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Thermomechanical oscillations observed previously in hybrid oriented nematic liquid crystals �NLCs� are
explained theoretically. The effect is conditioned by the hydrodynamic flow tendency to reduce the curvature
of the “flexible ribbon” of hybrid NLCs. There is qualitative agreement between the theoretical calculations
and the experimental results.
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I. INTRODUCTION

The thermomechanical effect in gases �1� and superfluid
liquids �2� is well known. The thermomechanical rotation in
a cholesteric liquid crystal due to the vertical temperature
gradient was known long time ago and investigated in detail
in �3–7�. This effect is uniquely related to the chirality of
cholesterics, i.e., to the fact that they have no right-hand–
left-hand symmetry. It has been supposed that these effects
have no analogs in nonchiral liquid crystals �LCs�, particu-
larly for nematics �4,8�.

Nevertheless, a number of thermomechanical effects for
nonchiral LCs, namely for nematics, were predicted in �9�.
Thermomechanical effects of three basic types were consid-
ered: Hydrodynamic flow excitation induced by temperature
gradient �direct thermomechanical effect�, temperature gradi-
ent arising in nonuniform flow �inverse thermomechanical
effect�, and additional director deflection caused by heat
flow. An expression for the “dissipation” function was ob-
tained. Variation of this function makes possible a descrip-
tion of the foregoing effects. The same terms in the thermo-
mechanical equations were written in �10�. The first
experimental observation of the rotation of nematic material
due to a temperature gradient was carried out with a nematic
drop �11�. The study of the dependence of the flow speed
versus sample thickness allowed the authors �9� to conclude
that this effect corresponds to the thermomechanical effect
predicted earlier. The experimentally estimated thermome-
chanical coupling constant was in good agreement with the
theoretical calculations �9�. Recently, the thermomechanical
effect in hybrid and cylindrical-hybrid-oriented horizontal
layers of nematic LCs �NLCs� due to a vertical temperature
gradient �12� has been investigated experimentally and theo-
retically. The essence of the effect is the formation of a hori-
zontal hydrodynamic flow in the NLC with an inhomoge-
neous director distribution. In the case when the
hydrodynamic flow tends to reduce the curvature of the
“flexible ribbon”, an oscillatory motion was observed.

In this work, we investigate theoretically the possibility of
hybrid curvature reversal due to the hydrodynamic flow. This
model allows us to explain our previous experimental result
about oscillatory hydrodynamic flow due to the thermome-
chanical forces at the presence of a transverse temperature
gradient.

The paper is organized as follows. In Sec. II, we discuss
the equations describing the thermomechanical effect in
hybrid-oriented nematics. In Sec. III, we investigate the pos-
sibility of hybrid curvature reversal due to the hydrodynamic
flow. Section IV contains the description of thermomechani-
cal oscillation in hybrid-oriented NLCs. Finally, we give a
summary of the conclusions in Sec. V.

II. THERMOMECHANICAL EQUATIONS IN A
HYBRID NLC

Let us consider an NLC cell with the so-called hybrid
orientation �Fig. 1�. We direct the normal to the cell walls
along the z axis and assume that the boundary condition on
the wall specifies homeotropic orientation n��z=0�=e�z at z
=0 and planar orientation n��z=L�=e�x at z=L, where n� is the
director unit vector, with n� and −n� equivalent, and L is the
cell thickness. Let the external heat sources maintain tem-
perature T=T0 at the plane z=0 and temperature T=T0+�T
at the plane z=L. The temperature gradient dT /dz��T /L
leads then, according to �9�, to tangential thermomechanical
stresses �zx

thm���T /L2, where � is the thermomechanical
constant. The result is liquid flow in the x direction. The
stationary velocity v in this flow can be roughly estimated by
equating the thermomechanical and Navier-Stokes contribu-
tions in the stress tensor �ik. Assuming for the latter �zx�
��v /L, where � is viscosity, we obtain v���T /L�. This
hydrodynamic flow leads to the reorientation of the NLC
director. The direction of the flow velocity depends on the
director concavity and the temperature gradient direction. If
the temperature gradient is directed from the cell wall with a

FIG. 1. Director profile in a nematic LC cell with homogeneous
temperature.
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planar boundary condition to the wall with a homeotropic
condition, then thermomechanical hydrodynamical flow
tends to increase the curvature of the flexible ribbon of hy-
brid NLC. If the temperature gradient has the opposite direc-
tion, then flow tends to reverse the curvature of the flexible
ribbon. In the later case, thermomechanical stress induced
the oscillatory hydrodynamical flow.

