
isfied and 1

N�ivi=const, and it can therefore be absorbed in
the threshold. This effective threshold is used by the network
to regulate its activity.

We assume that each unit receives C inputs from the other
units in the network. We take the limits C→� and N→� so
that finite size effects are not important in our analysis.

The Hebbian learning rule prescribes that the synaptic
weight between units i and j be given as �23,24�:

Jij =
1

Ca2 �
�=1

p

�ij��i
� − a��� j

� − a� , �2�

where p is the number of stored patterns, �i
� represents the

activity of the unit located at i in memory pattern � and
�ij =1, with probability �ij, if there is a connection between
units i and j, and �ij =0 otherwise.

Each �i
� is taken to be a quenched variable drawn

independently from a distribution p���, with the constraints
��0, ���= ��2�=a, where � � stands for the average over the
distribution p��� �25�. The parameter a measures the sparsity
of the memory patterns: they are sparsely coded if a�1.
Here we concentrate on the binary coding scheme
p���=a���−1�+ �1−a�����, but the calculation can be eas-
ily applied to any probability distribution.

Throughout this paper we assume that the b term
in Eq. �1�, or equivalently Th, is chosen in such a way that
1
N�ivi=a at all times, i.e., the activity in the network is regu-
lated at the same level as in the memory patterns �note, how-
ever, that for the memory patterns also the average of the
square activity is set to a, which turns a into a sparsity pa-
rameter�. Fixing the activity guarantees, among other things,
that it will not blow up during the retrieval operation. The
mean activity level can still be set to a different constant
value, but we find it convenient to stick to the simple ansatz
that the network maintains the same mean activity at re-
trieval as it had at storage, that is, the same mean activity
level as in the stored memory patterns. Our conclusions re-

YASSER ROUDI AND ALESSANDRO TREVES PHYSICAL REVIEW E 73, 061904 �2006�

061904-2



quire a straightforward rephrasing to be applied to a network
operating at a different activity level during retrieval. Fur-
ther, we assume, as mentioned above, that inhibition—that
we do not model explicitly—may effectively act to keep the
overall mean activity constant. Even though in most studies
of autoassociative networks inhibition has been assumed to
act globally �in parallel to the assumption of a nonmetric
excitatory connectivity�, it will be quite interesting to study
how short range inhibition would change our view of asso-
ciative retrieval in the cortex. This issue remains to be ana-
lyzed: for the purpose of the current study we do not worry
about it, and just assume that the various classes of inhibitory
neurons in the cortex can, one way or another, ensure con-
stant overall activity at all times.

III. FIXED-POINT EQUATIONS

Following Ref. �12�, we start our analysis by defining as
order parameter the local overlap mi

� defined as

mi
� =

1

C
�

j

�ij�� j
�/a − 1�v j . �3�

This parameter measures the degree of retrieval
of pattern �, i.e., if pattern � is retrieved, then 1

N� jmj
�

= 1
Na� j�� j

�−a�v j =O�1�. However if it is not retrieved, this
sum will be O�1/�N� �13�.

We hope to derive equations that relate these parameters
to each other and then see whether it is possible to have a
solution in which the sum 1

N� jmj
� is large for one pattern

�without loss of generality we take it to be �=1� and not for
the others. This could be done through the signal-to-noise
analysis which is a classical tool in analyzing autoassociative
networks and has been used extensively in the literature
�26–31�. In signal-to-noise analysis one assumes that the ef-
fect of nonretrieved patterns on the retrieval is a Gaussian
noise to each neuron i. The variance of this noise is denoted
by 	i

2. One then writes the input to each unit as a sum of
signal plus a random Gaussian variable with variance 	i

2 and
then uses the result to relate 	i

2 and mi
1. Details of such cal-

culation are highlighted in Appendix A.
By going to a continuous limit with a straightforward re-

definition of the above parameters and using a self-consistent
signal-to-noise analysis �SCSNA �12,26��, the fixed-point
equations for our network can be derived in all generality
�see Appendix A and also Ref. �12��. It is convenient to
adjust our notation to the continuum limit. r henceforth rep-
resents the position of each of N units on a continuum mani-
fold of dimension d, while the index i previously used to
indicate discrete unit positions will be recycled in later sec-
tions to denote, instead, distinct Fourier components along
each spatial dimension; and C continues to denote the num-
ber of units connected to a given unit. Later on, we shall
assume for simplicity our manifold to be a d-dimensional
hypertorus of linear size 2L, with unitary spacing among the
units, i.e., �2L�d=N. The SCSNA yields in the continuum
limit the equations

