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Three-dimensional phase coarsening at various volume fractions is simulated by employing multiparticle
diffusion methods. The dynamic process of phase coarsening is visualized through a three-dimensional movie.
The present study also characterizes interparticle spacings in polydispersed particle systems and clarifies the
controversial mathematical expressions for interparticle spacings used in the literature for 30 years. Conse-
quently, this study reveals spatial, temporal, and nearest-neighbor correlations in polydispersed particle sys-
tems. A new three-dimensional movie of a Voronoi network demonstrating these correlations is provided. Our
simulation and experiments show that growth rates of individual particles deviate from those of the mean-field
theory, which is caused by their differing local environments. Multiplicative noise provides a good basis to
describe the stochastic nature of fluctuations during phase coarsening.
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Phase coarsening, or Ostwald ripening, is a ubiquitous
phenomena occurring in the fields of chemistry, physics, ma-
terials science, geology, and economics. In a typical phase
separation process, nucleation, growth, and, eventually,
phase coarsening, all usually follow a temperature quench
from an initially homogeneous phase that eventually results
in a well-separated two-phase microstructure. Specifically,
nucleation of a second phase occurs within a supersaturated
solution, followed by its growth. In the late stage of phase
separation, the onset of competitive coarsening occurs
among the precipitate particles, so phase coarsening sets in.
Phase coarsening—i.e., the growth of the average size
particle—occurs at the expense of small particles within a
system, which shrink even further and finally disappear. Ex-
tensive interest has arisen in recent years to develop the ar-
chitecture and fabrication techniques for producing nano-
structured and microstructured materials.

The control of size, shape, location, and particle size dis-
tribution �PSD� of nanocrystallites via phase coarsening is
important, for example, to achieve the synthesis of colloidal
semiconductor nanocrystals �1–4�. Applications of these
types of functional materials appear to be remarkably di-
verse, ranging from controlled drug delivery and protection
of biologically active agents, photonic crystals, nanocata-
lysts, elastomeric fillers, etc. �3�. These applications can be
achieved through manipulation of the kinetics of phase sepa-
ration, which requires a deep understanding of phase coars-
ening processes. The computational modeling of phase
coarsening occurring in three spatial dimensions requires
sufficiently large enough systems to yield statistically mean-
ingful data. At present, achieving accurate simulations of
such large microstructures remains a daunting computational
task. For example, only scant attention was paid to the un-
derlying kinetics mechanism—i.e., Ostwald ripening—which
is responsible for the evolution and self-assembly of quan-
tum dots, or island crystallites, formed on surfaces in some
semiconductor nanomaterials. The average center-to-center
interparticle spacing in dispersed systems is an important
parameter of materials encountered in a wide variety of con-
ventional metallurgical and nanomaterials. Nevertheless,
there remain controversial mathematical expressions that

have been posed in the literature on this subject for over 30
years �5–8�. Indeed, the magnetic, electronic, catalytic, and
mechanical properties of materials depend on the microstruc-
ture’s average particle size, PSD, and its spatial and temporal
correlations.

Three-dimensional phase coarsening at various volume
fractions is simulated, and a three-dimensional movie de-
rived from the simulation data demonstrates the dynamic
process of phase coarsening. Through simulation, we clarify
the correct choice among conflicting mathematical expres-
sions for predicting interparticle spacings in polydispersed
particle systems. Spatial, temporal, and nearest-neighbor cor-
relations during phase coarsening are carefully characterized
and then demonstrated in a movie of a three-dimensional
Voronoi network created for this paper. Relationships be-
tween the growth rates of individual particles and their dif-
fering local environments are established. The concepts and
results given here can provide useful guidance where com-
petitive phase growth occurs in such applied physics con-
texts such as nanoscience and microstructure evolution.

The first quantitative description of the statistical mechan-
ics of phase coarsening was a mean-field theory developed
by Lifshitz and Slyozov �9�, and then by Wagner �10�. This
theory, often referred to as LSW theory, retains full validity
only in the limit of a vanishingly small volume fraction of
dispersoid, because of the exclusion of all physical interac-
tions among the particles. As shown in numerous experi-
ments, the well-known scaling prediction from the LSW
theory that the cube of the average length scale of the dis-
persed particles increases linearly with time remains valid,
even in cases of finite volume fraction VV, where particles
clearly interact. Specifically, the LSW theory predicts that
particles with identical sizes have the identical volume
fluxes, regardless of their individual location within the mi-
crostructure. The volume flux derived from the LSW theory
is usually written as the linear form