In order to describe the above-mentioned thermomechani-
cal effects, we need to write equations of nematodynamics
taking into account the thermomechanical stress tensor. They
are balance equations of torque acting on the NLC director
and the Navier-Stokes equation.

Torque balance equations can be obtained from the varia-
tion principle �13�:

� f� � n��i + eijmnm� �F

�ni
−

�

�xk

�F

���nj/�xk�
� = 0, �1�

where eijm is the whole antisymmetric tensor, f� is the hydro-
dynamical “ force” acting on the NLC director and expressed

through the generalized velocities N� , and the velocity-
gradient tensor dij:

f i = ��3 − �2�Ni + ��3 + �2�dijnj , �2�

Ni =
dni

dt
+

1

2
�n� � curl v��i, dij =

1

2
	 �vi

�xj
+

�v j

�xi

 . �3�

Here, F is the free-energy density in its usual Frank’s form:

F =
1

2
K1�div n��2 +

1

2
K2�n� · curl n��2 +

1

2
K3�n� � curl n��2,

�4�

where Ki are Frank’s elastic constants, and �i are Leslie co-
efficients of the NLC. The Navier-Stokes equation for hydro-
dynamic flow velocity v��r� , t� of an incompressible NLC,
with the presence of thermomechanical terms, is of the form

�	 �vi

�t
+ �v� · �� �vi
 =

��ki

�xk
, �5�

�ki = − p�ki + �ki� + �ki
thm, div v� = 0, �6�

where � is the density, p�r� , t� is the hydrodynamic pressure
determined from the same set of Eqs. �5� and �6� and the
boundary conditions, �ki� is the viscous stress tensor, and �ki

thm

is the thermomechanical stress tensor �9�.
We consider the problem homogeneous in the �x ,y� plane

�� /�x=� /�y=0� and the director distribution in the �x ,z�
plane �ny =0�. We have the boundary conditions for n� men-
tioned above. Thermomechanical stress leads to the hydro-
dynamic flow with velocity v� directed in the x direction �v�
=e�xv�. For this problem, Eq. �1� for director n� = �nx ,0 ,nz� has
the form

��3 − �2�	nx
�nz

�t
− nz

�nx

�t

 + ��3nx

2 − �2nz
2�

�v
�z

+ K3nz
�2nx

�z2

− K1nx
�2nz

�z2 = 0. �7�

Equation �7� describes reorientation of the NLC director un-
der the influence of the hydrodynamic velocity gradient. We
are going to assume, based on some good rationale �13�, that
the inverse influence of the anisotropy on the velocity can be
neglected in our problem. Therefore, the viscous stress tensor
has the isotropic form: �ki� =0.5�4��vi /�xk+�vk /�xi�. And,
for the velocity in the thermomechanical single-constant ap-
proximation ��1=�2= . . . =�12=��, we have

�
�v
�t

= �
�2v
�z2 +

1

4
�

dT

dz
��5 + 3nx

2�
�nx

�z

�nz

�z
+ �5nx + nx

3�
�2nz

�z2 � .

�8�

Equations �7� and �8� are generalized equations for the de-
scription of thermomechanical flow in an NLC with the di-
rector confined to the �x ,z� plane.