m�r2� =
1

C
	 dr1��r2;r1�I2�r1� ,

	2�r2� =

T0

2

C
	 dr1A�r2;r1�I3�r1� ,

��r2;r1� =	 drK�r2;r���r;r1�

+	 drdr�K�r2;r�K�r;r����r�;r1� + ¯ ,

K�r2;r� =
T0

C
��r2;r�
	 DzG��r�� � ��r2;r���r� ,


�r� = 
T0��r;r�, x =
1

N
	 drDzG�r;
� , �4�

where 
= p /C is the storage load, T0= 1−a
a and

I2�r� = 
���r�/a − 1� 	 DzG�r;
�� ,

I3�r� = 
	 DzG�r;
�2� ,

A�r2;r1� = ��r2;r1� + 2��r2;r1���r2;r1� + ��r2;r1�2,

and Dz�dz�e−z2/2 /�2��; while v�r�=G�r ;
�� Ĝ�ĥ�r� ;
� is

the self-consistent solution of v�r�=F�ĥ�r�+
�r�v�r��, and,

finally, ĥ�r��h�r�−
�r�v�r�−Th is the part of the local field
at r which does not directly depend on v�r�, minus the
threshold Th.

Among the above order parameters, � has a nice physical
interpretation. It measures how the reverberation of the noise
through loops in the network affects retrieval. In the simple
case of nonmetric connectivity, � vanishes if the network is
extremely diluted. Each term in the sum in the equation for �
represents one level of a “loop expansion,” which in some
cases, e.g., for a network without structure, can be closed
�12�.

IV. NONUNIFORM SOLUTIONS: THE LIMIT �\0

When 
=0, analyzing the formation of nonuniform solu-
tions becomes simple even for a d-dimensional network.
It is convenient, and instructive for the latter treatment of the

�0 case, to carry out the analysis in Fourier space. In the

=0 case, the fixed-point equations in the continuum limit
read

m̃i1,. . .,id
=

�̃i1,. . .,id

C
	 dr


n=1

d

cos��inrn

L
�

�
����r�
a

− 1�F�h�r,����� ,

x =
1

N
	 dr�F�h�r,����� ,
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h�r,��� = ����r�
a

− 1�m�r� − Th, �5�

where m̃i1,i2,. . .,id
and �̃i1,. . .,id

are the Fourier modes of m�r�
and ��r ,r��, respectively. Note that in this Fourier decompo-
sition, it is assumed that ��r ,r�� depends just on �ri−ri��, "i.

We can first try to see whether these equations admit any
solution which is uniform in space, i.e., m�r�=const. In Fou-
rier space, a constant solution has m̃0,. . .,0�0 and all the oth-
ers modes equal to zero.

It is easy to check that the above equations admit the
spatially uniform solution

m̃i1,i2,. . .,id
= �1 − a��i10�i20 ¯ �id0,

Th = �1 − a��1/a − 1� − F−1�1� ,

provided F−1�1�� �1−a� /a �45�. Even though this solution
exists, its stability is not guaranteed. In fact we can show that
the stability of this solution depends on the structure of the
connectivity. For instance, considering a Gaussian connectiv-
ity distribution,

��r,r�� =
C

�2��2�d/2

i=1

d

exp�− �ri − ri��
2

2��2 � , �6�

a linear stability analysis shows that the uniform solution is
stable only for ���c, where

�c =
L

�
�2 ln�a�1/a − 1�2F��F−1�1��� , �7�

and L, we remind, denotes the half-length of each dimension.
For ���c the uniform solution becomes unstable, and

the instability can be in the direction of any of the first Fou-
rier modes m̃10. . .0 , m̃01. . .0 , . . . , m̃00. . .1 �46�.

