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Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution
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We present and discuss the results of pointwise velocity measurements performed on a viscoelastic micellar
solution made of cetyltrimethylammonium bromide and sodium salicylate in water, respectively, at the con-
centrations of 50 and 100 mmol. The sample is contained in a Couette device and subjected to flow in the strain
controlled mode. This particular solution shows shear banding and, in a narrow range of shear rates at the right
end of the stress plateau, apparent shear thickening occurs. Time-dependent recordings of the shear stress in
this range reveal that the flow has become unstable and that large sustained oscillations of the shear stress and
of the first normal stresses difference emerge and grow in the flow. Local pointwise velocity measurements
clearly reveal a velocity profile typical of shear banding when the imposed shear rate belongs to the plateau,
but also important wall slip in the entire range of velocity gradients investigated. In the oscillations regime, the
velocity is recorded as a function of time at a fixed point close to the rotor of the Couette device. The
time-dependent velocity profile reveals random fluctuations but, from time to time, sharp decreases much
larger than the standard deviation are observed. An attempt is made to correlate these strong variations with the
stress oscillations and a correlation coefficient r is computed. However, the small value found for the coeffi-
cient r does not allow us to draw a final conclusion as concerns the correlation between stress oscillations and

velocity fast decreases.
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I. INTRODUCTION

Wormlike micellar solutions can be made in a very simple
way by mixing a surfactant with a salt in water; in a wide
range of concentration conditions, these simple systems
show a great variety of rheophysical behaviors and have
quite unusual mechanical as well as optical properties. In the
dilute regime, for example, where the sample contains only a
small amount of surfactant (=0.1% wt.), shear thickening is
commonly observed [1-8]; the apparent viscosity increases
sometimes by several orders of magnitude; shear induced
structures (SIS) are assumed to be responsible for this phe-
nomenon. A second domain of great physical interest is the
semidilute regime, where one finds highly viscoelastic solu-
tions containing long entangled micelles. Many solutions in
this second region are accurately described by Maxwell’s
simple mechanical model in the linear range of strain or
stress; but it is in the nonlinear regime that their most spec-
tacular properties will be seen and shear banding certainly is
one of these; numerous experimental work [9-14] have
shown that the signature of shear banding is a flow curve
made of three parts (see Fig. 1 for a schematic representation
of the flow curve o(7y); a stress plateau AB separates two
increasing branches OA’ and B’C; the stress plateau is very
similar to the plateau found in a first order phase transition: it
is the locus of the stationary states of two phases with dif-
ferent rheophysical properties. Next to the moving wall
grows the so-called induced phase supporting the highest
shear rate 7y, and having the lowest viscosity 7,; it fills a
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proportion ¢, of the gap, the remaining part, 1— ¢, = ¢, cor-
responds to the less orientated layer subjected to y, and hav-
ing the viscosity 7;.
Two very simple equations relates the rheological charac-
teristics of the two phases:
(i) the lever rule that states that the macroscopic shear
rate y,, follows [15]:

Yu = v+ Envis (1)
(ii) and the stress continuity at the interface between
the two layers,
W
W
The ratio of the viscosities is in the inverse ratio of the shear

rates in the layers, and since 7y,> v, the induced phase is
less viscous than the primary one.

(2)
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FIG. 1. Schematic representation of the nonmonotonic flow
curve o(7).
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FIG. 2. (Color online) Oscillations of the shear stress o and of
the normal stress N; versus time a few minutes after the inception
of the flow; o (bottom curve with full black circles) and N; (top
curve with full red squares). The macroscopic shear rate is ¥,
=5 s~! and 7 is the period of the oscillations.

The right branch describes the state of the induced phase
when the stress is increased. For most surfactant-salt sys-
tems, this branch is stable, at least in a restricted range of
shear rates at the end of the plateau; this means that after a
short period of time at the inception of the flow during which
transient phenomena can be observed, the recorded stress or
strain becomes time independent and the average values can
be computed.