III. HYBRID NLC DIRECTOR INSTABILITY AT THE
PRESENCE OF SHEAR FLOW

We denote the angle between the director and x axis as
	�z , t�; then nx=sin 	�z , t�, nz=cos 	�z , t�, and the equation
for the orientation angle has the form

��3 − �2�
�	

�t
= �K1sin2 	 + K3cos2 	�

�2	

�z2

+ �K1 − K3�sin 	 cos 		 �	

�z

2

+ ��3sin2 	 − �2cos2 	�
�v
�z

. �9�

Let us consider first the behavior of the hybrid NLC director
in the presence of simple hydrodynamic flow; shear flow as
an example �v=v0z /L ,v0=const�. The boundary conditions
for the orientational angle are: 	�z=0, t�=0 and 	�z=L , t�
= ±
 /2 �“ +” if the flexible ribbon is oriented in the positive
direction of x, and “−” otherwise�. In the absence of flow, the
stationary solution of Eq. �9� with mentioned boundary con-
ditions has, in good approximation, linear profile: 	�z�
= ±
z / �2L�. Thus, we can assume this solution as an initial
condition for the general problem. In the general case, for the
finite anchoring energy and under the Rapini approximation,
the boundary conditions have the following form �14�:

�K1sin2 	 + K3cos2 	�
�	

�z
− �1sin 	 cos 	 = 0

at lower wall �z=0� and at upper wall �z=L�:

�K1sin2 	 + K3cos2 	�
�	

�z
− �2sin 	 cos 	 = 0.

Let us note that Equation �9� takes the form of the well-
known “ damped-driven sine-Gordon equation” in the single-
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constant approximation for elastic constants �K1=K3�.
We were able to solve Eq. �9� for director reorientation

under the influence of flow with the above-mentioned bound-
ary and initial conditions using MATHEMATICA-5. In this cal-
culation for NLC MBBA, we assumed K1=6
�10−7 erg/cm; K3=7.5�10−7 erg/cm; �2=−0.77P; and
�3=−0.012P. If hydrodynamic flow velocity is directed out
of the flexible ribbons’ curvature �in the opposite direction of
x axis in Fig. 1�, then the velocity gradient brings about a
small increase of curvature �see Fig. 2�a��. The curvature
deforms more completely and the deformation increases in
time when velocity is directed into �in the direction of x axis�
the flexible ribbons’ curvature �Fig. 2�b��. Thereby, the direc-
tor deformation elastic energy F increases in time, where

F =
1

2
K1	 �nz

�z

2

+
1

2
K3	 �nx

�z

2

. �10�

The flexible ribbon reverses its curvature at the time when
deformation energy becomes larger than surface anchoring
energy at z=L. In that way, velocity is directed out of the

reversed curvature. The reversing time depends on the pa-
rameters and surface coupling energy of the NLC. Later, it
depends on the method of surface treatment.

IV. THERMOMECHANICAL OSCILLATION IN HYBRID
NLC

Now let us consider the thermomechanical effect in a
hybrid-oriented nematic with initial director distribution
	�z , t=0�= ±
z /2L. Let the condition T�z=0��T�z=L� be
satisfied for the temperatures kept on the NLC cell sub-
strates. Then, in the presence of the gradient of the director
orientation angle along the z coordinate, a thermomechanical
hydrodynamic flow appears, which moves along the x axis at
the velocity v. When we have initial condition 	�z , t=0�
=
z /2L, the flexible ribbon convexity is directed opposite to
the positive x direction �as in Fig. 1�. The thermomechanical
hydrodynamical flow is directed in the same way, out of the
flexible ribbons’ curvature, and causes a little deepening of
the curvature. When we have the initial condition 	�z , t=0�
=−
z /2L, the flexible ribbon convexity is directed along the
positive x direction. The thermomechanical hydrodynamical
flow is directed in the same way, and again causes some
deepening of curvature.