BLSW��� = 1 − � , �1�

where the normalized radius of a particle, ��R / �R�, is the
particle radius R, normalized by the average radius of the
particle population �R�.
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In the case of nonzero volume fraction, the diffusional
interaction among particles needs to be accounted for, and it
has been studied by several investigators. Ardell �11�, for
example, modified the LSW theory and considered the influ-
ence of nearest neighbors on the growth rate of particles. His
detailed results, however, seem to overestimate the influence
of the volume fraction. Variations on Ardell’s method, how-
ever, have been implemented by Tsumuraya and Miyata �12�
using a series of different kinetic coarsening interaction laws,
referred to as TM models. Specifically, each TM model de-
fines some appropriate “radius of influence” around each par-
ticle. All of the TM models, however, employed heuristic
extensions of the basic mean-field LSW approach. Brailsford
and Wynblatt �13� were the first to employ the “effective
medium” theory to study phase coarsening. They obtained
growth rates of the particles and a broadened PSD, and es-
tablished an implicit relationship between the coarsening rate
and volume fraction. Marsh and Glicksman �14� then intro-
duced the concept of a statistical “field cell” acting around
each size class of the particles undergoing phase coarsening,
and obtained coarsening rates. All of the theoretical models
mentioned above employed growth rate equations based on
using Laplace’s equation as the quasistatic approximation for
the time-dependent diffusion field. Marqusee and Ross �15�,
by contrast, limited the spatial extent of the diffusion field by
taking into account “screening” provided by a two-phase me-
dium comprised of the matrix and a distribution of particles
considered to be a globally neutral system of diffusion point
sources and sinks. Instead of using Laplace’s equation as the
quasistatic approximation, Marqusee and Ross showed that
Poisson’s equation is appropriate for deriving a suitable ki-
netic expression for the growth rates in an “effective me-
dium.” Marder �16� examined the effect of diffusive interac-
tions and correlations between particles. Kawasaki and co-
workers studied the Ostwald ripening on the basis of a new
dynamical interfacial model �17–20�.

One may describe the many-body interactions among par-
ticles for microstructures with nonzero volume fractions of
the dispersed phase by introducing an additional length scale,
the diffusion screening length �0. This screening distance,
which is a collective property of the microstructure, limits
the extent of particle-particle diffusive interactions. It may be
shown �21� that the diffusive screening distance in coarsen-
ing is

�0 =� ��3�
3���VV

. �2�

The diffusional screening length defined in Eq. �2� sets the
maximum range over which the interactions occur, and be-
yond which such interactions cease. This length scale is
analogous to the Debye screening distance for electrostatic
interactions in dilute ionized plasmas. In addition, it was
proved that the many-body diffusive interactions among par-
ticles increase the volume flux, B���, beyond that predicted
by the LSW theory �21�. Specifically, it was shown that the
diffusion screening distance affects the volume flux of par-
ticles as

B��� = BLSW���	1 +
�

�0

 . �3�

The earliest attempt to simulate multiparticle diffusion us-
ing numerical methods occurred in 1973 by Weins and Cahn
�22�, whose simulation system includes just a few interacting
particles arranged in several configurations to demonstrate
basic coarsening interactions. Following this work, Voorhees
and Glicksman �23� systematically studied the behavior of
several hundred particles randomly distributed in a three-
dimensional unit cell to simulate microstructural phase
coarsening. Later, Beenaker �24� enhanced the capability of
multiparticle diffusion simulation procedures and was able to
increase the total number of particles during simulation to
several thousand. Other investigators �21,25,26�, continued
to improve upon the accuracy and statistical basis of large-
scale simulations of late-stage phase coarsening. The three-
dimensional microstructure evolution for various volume
fractions was simulated using multiparticle diffusion meth-
ods by placing n particles of the dispersoid phase within a
cubic computational box �21�. The contiguous spaces be-
tween particles represent the matrix phase, in which the dis-
persoid population is embedded, and through which solute
diffuses. Particles are located by specifying the positions of
their centers and by their radii. Some additional simplifying
assumptions were employed in the simulations: �1� the kinet-
ics of coarsening was determined solely by volume diffusion
through the contiguous matrix and �2� solute transport to or
from each phase domain occurred sufficiently slowly to be
approximated as quasistatic. These assumptions allow solute
diffusion in the matrix to be represented by Laplace’s equa-
tion. Thus, the concentration field C�r� in the matrix obeys
�2C�r�=0, where the dimensionless concentration is defined
here as C�r���c�r�−c0� /c0. The quantity c�r� is the actual
concentration of the matrix phase at the position, r, and c0
denotes the equilibrium solubility established at a flat inter-
face between the matrix and particle phases at the coarsening
temperature and pressure. The boundary condition applied at
the spherical interface of the ith particle is specified through
the Gibbs-Thomson local equilibrium solubility relation,
namely, C�Ri�=1/Ri, where Ri is the nondimensional radius
of the ith particle scaled by the system’s capillary length
�21�.