However, a few cases of unstable branches have been
previously reported for different binary systems [16—19]. By
unstable, one means that either the shear stress or the shear
rate, depending on the operating mode, becomes time depen-
dent, and undergo periodical variations. Other examples of
oscillations and chaotic behavior have also been reported in
various systems like lamellar and onion phases [20,21], and
nematic liquid crystals [22]. Coupling between flow and SIS
concentration [23] or between flow and microstructure [24]
can destabilize the high shear rate branch and cause oscilla-
tions of the stresses: tangential o and first normal stress dif-
ference N,.

In a previous paper [19] we have described the rheophysi-
cal properties of the binary system CTAB/NaSal
(50/100 mmol) that belongs to the semidilute regime; it is a
nearly perfect Maxwellian fluid with a single relaxation time
7=2.65+0.15 s; shear banding occurs in a range of shear
rates extending between 0.45+0.05 to 4.75+0.25 s7!. The
high shear rate branch is unstable and both the shear stress o
and normal stress N oscillate with a period of approximately
15+0.2 s (see in Fig. 2, a few periods of o(r) and N,(¢)).
These oscillations present a sharp shape asymmetry: while
the bottom part looks like the smooth variations of a sinu-
soidal function, the crests form a serrated profile. During an
oscillation, the stress relaxes and decreases to a minimum
very close to the stress plateau o, =10 Pa. On the basis of
these particular features of the stress o, we express the hy-
pothesis that slip at the moving wall may occur when the
stress reaches the crest of an oscillation. In order to check
this assumption, we have performed pointwise velocity mea-
surements (PVM) with a technique called ultrasonic speckle
velocimetry [25] and based on the cross-correlation between
high frequency ultrasonic speckles backscattered by seeds
flowing with the sample. In this paper we report on the rheo-
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logical behavior and PVM performed on the above-
mentioned micellar system. The velocity profiles are com-
pared to the stress variations that are recorded
simultaneously. Correlations between stress relaxation and
velocity decrease are searched for in order to check the as-
sumption of slip at the moving wall when the stress oscil-
lates.

II. SAMPLE AND EXPERIMENTAL DEVICES
A. The micellar system: CTAB/NaSal 50/100 mmol

The surfactant, cetyltrimethylammonium  bromide
(CTAB) and the organic salt, sodium salicylate (NaSal),
were, respectively, purchased from Acros Organics and Ald-
rich. Both chemicals are used without further purification.
Weighted amount of surfactant and salt are dissolved in dis-
tilled water to prepare the 50/100 mmol sample. The fluid is
subjected to ultra sonic waves for a few hours and finally
kept at 30 °C at least for three days prior to any experiments.
During an experiment, the temperature is kept constant at
23+0.1 °C. Glass spheres (mean diameter =10 um) are
added to the solution used for the PVM. In the following and
in order to be more concise, this solution will be referred to
as solution S,; its rheological behavior will be compared to
the same solution but free of seeds and called S;.

B. The device for performing PVM and rheology

The sample is subjected to shear flow in a transparent
Couette cell. The diameter of the inner rotating cylinder (ro-
tor) is 47 mm while the fixed outer one (stator) has a diam-
eter of 50 mm, thus giving a gap of 1.5 mm. The rheometer
(TA Instruments AR 1000) monitoring the cell is operating in
a strain controlled mode. The PVM measurements are per-
formed simultaneously to the stress recording. The velocity
measurements are fast and a full profile can be drawn in as
little as 0.02 to 2 s depending on the shear rate; the device
offers a spatial resolution of 40 um; it allows for the fine
determination of velocity profiles in complex fluids and thus
is particularly interesting when flow instabilities like shear
banding or stress oscillations occur. A full description of the
technique is given with many details in Ref. [25].