Let us heat the same cell from the wall with z=L: T�z
=0��T�z=L�. Then, for both initial conditions, the thermo-
mechanical hydrodynamical flow is directed into flexible rib-
bons’ curvature and deforms it completely. This deformation
increases in time and induces the reversal of curvature. This
leads to velocity reversal. That is why in this reverse case of
curvature and velocity, thermomechanical velocity again has
the direction into the flexible ribbons’ curvature and so it
again causes a reversal of curvature and velocity. Thereby,
we can observe oscillatory thermomechanical motion; the
period of which is equal to twice the time of the first reversal
of curvature or velocity. This oscillatory behavior of NLC
director orientation and thermomechanical hydrodynamical
velocity can be described by the system of Eqs. �8� and �9�.
The boundary conditions for velocity are v�z=0, t�=v�z
=L , t�=0 and the initial condition is v�z , t=0�=0. For calcu-
lation with MATHEMATICA-5, we assume for NLC MBBA �
=1 g/cm3, �=10−6 erg/cm K, �T=10 K, and with cell
thickness L=10−2 cm. Velocity starts to grow from zero with
establishment time on six orders shorter than for the director.
That is why in our model of flow and director reversing the
dynamic of the fluid particles, braking and acceleration near
the points of flow reversal are ignored. And, for velocity, we
have only the change of sign. The spatial �Z=z /L� distribu-
tion of velocity was found to be nearly parabolic. For the
velocity magnitude, we have v�10−3 cm/s. As we have
mentioned above, surface anchoring energy depends on the
method of surface treatment. It can be several times larger
than the deformation free-energy F for a stationary distribu-
tion of the NLC director. In our calculation, we will take
it as twice larger than the deformation energy for initial
stationary distribution. In Fig. 3, we have plotted the time
�
= �K1 / ��3−�2�L2�t� and spatial �Z=z /L� dependence of
the x component of the director unit vector nx. A reversal
from the first solution to the second is seen. As we have

FIG. 2. Profiles of the director’s x component �nx� for different
times �tj� after switching the temperature gradient “on”: �a� The
temperature gradient is directed from planar boundary to homeotro-
pic one �t1=0, t2=0.39 s, t3=0.77 s, t4=1.55 s, and t5=7.74 s�; and
�b� the temperature gradient is directed from homeotropic boundary
to planar one �t1=0, t2=0.77 s, t3=1.55 s, t4=3.35 s, and t5

=4.64 s�. Reversal time is tr=3.35 s and oscillation period is tp

=6.7 s.
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mentioned above, the period of oscillation is twice that of the
reversal time. So, for the cell thickness L=10−2 cm, we ob-
tain a period of 
p=6.7 s. The oscillation period strongly
depends on the surface coupling energy. The hybrid NLC
director distribution cannot exist when the surface coupling
energy is less than the free energy of initial stationary direc-
tor’s distribution �in our case, it was 1.25�10−2 erg per cm2

of cell surface�. This oscillation period strongly increases
with an increase in the surface coupling energy from its
minimal value �see Fig. 4�.

It is well known that the Raleigh-Benard convective in-
stability may develop in a horizontal NLC cell in the pres-
ence of vertical temperature gradient �15�. This effect has
threshold character. On the contrary, thermomechanical re-
orientation has no threshold behavior. In the case with �T
=10 K, L=10−2 cm, and for NLC MBBA, we have very high
director reorientation due to our thermomechanical effect,
while the threshold of convective instability is much larger
��T=103 K for L=10−2 cm�.

It is important to note that we have actually varied differ-
ent parameters within the factor range from 0.5 to 2. No
qualitative changes in the behavior of the system were ob-
served in our modeling.

V. DISCUSSION

Our analysis and numerical estimates are in qualitative
agreement with experimental results in our previous study
�12�. An investigation of these effects may, in our opinion,
yield new important information on the molecular dynamics
of the mesophase of LCs. Beside the effect considered in this
paper �which is connected with temperature gradients�, other
effects should occur in LCs: Electromechanical effect due to
electric-field gradients, and diffusion-mechanical effect re-
lated to density gradients of some component or impurity.
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FIG. 3. Three-dimensional time and space dependence of the
director’s x component after switching the temperature gradient on;
temperature gradient is directed from homeotropic boundary to pla-
nar one.

FIG. 4. Surface free energy per cm2 of the LC cell plane respect
to thermomechanical oscillation period.
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