Here without loss of generality and for simplicity we
take m̃10. . .0, among all d possible directions of instability,
as the one that becomes unstable first. In a network
of threshold-linear units, for which F�x�=gx��x�, where g
is the linear gain, the equation for m̃10. . .0—provided
m̃10. . .0�a / �g�1−a��—reads

m̃10¯0 = g��̃10¯0/C�a�1/a − 1�2m̃10¯0. �8�

This equation, exactly at �c, is satisfied for any m̃10. . .0.
This means that the system is marginally stable at this
point in the direction of m̃10. . .0, resulting in a jump to
m̃10. . .0=a / �g�1−a�� for ���c. This is shown in Fig. 1,
which presents numerical solutions of the equation for m̃1,
for different values of � /L, when the network is on a ring. It
is worth noting that such trivial equation for m̃10. . .0 comes
directly from the linear nature of the threshold-linear func-
tion above threshold. Adding quenched noise to a network of
threshold-linear units or using any other function �see the
next sections�, would change this trivial equation to a non-
linear form, resulting in the disappearance of the jump �47�.
This is important for the analysis of the networks with

�0, as one can expect that the transition to nonuniform
solution will not be abrupt in the presence of quenched noise.
This is verified also by numerically solving the fixed-point
equations in the next section.

An important point about the limit 
→0 is that, as we
shall see later by numerically solving the fixed-point equa-
tions, Eq. �7� is a good approximation for the critical � even
when 
�0. We shall show that the effect of adding
quenched noise is mainly to change the order of the transi-
tion �from sharp to smooth�, with only a minor change in the
critical width �c, and on the degree of “bumpiness” of the
solution for ���c.

V. FIXED-POINT EQUATIONS WITH �Å0

In the preceding section we assumed that the ratio

= p /C goes to zero when C→�. Without this assumption,
in order to find out where nonuniform solutions appear, one
approach is to use a perturbation around the uniform solu-
tion, and see when that perturbation destabilizes the uniform
solution. We previously used this approach to analyze the
behavior of an associative network with Gaussian connectiv-
ity and threshold-linear model neurons �12�. The problem
with this perturbative analysis is that even though it does tell
us where the uniform solution becomes unstable, it does not
tell us how the solution behaves below �c, unless when we
are very close to �c, and even in that case the analysis will be
very involved.

Here, alternatively, we choose to numerically solve the
steady state equations, Eqs. �4�, for many values of �, and
thus try to find the transition point �c, and what happens
below it. One advantage of numerically solving these equa-
tions is the possibility to estimate the storage capacity. In
order to obtain this estimation, one needs to find out for
which values of 
 the self-consistent equations �4� admit a
solution with �drm�r��0 or, alternatively in Fourier space,
m̃0¯0�0.

Solving Eqs. �4� is in general very time consuming, given
the complexity of the equations and the fact that they are
functional equations. One can, however, assume that the spa-
tially modulated overlaps can be approximated by their first
Fourier modes. This assumption will be shown to be reason-
able, at least when the connectivity probability distribution is
a Gaussian function of the distance between neurons �32�.

FIG. 1. �Color online� The dependence of the first Fourier mode
m̃1 on � /L, from numerically solving the equation for m̃1 for
threshold-linear units on a ring with a Gaussian connectivity pat-
tern, a=0.2 and 
=0. Black, g=0.5 and blue, g=0.4. The squares
on the � /L axis indicate the transition points to nonuniform solu-
tion as predicted by Eq. �7�.
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With this assumption, one should of course write Eqs. �4� in
Fourier space. For 
�0 we focus, for simplicity, on a net-
work which lies on a 1D ring with half-length L; the analysis
could be extended, though, to arbitrary dimension �at a
heavier computational cost to calculate the integrals below�.

Assuming that ��r ,r�� depends on �r−r��, we write the
connectivity matrix, m and 	2 in their Fourier modes and,
after a little bit of algebra, find the following fixed-point
equations �from now on c�r��cos��r /L�, s�r��sin��r /L�
and � is a dummy function label that can be c, representing
a cosine, or s, representing a sine�:

��r2,r1� = �
k

�̃kc�k�r2 − r1�� ,

m̃k =
�̃k

C
	 drc�kr�I2�r� ,

	2
k =


T0
2

�1 + �k0�LC
�Y1

k + Y2
k + Y3

k� ,

��r2;r1� = �
kj�

�kj
� ��kr2���jr1� , �9�

where �kl
� and Yi

k are dummy variables defined in Appendix
B and for calculating them one should calculate a 1D inte-
gral. After transforming to Fourier space, the above equa-

tions for m̃k , 	̃k , �̃r
c , . . .. can be solved iteratively. The number

of terms that one includes in the sum in Eq. �B1� �defining
�rs

� �, together with the number of modes that one considers to
approximate the connectivity structure, determine the accu-
racy of the calculation. Note that the above equations do not
have any new physics in them, but to calculate the integrals
involved in these equations is much easier than those in-
volved in the original real space equations, Eqs. �4�. Having
to deal with a finite number of Fourier modes, instead of the
functions that satisfy the original equations, makes the nu-
merics much easier.