III. RHEOLOGICAL PROPERTIES OF THE SYSTEM

A. Flow curve in stress and shear rate controlled modes

In order to enhance the contrast of the sample to ultra-
sonic waves, it has to be seeded with small particles (glass or
polystyrene spheres at the concentration of 1% wt.); one
may wonder whether micron-sized particles introduced in the
sample will change its rheological properties in a significant
way; this is the reason why we compare the flow curve of the
same sample with and without seeds (see Fig. 3). The set of
full black circles ¢ and open blue triangles (A), respectively,
represent the flow curve o(y) of the samples S1 and S2 in
the strain controlled mode. The open red circles represent the
same curve in the stress controlled mode and it is just drawn
for comparison. In the small insert, the flow curves are rep-
resented on an enlarged scale in the shear thickening region.
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FIG. 3. (Color online) Flow curves o(y) of the CTAB/NaSal
50/100 mmol solution in devices operating in strain and stress con-
trolled modes; full black circles (¢): o(y) for the sample free of
markers, open blue triangles (A): seeded solution; the open red
circles (°) is the flow curve in a stress controlled mode. The small
inset is an enlargement of the shear thickening region where oscil-
lations of the stress take place. The error bars represent the standard
deviation of the shear stress.

As concerns the curve corresponding to solution S,, the error
bars give the order of magnitude of the oscillations that
emerge and grow in the shear thickening region. The overall
rheological behavior is very similar in both cases. One can
observe a nearly linear branch in the low shear rates range,
the stress plateau characteristic of shear banding and the up-
per branches which are the locii of the unstable states. The
first branches end at the first critical shear rate 7y, and, for
both solutions, the experimental value are very close:
0.45+0.05 s7! for solution S; and 0.5 s™' for S,; thus the
addition of small spherical diffusers does not significantly
change the behavior of the fluid in the first linear domain.
In the strain controlled mode and for solution S,, the
stress plateau presents a small positive slope; it is a conse-
quence of the stress inhomogeneity due to the cylinders cur-
vature of the Couette device. Experiments on solution S,
were performed in a cone and plate device, where this dis-
advantage does not hold: the stress and the shear rate are
homogeneous and constant throughout the gap. After the
metastable region (see in Fig. 3 the flow curve with the full
black circle e, the stress plateau decreases at first very gently
to 8.9 Pa when 7, reaches 3 s! before increasing again
right to the end of the plateau. The small negative slope of
the first part of the plateau may indicate that the steady state
is not completely achieved when the stress is averaged by the
device. The main difference is found in the shear rate ending
the plateau (respectively, 4.75+0.25 and 6 s~! for the free
and seeded sample). The seeded solution strongly scatters
light, thus forbidding the use of flow birefringence to directly
check for shear banding; however, the velocity profile de-
scribed in the next section, will confirm that the small glass
particles do not basically change the flow behavior.

B. Stress as a function of time when a constant
shear rate is imposed

A sample of solution S, is subjected to an imposed shear
rate and the stress o is recorded as a function of time. Al-
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FIG. 4. (Color online) Time variations of the shear stress for
three imposed shear rates 7,,: in the linear domain, 0.2 s~ black
circles (o), on the stress plateau: 2 s! (red squares (1) and 4 s~
(blue triangles A).

though the most interesting range of shear rates is the one
covering the narrow shear thickening region, the temporal
behavior of ¢ has also been studied in the first linear domain
and on the stress plateau; the reason for these experiments is
to make sure that the flow remains stationary outside the
shear thickening domain. Figure 4 displays a few recordings
of o(r) for three values of the shear rates: 0.2 (black circles
°), 2 (red squares (1), and 4 s~' (blue triangles A). Apart
from a short period of time corresponding to the transient
regime, the shear stress is time independent in these two
domains.

Figures 5(a) and 5(b) display the recorded signal when the
imposed shear rate is chosen in the shear thickening region.
After the inception of the shearing, the flow does not return
to a steady state, but sustained oscillations emerge and grow.
A spectral analysis (Fig. 5(c)) of o(r) reveals a broad peak
with a maximum at a frequency f;;=0.107 Hz corresponding
to a period of 9.34 s. Several secondary peaks close to the
maximum appear in the expansion, they account for the long
time range variations of o; as a matter of fact, the end to end
amplitude of the oscillations is not constant but is subjected
to large variations on a time scale long compared to the
period of the oscillations.

The main quantitative result is the value of the period of
the signal that is only 9.34 s; this value is roughly 40%
smaller than the period of the oscillations found in the solu-
tion free of seeds. This disagreement shows the importance
of the experimental conditions in which measurements are
performed; Fig. 2 displays results of earlier experiments
done in a cone plate device while the PVM setup uses a
Couette device.