The solution to Laplace’s equation for n particles may be
represented as the superposition of n dimensionless concen-
tration fields �21�. The global mass conservation law for a
microstructure represented by such a discrete two-phase sys-
tem may be expressed through the closure condition on the
total solute flux, �i=1

n 4�Bi=0, where the ith particle’s vol-
ume flux is 4�Bi. The relationship establishing the far-field
concentration in the matrix phase expresses a microstructural
response that includes local interactions among particles.
More specifically, the far-field potential depends explicitly
on the particle positions and the distances between every
particle pair. Moreover, the far-field concentration requires
an inclusion of detailed environmental information, includ-
ing a description of the locale of every particle. More impor-
tantly, the far-field concentration, which depends on the local
arrangement of particles, confers subtle influences on a given
particle’s rate of diffusion-limited growth or shrinkage �21�.
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The dimensionless form of the growth rate of the ith par-
ticle, can be expressed as

dRi

dt
= −

Bi

Ri
2 �i = 1,2, . . . ,n� , �4�

where Ri is known at the evolution time t. Here time is non-
dimensionalized by a characteristic diffusion time �21�. The
Runge-Kutta method was used to integrate numerically the n
growth rate expressions, Eq. �4�. The coarsening process is
represented by a system of linear equations using the solu-
tion to Laplace’s equation and the Gibbs-Thomson boundary
conditions for n particles. This large linear system of equa-
tions may be cast into the matrix form as

A� · B� = U�, �5�

where A�, B�, and U� are, respectively, n�n n�1 and n
�1 matrices. Expressions for these matrices may be found
elsewhere �21�. The Gauss-Seidel method was employed to
solve this linear system, Eq. �5�, yielding at each time step
updated values for the volume fluxes Bi. Substitution of the
updated Bi values back into Eq. �4� dynamically advances
the coarsening system by updating the radii of all the active
particles and their coordinates.

Microstructures were simulated, consisting of dispersoid
volume fractions of VV=10−10, 10−4, 10−3, 10−2, 0.1, 0.2, and

0.3. In this range of volume fractions, there are no direct
mergers of particles in these simulations. The evolution of a
typical three-dimensional microstructure simulated by the
methods described above is shown in Fig. 1, for VV=0.1.
Specifically, Figs. 1�a�–1�d� show simulations of three-
dimensional microstructures evolving over time. A compari-
son of these microstructures clearly elucidates the progress
of phase coarsening, as small particles shrink, large particles
grow, and their overall number density decreases. Small par-
ticles located in the upper-right corner of the initial frame
�Fig. 1�a�� shrink and disappear by the final frame �Fig.
1�d��. A movie for the microstructural evolution is available
on supporting online �see movie S1�. The movie and images
provide an opportunity for theorists and experimentalists to
compare microstructural evolution quantitatively as observed
in experiments and simulations.

Resolving the issue of interaction length scales allows us
considerable clarification of the fundamental nature of
diffusion-limited phase coarsening kinetics occurring in mi-
crostructures. One could, for example, study the spatial and
nearest-neighbor correlations using the simulation data ob-
tained at different volume fractions. For example, the pair
correlation functions were obtained for these microstruc-
tures, which provide a measure of the average separation
distance between a given particle and its nearest neighbor. In
the initial configuration, different sized particles were ran-
domly placed within a cubic box and allowed to evolve by

FIG. 1. �Color online� Simulated microstructures: �a� upper left, initial state �computer times� t=0; �b� upper right, t=0.25; �c� lower left,
t=0.5; and �d� lower right, end of simulation, t=1.0. The sizes of these particles are indexed by color.
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multiparticle diffusion. The pair correlation functions were
determined in the initial configuration and at the termination
of the simulation for each volume fraction. Peak positions of
the pair correlation functions were found for each case. The
peak position of the pair correlation equals the average
center-to-center distance between a particle and its nearest
neighbor. The average center-to-center distances for VV
=10−4, 10−3, 10−2, 0.1, 0.2, and 0.3, are plotted in Fig. 2. The
average center-to-center distance between a particle and its
nearest neighbor in dispersed systems provides a useful pa-
rameter encountered in a variety of metallurgical and colloi-
dal materials. Formerly, calculating the center-to-center dis-
tance between a particle and its nearest neighbor in dispersed
systems has proven to be difficult. For example, Bansal and
Ardell �5� derived the following formula for the interparticle
spacing in a three-dimensional distribution of finite spheres:

LBA

�R�
= 2 +

e8VV

3VV
1/3�� 1

3 ,8VV� , �6�

where � denotes the Gamma function. Martin �6� also inde-
pendently estimated the interparticle spacing as

LM

�R�
= 1.23� 2�

3VV
− 2�2

3 + 2, �7�

whereas Nadkarni �7� claimed that the interparticle spacing
may be represented as

LN

�R�
=� 2�

3VV
. �8�

Finally, in his textbook, Dieter �8� gave the following expres-
sion for the interparticle spacing:

LD

�R�
=

4

3
	 1

VV
− 1
 + 2. �9�

A comparison of all these theoretical estimates, Eqs. �6�–�9�,
with the simulation data presented in Fig. 2 shows that Ban-
sal and Ardell’s prediction, Eq. �6�, provides the best agree-
ment with the multiparticle diffusion simulations. Figure 2
also shows that the three other theoretical estimates based on
expressions by Martin, Nadkarni, and Dieter differ substan-
tially from the simulations and from Bansal and Ardell’s ana-
lytic approximation. The disparity worsens at small volume
fractions. The formulas of Martin, Nadkarni, and Dieter, nev-
ertheless, are broadly adopted in many current applications
of phase coarsening. Now, after more than 30 years, accurate
simulations and theory may be compared critically as to
which the theory provides the most reliable predictions of
microstructures. The simulation data presented in this paper
indicate that the interparticle spacings in dispersed systems
predicted by Bansal and Ardell are accurate, and, in our
opinion, should be used in place of the approximations sug-
gested by Martin, Nadkarni, and Dieter.

The nearest-neighbor spacings in a network structure may
be determined by the well-known Voronoi construction. Fig-
ure 3 shows the Voronoi construction on a cross section
taken through the cubic simulation box. The filled circles in
Fig. 3 represent the areas of individual particles, which are
present in this instance at a volume fraction of VV=0.1. Os-
twald ripening of a microstructure may be described qualita-
tively as the atom exchange occurring between nearest
neighbors through the walls of the intervening Voronoi cell.
Therefore, the diffusion-limited solute flux flowing between
particles is related to the geometry of the local Voronoi cell.
Thus, one finds that the growth rate of an individual particle
is related to its relative position among neighbors, their indi-
vidual radii, and the shape of the participating Voronoi cell.
Local correlations, suggested by the Voronoi cell, relate the
growth rates and interactions among nearby particles. The
evolution of the three-dimensional Voronoi network with
time is available on supporting online �see movie S2�. From
it, one can learn how the average volume of Voronoi cells
changes with time, and the dynamic processes of the local
environment of every particle.

One can observe and measure accurately, using the cur-
rent simulation method, the individual growth rates or vol-
ume flux of every particle in the microstructure. Of special
interest here is that the simulations also reveal that the vol-
ume flux of the particles are all different—even for particles
with the same radii, given that they are located in differing
microstructural environments, or locales. Figure 4 shows the
volume fluxes B��� simulated for a two-phase microstructure
with VV=0.2. For comparison, the volume fluxes predicted
from the LSW theory, Eq. �1�, and from diffusion screening
theory, Eq. �3�, appear together in Fig. 4. Figure 4 clearly
demonstrates that the average volume flux predicted from the
diffusion screening theory deviates steadily from the linear,
mean-field, LSW prediction, which lacks any consideration
of the influence of the volume fraction of the microstructure
and the concomitant interactions. Simulations conducted
with different volume fractions show that the nonlinear char-

FIG. 2. Average interparticle spacing distance from different
authors. Filled circles represents our results from simulations. Solid,
dashed, dotted, and dotted-dashed lines represent the approximation
results from Dieter �8�, Bansal and Ardell �5�, Martin �6�, and Nad-
karni �7�, respectively.
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acter of the particle volume flux versus particle radius in-
creases steadily with increasing volume fraction. Moreover,
even particles with identical size exhibit a wide variation of
the volume flux, Bi. This result shows that the growth rates
of identical sized particles can differ from that of the mean-
field prediction, because growth rates are proportional to the
volume fluxes via Eq. �4�. As suggested, the deviations from
the mean flux arise from the differing microstructural envi-
ronments surrounding each particle. Experimental results,
�28,29�, also confirm these effects. The term “locale fluctua-
tions” is used to describe such deviations. However, locale
fluctuations in the current context of stochastic coarsening
kinetics are not at all related to thermal noise or thermody-
namic fluctuations, but rather to local arrangements of par-
ticles and the correlations attending those arrangements.