Now we can use the above equations �9� to see how the
results of the preceding section can be generalized to the case
of 
�0. We again concentrate on the threshold-linear neu-
ron model for which we have

G�r;
�TL =
g

1 − g

�ĥ�r����ĥ�r�� ,

where again ĥ�r�=h�r�−
�r�v�r�−Th is the part of the local
field which does not directly depend on v�r�, minus the
threshold Th. We also again assume a Gaussian connectivity
on a ring

��r2 − r1� = �C/�2��2�exp�− �r2 − r1�2/2��2� . �10�

In Fig. 2 we plot the amplitude of the first Fourier mode
m̃1—an indication of the deviation from the uniform
solution—as a function of � for threshold-linear units �dot-
ted, 
=0; dashed-dotted, 
=0.1; and full line, 
=0.15; in
this figure and others, always a=0.2 and C /N=0.05�. With
threshold-linear units, for small enough � /L, the solution is
essentially a localized bump. Therefore, we conclude that
even when 
�0 nonuniform retrieval is possible. Moreover,
we can make two important observations at this point. One is

that the value of �c at which the uniform solution is desta-
bilized and the nonuniform solution appear, seems to be just
mildly affected by 
. As a result, the analytical equation �7�
that we derived previously for the case of 
→0 appears to
be a good first approximation for 
�0. The second point is
that even for small values of �, the three curves in Fig. 2
remain close to each other. In fact the only major effect that
decreasing 
 to zero induces is that it changes the transition
to nonuniform retrieval from a smooth to an abrupt one, as
has been mentioned in Sec. IV. These points suggest that, in
order to analyze the formation of nonuniform activity pro-
files, we can concentrate on the 
→0 limit, in which case
the fixed-point equations simplify considerably.

To understand the behavior of other modes, we have plot-
ted the amplitude of the second and the third Fourier modes
in addition to the first one, as a function of � /L, in Fig. 3. As
one can appreciate from this graph, the second and third
Fourier modes become nonzero for smaller values of � /L,
compared to the first mode. Note that at � /L=0.125, and for

FIG. 3. �Color online� Dependence of the first Fourier mode m̃1

�blue, dashed-dotted line�, second Fourier mode m̃2 �black, dashed
line�, and third Fourier mode m̃3 �red, full line� on � /L, for a net-
work of threshold-linear units on a ring. In this graph we have used
g=0.5, a=0.2, and 
=0.1. The first Fourier mode becomes nonzero
first and is the significant mode for a range of � /L. For smaller
values of � /L, however, the second and then the third modes also
become nonzero, and gradually important in describing the shape of
the solution.

FIG. 2. �Color online� Dependence of the first Fourier mode m̃1

on � /L, for a network of threshold-linear units on a ring. In this
graph, we have used g=0.5, a=0.2, and 
=0 �black, dotted�,

=0.1 �blue, dashed-dotted� and 
=0.15 �green, full line�. The
black square on the � /L axis indicates the transition point to non-
uniform solution as predicted by Eq. �7�.
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the C=0.05N=0.1L that we have used in this paper, the peak
of the Gaussian probability distribution Eq. �10� is �0.32.
This is six times larger than the probability of connectivity if
neurons were connected randomly with uniform probability
C /N=0.05. From Fig. 3, one can see that for this localized
connectivity with � /L=0.125, the first mode is approxi-
mately twice the second mode and therefore the solution
cannot be approximated solely by the first mode. Thus the
graph shows that even though for less localized connectivity
patterns the only significant mode is the first one, for more
localized connectivity structures other modes also become
important in defining the shape of the solution.