In summary, when one compares the behavior of the
sample with or without small glass spheres, it turns out that
the rheology is qualitatively the same: a stress plateau corre-
sponding to shear banding and time-dependent oscillations
when the shear stress is chosen in the narrow shear thicken-
ing region at the end of the plateau.

IV. TIME AVERAGE VELOCITY PROFILES
IN COUETTE FLOW

Local velocity profiles are measured by choosing the mac-
roscopic shear rate in the same range as for the flow curve;
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FIG. 5. Time variations of the shear stress o (above) when the
macroscopic shear rate is set to 7 s~!. The bottom curve is the
Fourier transform of the periodic signal, it has a broad peak with a
maximum at 0.107 Hz (see the small inset for the detailed structure
of the amplitude peak).

we shall thus consider three zones: the low shear rate branch,
the plateau region, and the narrow region, where shear thick-
ening occurs, just after the plateau.

A. The low shear rate branch when 3,,<0.5 s!

Figure 6 presents the distribution across the gap of the
average tangential velocity when the macroscopic shear rate
equals 0.1, 0.2, and 0.5 s~!. Each curve is an average over
several individual recordings of the velocity across the gap
and the typical acquisition times 7, for one profile in this
range of shear rates appear in the last column of Table 1. The
errors bars represent the standard deviation of the velocity;
fluctuations are particularly noticeable near the moving cyl-
inder. The profile at 0.5 s~!. for example, and that will de-
serve special analysis, is the result of averaging 12 velocity
distributions across the gap.

Although the last value is the shear rate beginning the
plateau, it is included in this first domain, since the velocity
profile is very similar to the two others and no shear banding
is observed. The left vertical side of a frame is the velocity
axis and the value attached to the upper left corner corre-
sponds to the velocity (mm/s) of the inner moving wall while
the right lower one (r=1.5 mm) corresponds to 0. The dotted
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FIG. 6. Radial distribution of the average tangential velocity in
the gap of a Couette cell. From left to right, the frames correspond
to applied macroscopic shear rates ,,=0.1, 0.2, and 0.5 s7!. The
width of the gap is 1.5 mm; the dotted diagonal represents the ideal
distribution for a Newtonian fluid. The profile at 7,,=0.5 s™! is
made up of three segments AB (full black circle ¢), CD (full black
circle ¢), and BC (open circle ©).

line joining the two opposite corners represents the expected
profile for a Newtonian fluid. The important feature that one
can immediately observe is that the velocity at both ends
(r=0,1.5 mm) is different from the expected value: slip oc-
curs at both walls: at r=0 the effective velocity v, is different
from the imposed tangential velocity v,, and at r=1.5 mm it
is not zero. The same behavior is observed when y,,=0.2
and 0.5 s7\.
Let the slip percentage at the rotor be defined by

M~ Ue

slip % = > (3)

Um
The effective velocities of the fluid near the walls are
found by performing a linear regression on the profile and
finding the coordinates of the intersections of the straight line
with the vertical axis. At the same time, the slope of the line

TABLE I. Macroscopic shear rates ), effective shear rates 7y,
computed from linear regressions performed on the tangential ve-
locity profiles, slip %, and average acquisition time 7,.

W (571 Yer (s slip% 7a(s)
0.1 0.066 27 100
0.2 0.15 23 86
0.5 0.35 36° 20

“Linear regression performed on segment BC of Fig. 6(c).

061509-4



LOCAL VELOCITY MEASUREMENTS IN...

TABLE II. Macroscopic shear rates y,, and effective shear rates
Yier and ¥.s in the shear induced bands. The fourth column con-
tains the percentage of slip at the moving wall and the last, the
acquisition time 7.

Y (s71) Viep (s7) Vher (571 % slip 74 (s)

1 0.36 2.3 38 27
1.5 0.41 2.7 50 19
2 0.36 4.97 41 15
3 0.53 5.82 23 11
4 0.6 6.93 16 9
5 0.51 7.68 12

6 0.6 8.47 3 3

is the effective shear rate ,; in the fluid. Deviations from the
expected values of the velocity as high as 30% are observed
at the rotor while, near the stator, the liquid is not completely
at rest but is still flowing with a very small velocity
(0.01-0.02 mm/s).