In addition, we consistently observed that larger particles
R� �R� experience in their growth rates stronger locale fluc-
tuations than do small particles, R� �R�. The variation of the
dispersion of growth rates with a particle size is caused by
the relative localization of the diffusion field surrounding
small particles. This observation further suggests that locale

fluctuations are correlated strongly with the size of a particle
and the volume fraction of the microstructure. We recently
developed estimates of the expected fluctuation bands using
the statistical sampling theory �27�. The following stochastic
expression was found for the fluctuation of the particle vol-
ume flux:

�	 �

�0

 =

�

2�0
	1 +

�

�0

� . �10�

Here � is a Gaussian random variable with mean-value zero
and unit width, and ��� /�0� is the Gaussian multiplicative
fluctuation. In Fig. 4, all the simulation data scatter within
the predicted bands, showing that the Gaussian multiplica-
tive noise provides a reasonable match with the simulations.
Considering that there exists a spectrum of fluctuations in the
volume fluxes, one must consider adding a multiplicative
fluctuation term to the theoretical expression for the volume
fluxes, Eq. �3�. The resulting stochastic expression for a par-
ticle’s volume flux becomes

B��� = BLSW	1 +
�

�0

 +

�

2�0
	1 +

�

�0

� . �11�

A stochastic differential equation may be derived from Eq.
�11� that describes the growth rates of coarsening particles
�27�. This equation provides the kinetic evolution law for
particles in a “noisy” microstructure.

Three-dimensional phase coarsening was simulated for a
range of volume fractions, and the process of three-
dimensional phase coarsening was visualized within a
movie. However, most experiments cannot provide three-
dimensional visualization of phase coarsening, but rather
provide TEM images, which are two-dimensional projections
that lose some spatial information. To our knowledge the
two-phase binary alloys based on Al-Li provides a nearly
ideal binary alloy system for kinetic study, because the ��
particles in this alloy have a small lattice misfit with the solid
solution matrix phase, thus contributing a negligible amount
of strain-induced free energy to the coarsening process. Gu

FIG. 4. �Color online� Volume flux B��� versus scaled particle
radius �. Data are from simulations at VV=0.2. Red �solid�, magenta
�dotted�, and blue �dashed� lines represent volume fluxes from dif-
fusion screening theory �21�, LSW theory, and upper and lower
bands �see Eq. �11��, respectively.

FIG. 3. Voronoi construction using multiparticle diffusion simu-
lation data for coarsening at VV=0.1. Black circles represent the
dispersed particles in the matrix. �a� Voronoi network at the begin-
ning of simulation, �b� Voronoi network at the termination of
simulation.
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et al. �30� first studied phase coarsening kinetics in Al-Li
alloys, employing quantitative transmission electron micros-
copy �TEM�. Then Mahalingam et al. �31� studied coarsen-
ing of ��–Al3Li precipitates in binary Al-Li alloys using
TEM to obtain microscopic details. Abis et al. �32� studied
phase coarsening in Al-Li alloys using small-angle neutron
scattering experiments. Che and Hoyt �33� extended the
phase coarsening model of Marder �16� and derived a form
for the scaled structure function based on it. Che et al. �34�
studied phase coarsening in Al-Li alloys using small-angle
x-ray scattering experiments.

In summary, by contrast, the three-dimensional micro-
structure images and movies provided here can be used for a
more direct comparison with that from future physical ex-
periments. Spatial correlations within the microstructure
were carefully studied, and the results reported here show
that the interparticle spacings in two-phase dispersed systems
predicted from the analytic approximation of Bansal and
Ardell are the most accurate. Therefore, these findings con-
clude a long-standing controversy in the calculation of inter-

particle spacing. Voronoi cells constructed for the case of
VV=0.1 capture details of the locale, and relate to the parti-
cle’s growth rate and volume flux. A three-dimensional
Voronoi network movie shows the dynamic processes affect-
ing the local environment of every particle. Moreover, the
present simulations permit determination of the growth rates
of individual particles, and show that there exist locale fluc-
tuations in the growth rate of individual particles during mi-
crostructure evolution, for both sparse finite microstructures
as well as for moderately dense ones. Simulations and Eq.
�10� indicate that larger particles experience stronger fluctua-
tions than do smaller ones, and systems with higher volume
fractions experience stronger fluctuations than do sparse sys-
tems. Locale fluctuations can be described approximately by
multiplicative Gaussian noise—a finding, now well sup-
ported by high-accuracy multiparticle simulations.
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