VI. LOCALIZED SOLUTIONS: ALTERNATIVE NEURON
MODELS

An intriguing question is to understand whether it is pos-
sible to get localized retrieval in networks comprised of
model neurons other than threshold-linear. This question has
been investigated by other authors previously. Koroutchev
and Korutcheva �15,22� analyzed a network of 0–1 binary
neurons with symmetric, but metrically organized connec-
tions using the replica trick. These authors found out that
such networks are not capable of showing localized retrieval
if the mean activity of the network is kept fixed during re-
trieval to the same value as the mean activity of the stored
patterns. Simulation studies of a network comprised of
integrate-and-fire neurons also show that it seems unlikely to
have both localized activity and retrieval of a pattern �14�. In
this part of the paper, we study how the single neuron model
affects the possibility of having a nonuniform retrieval state.

First, we concentrate on the binary transfer functions, for
which we have

G�r;
�B = ���ĥ�r�� , �11�

where � represents the value of the high state of the unit, e.g.,
�=1 for a classical 0–1 binary unit. As in the preceding sec-
tion, a Gaussian connectivity on a ring is again assumed,
��r2−r1�= �C /�2��2�exp�−�r2−r1�2 /2��2�.

The results of solving the fixed-point equations is shown
in Fig. 4. As opposed to threshold-linear units, a network
of 0–1 binary neurons fails to exhibit nonuniform retrieval
�14,15,22�. This difference with threshold-linear network
can be understood in the following way. There are two
conditions to be satisfied for the retrieval state to exist:
m̃0= 1

N �dr��1�r� /a−1�v�r�=O�1� and x= 1
N �drv�r�=a. The

second condition means that, for spatially modulated re-
trieval states, in some parts of the network units with activity
1 in the corresponding stored pattern should have activity
below 1, and in other parts above 1. The latter requirement
poses no problem to the threshold-linear network, whose
units can reach high levels of activity. For a network with
binary units, or with units that saturate, the crucial issue is
whether the up state, or the saturation level, is sufficiently
above 1 �the arbitrarily set activity level of active units in the
stored patterns; obviously the argument can be generalized to
nonbinary stored patterns�. Thus binary units with activity
levels, say, 0 and 1.5 �relative to the up state in the stored

pattern� should be able to show spatially modulated activity
profiles, although, rather than localized bumps, they appear
as square-shaped spatially restricted activity. This results in
the cyan and green curves for m̃1 in Fig. 4.

Based on this intuitive argument, another way of getting
spatially modulated retrieval in 0–1 binary network would be
to relax the constraint x= 1

N �drv�r�=a, as discussed in Ref.
�15�.

To further assess the effect of the saturation level on the
formation of localized retrieval states, we consider the fol-
lowing input-output function:

F�h − Th� = � tanh�g�h − Th�/����h − Th� ,

where g is the slope at threshold and � is the saturation level.
One should notice that for a sufficiently high � this transfer
function is effectively just a threshold-linear function.

For simplicity we focus on the 
→0 limit, as we do not
expect the quenched noise to make any qualitative change in
the behavior of the system, except for the smoothness of the
transition. Figure 5 shows how m̃1 changes with � for fixed
g=0.5 and for different values of the saturation level, as
measured by �. When the saturation is set at �=1, for the
intuitive reason sketched above the first Fourier mode does

FIG. 4. �Color online� m̃1 versus � /L for 0–1.5 binary units
�cyan curve, dashed line� and for 0–2 binary units �green curve, full
line�, both at 
=0. For comparison, we also have replotted the case
of threshold-linear units with g=0.5 and 
=0 �black, dotted line� or

=0.1 �blue, dashed line�. The 0–1 binary unit gives m̃1=0 for all
values of �.

FIG. 5. �Color online� m̃1 versus � /L for g=0.5 for different
values of the saturation level: �=2 �blue�, �=3 �black�, and �=4
�red�. Cyan, threshold-linear units ��→��.
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not differ from zero. By increasing �, however, one ap-
proaches the threshold-linear regime. In Fig. 6 we plot m̃1
versus � for different values of g and for both threshold-
linear and saturating input-output functions. Notice the qua-
silinear behavior for values of � below the transition.

VII. STORAGE CAPACITY

The next issue we address is the effect of nonuniform
retrieval on storage capacity. Previously, we have found that
localized connectivity decreases the storage capacity through
two mechanisms �12�. First, a localized connectivity in-
creases the number of loops, which in turn amplify the effect
of quenched noise. Second, localized retrieval decreases, ef-
fectively, the number of connections available to active units
to receive the retrieval signal, particularly at the flanks of the
activity profile.