The results of the fitting procedures and computations of
the slip percentage are gathered in Table I.

One should not be too surprised to observe wall slip in the
first linear part of the flow curve since it has already be seen
in a lyotropic lamellar phase [26], in microgels [27], and
even in a Newtonian fluid by Pit [28,29]. A good review of
the phenomenon of wall slip in various fluids like polymer
solutions, emulsions, and particle suspensions has been made
by Barnes [30].

Special attention will be paid to the profile corresponding
to ¥,,=0.5 s7! (see the curve in Fig. 6(c)). Contrary to the
expected linear profile, the experimental points do not gather
on a single straight line, but the profile appears as made up of
three segments like AB (full black circle ¢), BC (open circle
o) and CD (¢); the outermost segments are parallel, have a
nearly equal width (==240 um) and a slope different from
vy because of slip at the walls. The slope of segments AB
and CD equals the 0.52 s™! value very close to 7,,. We do
not know by now if this peculiar behavior has a physical
origin or if it is just an artifact of the experimental device.
One should, however, remember that 0.5 s~ is just the be-
ginning of the stress plateau that corresponds to the emer-
gence of shear banding and, consequently, instabilities may
arise in the flow for this peculiar shear rate.

B. The plateau region: 0.5< 3,,<6 s™!

With the seeded solution, the stress plateau extends be-
tween 0.5 and 6 s~'; the velocity profiles have been recorded
at macroscopic shear rates y,, covering this whole range and
the average acquisition time for each value of y,, are gath-
ered in the last column of Table II. It should be emphasized
that these profiles are averages taken over several minutes
(=10nm) for each shear rate. In all cases, the flow was sta-
tionary. The small standard deviation of the velocity (nearly
the size of the black full circles) confirms that the flow does
not evolve significantly after several minutes.
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FIG. 7. Radial distribution of the average tangential velocity in
the gap of a Couette cell. From left to right and top to bottom, the
frames correspond to applied macroscopic shear rates chosen in the
plateau range, the values of which appear in the frame. The width of
the gap is 1.5 mm; the dotted diagonal represents the ideal Newton-
ian distribution.

Figure 7 displays these results for a few values of 7y,
chosen between 1 and 6 s~!. First of all one can easily notice
that each curve consists of two segments having a different
slope: this is the signature of shear banding; the flow is no
longer homogeneous, but two layers supporting different ve-
locity gradients coexist; one shall be called the 1 band and is
subjected to the lowest rate s and the other one h band
supporting s A second important feature observed in ev-
ery graph is that slip still occurs at the moving wall; the fluid
at the rotor is far from flowing with the imposed velocity and
slip as high as 50% is observed at the beginning of the pla-
teau for y,,=1.5 s7! (not shown in Fig. 7); on the contrary,
near the stator, the fluid is nearly at rest, the effective veloc-
ity is very close to zero. An estimate of the local effective
shear rates 7y, and 7, in each band is merely deduced by
performing linear regressions on the profiles. These results
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appear in Table II from which three general features come
out.

(i) ¥1s is very close to ¥ (0.45+0.05 s7'). As ), varies
from 1 to 6 s~ the shear rate in the 1 band is not constant,
but two domains where the values are rather close together
can be distinguished; when the slip % is high, i.e., when y,,
belongs to 1= vy),=3, approximately, 7,,,=0.37£0.03 s
on the other hand, when the slip % decreases, that is when
2.5=yy=6, ¥,,=0.54+0.06 s~!. This average value is the
same as the one beginning the plateau in the flow curve (see
Fig. 3).

(ii) s is not constant.

On the contrary, ¥, is a monotonous increasing function
of ,,; it reaches a maximum of 8.5 s™' when ¥,,=6 s~! with
a slip % of only 3%. A macroscopic shear rate of 6 s™! cor-
responds to the end of the stress plateau (see the flow curve
in Fig. 3, but the velocity profile still shows two bands of
unequal width, the one supporting the higher shear rate (7;,,,)
being the widest. Ignoring the small amount of slipping at
the walls, one can probe the lever rule with y,,,,=8.5 s~ and
V1ep=0.54 s7'. A very simple computation [Eq. (1)] leads to
¥y =5.9 s71, in excellent agreement with the imposed value.
Thus, one comes to the important conclusion that 7,
=6 s~! is not the real end of the plateau, as one could assume
by looking at the flow curve; according to Spenley’s theory
[15], the plateau should end at 7, i.e., at 8.5 and not 6 s7';
the reason for this particular behavior is that the flow be-
comes unstable before the predicted 8.5 s™! and temporal
oscillations of o and N, start to grow.

Once the critical shear rates are known and on the as-
sumption that the stress is constant at the interface between
the two layers, one can compute the ratio of the viscosity of
both phases and get an estimate of the viscosity 7, of the
induced phase,

T _ i

— =16,
T Ye

(4)

the viscosity 7, being calculated from the flow curve
(7,=21 Pas), it turns out that 7,=1.3 Pas. A rearrange-
ment of the wormlike micelles in a highly orientated phase is
usually put forward to explain this sharp decrease of the
viscosity.

(iii) The slip percentage is not constant and apart from the
experiment at 1.5 s~ it decreases with the macroscopic shear

nN ~ M 0 O

FIG. 8. Radial distribution of
the average tangential velocity in
the gap of a Couette cell. From
left to right, the frames correspond
to applied macroscopic shear rates
Yu=6.5,7, and 7.5 s~!. The width
of the gap is 1.5 mm; the dotted
diagonal represents the ideal New-
tonian distribution. The size of the
error bars indicates that velocity
fluctuations are important and that

OO

1.5

the flow is not stable anymore.

rate y,,; another way to analyze this variation is to relate it to
the proportion ¢, of the low viscosity induced phase that
grows near the moving wall as y,, goes over the stress pla-
teau: the slip % is a linearly decreasing function of ¢, (not
shown in the paper). In the flow of complex fluids, slip at a
wall usually is explained by the emergence and the growth of
a very thin lubricating layer between the wall and the fluid.
Following Salmon et al. [26], one may write the thickness
of the layer as

v
h=n,~,
g

(5)

where 7, vy, and o, respectively, the viscosity of the lubri-
cating layer, the slip velocity [as defined in Eq. (3)] and the
shear stress.

A quantitative estimate of the thickness # can now be
made; in the worse condition (when the slip %=50%), the
slip velocity v,=1.25 mm/s and, for o=0,=10 Pa, one
gets a thickness 7=0.1257, mm with 7, in Pas.

If we assume that the lubricating layer is mainly made of
water, we may expect that 7, will be of the same order of
magnitude as the viscosity of water (1073 Pa's). In that case,
h=0.125 pum, a value that is far beyond the resolution of the
measuring device (=40 um).

C. The narrow shear thickening region 6.5< ,,<7.5 s~!

Figure 8 displays three velocity profiles corresponding to
shear rates chosen in the narrow shear thickening region at
the end of the plateau. The two bands profiles observed in the
previous range is replaced by a monotonous variation of the
velocity in the gap. The slip at the moving wall still exists
and the size of the error bars indicates that the flow under-
goes very large fluctuations (especially important at 7,
=7 s7!); the physical meaning of such a profile becomes
questionable. The two band profile is replaced by a monoto-
nous variation of the velocity in the gap; a single
homogeneous band fills the gap.