As a first approximation, one might assume that these two
effects are independent, and estimate them in the following
way. The first effect could be estimated by taking a guess
function and plugging it into the fixed-point equations, and
then fixing the parameters of the guess function by, for in-
stance, optimizing the resulting storage capacity for these
parameters. This gives us the storage capacity if only the first
effect had contributed. The effect of loops can be estimated
by putting a uniform solution in the fixed-point equations
and calculating how much loops decrease the storage capac-
ity of network assuming such a uniform solution, compared
to the network with the same solution in the absence of
loops. Considering these two effects as additive leads to a
good approximation for the storage capacity, at least for the
threshold-linear units �12�.

Here, instead, we aim to calculate the storage capacity to
arbitrary accuracy by numerically solving the fixed-point
equations. This is an alternative and more accurate approach
to calculate the storage capacity, when compared to the ap-
proximation scheme that we had presented before. One
should bear in mind that both ways of calculating the storage
capacity may be useful, but in different scenarios. Finding
the storage capacity through numerically solving the fixed-
point equations is more accurate, however it can be quite
slow, particularly in 2D or 3D, to calculate the required in-
tegrals and obtain the convergence to a solution. The ap-
proximate method, although fast and easy, can be rather in-
accurate if the function that one uses to estimate the effect of
localization is not close to the real solution and/or the two
effects are highly correlated. It is therefore useful to consider
both methods.

In Fig. 7 we plot m̃0 as a function of 
, for � /L=0.156,
� /L=0.25, and for a uniform connectivity pattern. Although
the storage capacity 
c=Inf
�
 � m̃0�
�=0� decreases, the de-
crease is not too severe, even for very localized solutions.
When � /L=0.156, for instance, the solution is quite local-
ized, and the storage capacity is decreased by a factor �3
compared to uniform retrieval. The fact that even for very
localized connectivity 
c= pc /C does not go to zero, but re-
mains finite, means that the maximum number of retrievable
patterns remains proportional to C.

VIII. DISCUSSION

In this paper we have studied the effect of a spatially
organized connectivity pattern on pattern retrieval with rate-
based model neurons. Although the steady state equations
that we have derived are applicable to any transfer function,
to study the behavior of their solutions we have focused on
three alternative input-output transfer functions.

The results we have presented in this paper show that, in
general, a network with a fairly realistic single unit input-
output transfer function becomes capable of localized re-
trieval, if the connectivity is sufficiently concentrated at short
distances, simply by manipulating the single unit saturation
level and its gain. Increasing the gain, and/or the saturation

FIG. 6. �Color online� m̃1 versus � /L for different values of the
gain: g=0.45 blue, g=0.5 black, g=0.55 red, and g=0.6 cyan: �up-
per panel� threshold-linear and �lower panel� saturating units with
�=2. With saturating units decreasing g �thus linearizing the input-
output function close to threshold� sharpens the transition. The
filled squares indicate �c, as predicted by Eq. �7�.

FIG. 7. �Color online� m̃0 versus 
 for different values of � /L in
a threshold-linear network with g=0.5. Black for � /L=0.156, blue
for � /L=0.25, and red for a structureless network. Note the corre-
sponding values, m̃1=1.22 for � /L=0.156, m̃1=0.8 for � /L=0.25,
and m̃1=0 for the structureless network, all when 
=0.05.
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level, makes retrieval states more localized. These param-
eters can be effectively controlled via inhibitory mecha-
nisms. The effect of the quenched noise is minor on the
qualitative behavior of the system, making the analytic for-
mula, Eq. �7�, a reasonable approximation for a wide range
of parameters. The fact that, for a given value of �, changing
the saturation level or the slope at threshold �g� can force the
network out of the spatially modulated retrieval regime may
explain the result of Ref. �14�.

It is known that autoassociative networks require sparse
coding in order to benefit from a large storage capacity
�33–36�. Mathematically speaking, the scaling relation be-
tween the maximum retrievable number of patterns pc and a
usually takes the form of pc�1/ �a ln�1/a��. Even though the
formal mathematical analyses leading to this result have
been mainly carried out for networks comprised of simplified
model neurons, it is expected from a simple signal-to-noise
analysis that sparse codes should be beneficial even in net-
works comprised of more complex model neurons. Contrary
to the sparse coding regime expected from such theoretical
considerations, however, experimental measures of sparsity,
e.g., in visual area IT, which is believed to be the storehouse
for long term object memory �37�, tend to yield relatively
large values of a, such as a�0.7 �38,39�. Our results here
suggest that the reported values of a may have been mea-
sured, effectively, conditional to the recorded units being ac-
tive in a localized retrieval state, thus overestimated by ne-
glecting the large quasisilent part of the network.