V. CORRELATIONS BETWEEN TANGENTIAL VELOCITY
AND SHEAR STRESS

In this section, we focus our attention on velocity mea-
surements performed close to the moving wall in order to
unveil a correlation between wall slip and the stress oscilla-
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FIG. 9. Time variations of the shear stress o (upper frame) and
of the tangential velocity v(r) (bottom curve) at the measurement
point r=0.15 mm after the inception of the flow when the imposed
shear rate is 5.5 s~!. The horizontal straight dotted line drawn in the
velocity frame indicates the mean velocity 0=7.2 mm/s with a
standard deviation of 0.36 mm/s.

tions observed in the shear thickening region. By only re-
cording a small part of the backscattered ultrasonic signal
until the memory of the acquisition board is full, the tempo-
ral resolution is increased and velocities close to the rotor are
accessed every 0.1 s at a typical shear rate of 7 s™!. The
drawback of this fast measurements mode is that some time
is needed to transfer the data from the acquisition board to
the computer memory before new data points can be re-
corded again. This leads to time gaps in the temporal veloc-
ity profiles, as can be seen in Fig. 10.

The velocity v(#) that is plotted as a function of time is the
result of an average over three measurement points at a dis-
tance r=0.15 mm from the rotor; the macroscopic shear
stress is recorded simultaneously. We shall first investigate
v(t) and of(r) for a shear rate chosen on the plateau, i.e.,
¥y=5.5 s~! and then the velocity gradient will be set to 7 s~!
in the shear thickening region.

A. v(f) and o(t) when 3,,=5.5 57!

In Sec. IV B, we have shown that the flow is heteroge-
neous and slip occurs at the moving wall: slip % =9% when
Yu=35.5 s7!. Figures 9(a) and 9(b) display o(z) (top frame)
and v(r) (lower frame) during the first tens of seconds of the
flow; at the inception of the flow, the stress undergoes an
overshoot followed by damped oscillations before reaching
again a steady state regime.

No clear correlations between v(z) and o(r) are found: the
velocity increases at first before fluctuating randomly around
(v). Identical observations (not shown in the paper) can be
made further on when the stress has again found its steady
value equal to oy,

B. v(t) and o(¢) in the shear thickening region

As previously mentioned, the crests of o(r) form a ser-
rated profile with sharp peaks while the minima of the peri-
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FIG. 10. (Color online) Time variations of the shear stress o
(upper frame) and of the tangential velocity v(z) (bottom curve)
after the inception of the flow when the imposed shear rate is 7 s
at the measurement point r=0.15 mm. The horizontal straight line
drawn in the velocity frame indicates the mean velocity o0
=8.15 mm/s. Capital letters mark a few particular points of both
curves: dotted line (in red) like AA’... join a maxima of o(r) with a
minima of v(r) while dashed segments (in blue) link a peak of the
stress with a point having approximately the mean velocity 0.

odical signal follow smooth variations like a sinusoidal func-
tion; it seems that the stress is unable to reach its maximum
value to form a rounded top before decreasing again; the slip
at the moving wall is a possible explanation of this peculiar
behavior, and thus it seems sensible to simultaneously record
the temporal variations of the local velocity and of the shear
stress.

Figure 10 displays the variations of the shear stress (upper
frame) and of the velocity v () (lower frame) after the incep-
tion of the flow and when the imposed shear rate is 7 s~'.
Capital letters are added to the graph in order to make the
discussion easier: A,B...,A’,B’..., respectively, refer to the
maxima of the stress and minima of the velocity and dashed
arrows (from E and F) link a maximum of o with a point in
the profile having a velocity close to the average velocity 0.
The straight horizontal line in the v(z) frame indicates the
average velocity 0 (=8.15 mm/s).

Several general features can be drawn from the examina-
tion of Fig. 10.

(i) Despite the noise that can blur information, it seems
that v(#) undergoes periodical time variations.

(ii) Sharp peaks much larger than the standard deviation
and corresponding to a fast decrease of the velocity are ob-
served (points A’,B’...). Dotted lines are drawn to empha-
size that, from time to time, a minimum of the velocity co-
incides with a maximum of the stress.

(iii) This is not true for all the maxima of the stress curve
since a maximum of ¢(7) sometimes occurs when the veloc-
ity is approximately U (see the points at the end of the blue
dashed arrows drawn from the points E and F).

(iv) The end to end amplitude of a stress oscillation is not
directly correlated to the height of the corresponding velocity
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FIG. 11. (Color online) Distribution of velocity values as a func-
tion of the velocity near the moving wall over a period of time of
530 s. The counting interval is 0.2 mm/s in width. The vertical
straight line is drawn at the abscissa of the mean velocity 0
=8.15 mm/s. The red curve represents the normal Gaussian
distribution.

peak when it exists; compare, for example the relative am-
plitude of oscillations A, B, and D and the relative height of
the peak A’, B’, and D'. One may expect a certain degree of
correlation between the oscillation amplitude and the height
of the velocity peak.

(v) The velocity values distribution is strongly asymmetri-
cal (see Fig. 11). The vertical straight line marks the average
velocity v and is drawn to emphasize that the distribution
maximum is shifted to the right. The standard deviation is
0.8 mm/s; the distribution is quite narrow, most of the val-
ues are gathered around the maximum; however, the asym-
metrical left tail shows that the distribution deviates from the
normal distribution (see the red curve in Fig. 11 fitted with
the experimental points on the right side of the vertical line)
that we could expect if the fluctuations of the velocity were
from a purely random origin.

(vi) Correlations between velocity and stress variations
that shall validate or invalidate the wall slip hypothesis are
searched for and a correlation coefficient r is computed from

Eq. (6),

. 2(v; - 0)(0; - ) .
- [2(v;- 17)22(0'1‘ - 5’)2]1/2’

(6)

o and 0, respectively, stand for the average stress and tan-
gential velocity; o; are the stress maximum and the v/’s are
the corresponding values of the velocity.

The correlation coefficient r=—0.2; the negative sign re-
veals that the maxima of the shear stress and the minima of
the velocity vary in opposite direction. However, the rela-
tively small value of >=4% does not allow for a final con-
clusion as concerns the correlation between stress and
velocity.
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One should also remember that the velocity profile is
measured in a plane perpendicular to the vorticity at a par-
ticular height in the cell; there is no reason for the wall slip
to happen all over the entire moving wall: the liquid could
easily slip at some height in the cell without the recorded
velocity showing a sudden decrease. This local change of the
velocity would not be detected by the ultrasonic device, but
would still influence the shear stress.

VI. CONCLUSION

In this paper, we have described and discussed experi-
mental data representing the evolution of the shear stress and
of the local tangential velocity in a viscoelastic micellar sys-
tem made of CTAB and NaSal in water. The sample behaves
like a good Maxwellian liquid with a single relaxation time
and shear banding is expected to occur in some shear rates
range. The experimental flow curve o(7) in strain controlled
mode is made of two branches separated by a stress plateau
characteristic of heterogeneous flows in two layers. Point-
wise velocity measurements have revealed that wall slip is
present with more or less importance over the entire range of
shear rates studied. However, it does not prevent the emer-
gence of shear banding as confirmed by the velocity profiles
measured in the plateau range. When the slip % is small (for
shear rates near the right end of the stress plateau), one can
make use of the lever rule to compute the critical shear rates
at both ends of the plateau. If the lowest one, ¥, is in good
agreement with the value beginning the plateau, it is not the
same for 7y, that is supposed to end the plateau; the lever rule
leads to 8.5 s™! for 3, when the flow curve only gives 6 s~!
for the right end of the plateau. This disagreement is easily
understood when one knows that time periodic oscillations
of the stress occur when the shear rate is slightly increased
beyond 7, (i.e., in the shear thickening region); thus the flow
becomes unstable before the end of the plateau. We have put
forward the hypothesis of wall slip to explain the asymmetri-
cal shape of the stress oscillations, the crests of which look
like a serrated profile. To check this assumption, velocity
profiles as a function of time were recorded; they reveal that
the mean velocity at y,,=7 s~! is 22% lower than the ex-
pected value (10.5 mm/s); in addition to this average slip
and apart from random fluctuations, v(r) displays narrow de-
scending peaks: the velocity decreases strongly in a very
short time. From time to time, these peaks occur when the
stress is at a maximum of an oscillation; it is then tempting
to look for correlations between o(f) and v(z). The correla-
tion coefficient r is found negative, revealing that the stress
and the velocity vary oppositely; however, its low numerical
value does not allow for a final conclusion. Further velocity
measurements appear to be necessary to get more informa-
tion on wall slip and on its implication in the stress
oscillations.
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