It is also important to notice that localized retrieval, while
quantitatively decreasing local storage capacity, may consid-
erably increase the computational power of a network with
structured connectivity. This can be appreciated by noting
that, in a large network, more than one memory pattern of
activity may be retrieved at the same time, each in a different
location, without much interference. A combination of lo-
cally retrieved memories can be thought of as a global, com-
posite memory pattern. The number of such composite pat-
terns would be combinatorially large, thus hugely increasing
the overall storage capacity of the network. Note that this is
unlikely to happen in a network without metrically organized
connectivity, as a result of the instability of mixed, so-called
spurious, states �40�. Each neuron in the isocortex receives
of the order of 104 connections, and this number implies a
storage capacity for at most a similar number of locally re-
trievable patterns. The fact that the number of memories
stored in the isocortex seems much higher may stem from
the combinatorial character of global memory patterns, al-
lowed by the localization discussed here. This issue may be
explored further by studying modular networks �41–43�.
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APPENDIX A: THE SELF-CONSISTENT SIGNAL-TO-
NOISE ANALYSIS

Here we outline the main steps which leads to the fixed-
point equations �4� for readers who may be unfamiliar with
the self-consistent signal-to-noise analysis.

Using the definition of mi
� in Eq. �3�, we can write the

input to unit i as

hi = �
�

��i
�/a − 1�mi

� − 
�ii�1/a − 1�vi + b�x� , �A1�

where 
= p /C is the storage load.
As a result the activity of the network can be written as

vi = F���i
1/a − 1�mi

1 + ��i
�/a − 1�mi

� + �
��1,�

��i
�/a − 1�mi

�

− 
�ii�1/a − 1�vi − Th� . �A2�

where we have singled out one of the nonretrieved patterns �
for the reason that will become clear soon, and have assumed
that the first patterns is retrieved. We have also absorbed the
effect of b�x� in the threshold, Th, as discussed in the text.
The sum in Eq. �A2� is taken to be comprised of a Gaussian
random noise, with variance �	i

��2, plus a term which is pro-
portional to vi. The variance of the noise can be taken to be
independent from the pattern � and we can simply denote it
by �	i�2. With these assumptions—which are the main as-
sumptions of the signal-to-noise analysis—Eq. �A2� can be
solved for vi leading to

vi = G���i
1/a − 1�mi

1 + ��i
�/a − 1�mi

� + 	iz − Th� , �A3�

where z is a Gaussian random variable with variance unity.
The function G is defined through this equation.

We can now expand Eq. �A2� up to the first order in mi
�.

The result can be plugged into the definition of mi
� in Eq. �3�

to derive a self-consistent equation for mi
�. Solving this self-

consistent equation gives us the relation between mi
��1 and

the variables 	i and mi=mi
1, and therefore we can write the

right-hand side of Eq. �A3� in a form independent of mi
��1.

The result can be used in the definitions of 	i and mi to
derive the self-consistent equations �4�. The other variables
in these equations, i.e., � and 
, are parameters which natu-
rally appear in the course of calculating mi

��1.
For a more detailed account of the calculation, and a dis-

cussion of the validity of the approximations involved, we
refer the reader to Refs. �12,26,27,44�.

APPENDIX B

The dummy variable �kl
� and Yi

k in Eq. �9� are defined as

�kl
� = �̃k�̃l�

n

�kl
�,n,

�kl
�,n+1 = �

i

�̃i�ki
�,n�il

�,1,

�ij
�,1 =	 dr��r���ir���jr� �B1�

and

Y1
k = �1 + �k0�L�̃k	 drc�kr�I3�r� ,
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Y2
k = 2�

�
	 drQk

��r�I3�r� ,

Y3
k = �

�
	 drWk

��r�I3�r� ,

Qk
��r� = �

ijl

�̃i� jl
���ir���lr��ijk

� ,

Wk
��r� = �

ii�jl

�ii�
� � jl

���i�r���lr��ijk
� ,

�ijk
� =	 dr��ir���jr�c�kr� . �B2�
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