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We study the equilibrium sediment of a multicomponent system of charged colloids using primitive model
Monte Carlo simulations, which include counterions explicitly. We find separation of the different colloidal
components into almost pure layers, where colloids with large charge-to-mass ratio sediment higher in the
sample. This effect appears due to a competition between ionic entropy, gravitational energy, and electrostatic
energy. Our simulations provide a direct confirmation of recent theoretical predictions on the sedimentation of
multicomponent mixtures of charged colloids in regimes with relatively low total densities and low colloidal
charges. To explore the limitations of the theory we perform simulations at higher total densities for monodis-
perse and multicomponent systems and at stronger electrostatic couplings by increasing the colloidal charge for
monodisperse suspensions. We find good agreement between theory and simulation when the colloidal charge
is increased in the monodisperse case. However, we find deviations between simulations and theory upon
increasing the total densities in the monodisperse and multicomponent systems. The density profiles obtained
from simulations are more homogeneous than those predicted by theory. The spontaneous formation of layered
structures predicted by the theory and found by simulation can serve as a useful tool to separate different
components from a mixture of charged colloids.
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I. INTRODUCTION

Sedimentation equilibrium of colloidal particles in a
gravitational field seems, at first sight, a problem solved in
the past. It is indeed true that this topic has been studied in
detail for a long time. For example, Perrin �1� determined the
Boltzmann constant kB �and from this Avogadro’s number�
by comparing the measured density profile ��z� of a dilute
system of particles with buoyant mass m in a medium at
temperature T with the theoretically predicted barometric law
��z��exp�−mgz /kBT�. Here g is the gravitational accelera-
tion, and z is the height. This Boltzmann distribution is the
result of a balance in a competition between minimum po-
tential energy �favoring a large concentration of particles at
the bottom� and maximum entropy �favoring a homogeneous
distribution of particles�. The barometric distribution is valid
only for dilute dispersions, in which colloid-colloid interac-
tions can be ignored. In more recent times, sedimentation
equilibrium has received a renewed attention, as it was for
instance realized that the hard-sphere bulk equation of state
can be measured in a large density range from a single mea-
surement of the equilibrium density profile of colloidal hard
spheres in the Earth’s gravity field �2–5�. The same proce-
dure was also used to obtain the equation of state for a whole
density range from the inversion of the sedimentation profile
measured in a single Monte Carlo simulation of infinitely
thin hard platelets �6,7� and of hard rods �8�. Nontrivial sedi-
mentation equilibria, including orientational inhomogene-
ities, layering effects, multiphase equilibria, and floating liq-
uid phases, have been predicted recently in hard-sphere

fluids �9�, colloidal hard-rod dispersions �10,11�, platelets
�12�, mixtures of platelets and nonadsorbing polymer �13�,
colloid-polymer mixtures �14,15�, and binary hard-sphere
mixtures �16�.

Very recently, quite some attention has been devoted to
sedimentation equilibrium of charged colloids in an electro-
lyte solution with cations and anions, in particular under con-
ditions of low salinity. Even at rather low colloid concentra-
tions, large deviations from the barometric distribution have
been theoretically predicted �5,17–19�, experimentally ob-
served �20–23�, and simulated �18,24�. For a monodisperse
system of colloids with a charge Ze �with e the proton
charge�, the main effect is an enormous variation of the mean
height of the charged colloids by a factor Z, i.e., from the
gravitational length L�kBT /mg in the barometric �high-salt�
regime to ZL in the deionized case �17,21–24�. The explana-
tion that was given in Ref. �17� invokes the salt ion entropy
�which favors a homogeneous ion distribution� and the elec-
trostatic energy �which favors local charge neutrality� to the
total free energy, besides the gravitational energy and colloid
entropy. The key physics is then that the total free energy is
dominated, at low salinity, by the counterion entropy such
that the system strives to obtain a rather homogeneous coun-
terion distribution. Because of the tendency to satisfy local
charge neutrality combined with the absence of coions �at
low salinity�, the colloids have to be distributed such that
local neutrality is obtained, i.e., they have to be lifted upward
toward the counterions. This is accomplished by a macro-
scopic charge separation at the system boundaries or at
crossover heights �at the expense of electrostatic energy�,
such that an electric field is generated to lift the colloids
upward against the gravitational pull �17�. We note here that
it was recently shown that this lift effect can also be under-
stood on the basis of effective colloid-colloid repulsions
within a one-component view of the suspension combined
with hydrostatic equilibrium �25,26�.
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The same lift mechanism for the colloids was shown to
persist in the case of binary mixtures of charged colloids at
low salinity, at least in simulations and in theory �18,19,27�;
we are not aware of experiments in this direction. Besides
the lifting effect, however, an additional segregation effect
was found in these mixtures, whereby layers of essentially
pure species i are formed according to the product ZiLi, with
Zi the charge number and Li the gravitational length of col-
loidal species i: the average height of species i was found to
increase with charge per mass ZiLi at low salinity �and with
inverse mass at high salinity� �18,19�. In the case that
L1�L2 �species 1 is heavier than 2� but with Z1L1�Z2L2
�species 1 is sufficiently more charged than 2� this leads to a
layer with the heavier species 1 floating on top of a layer of
the lighter species 2. This inversion was called the “colloidal
Brazil nut effect” in Ref. �18�, and the simulations of this
effect presented in Ref. �18� could be described quantita-
tively by the inhomogeneous Poisson-Boltzmann theory of
Ref. �19�. It was shown recently that this effect can also be
obtained in computer simulations using an effective one-
component description with effective pair potentials only
�28�. Besides binary mixtures, also three-component and
polydisperse mixtures of charged colloids were studied theo-
retically in Ref. �19�. For these systems the lifting effect at
low salinity persisted, as well as the segregation into layers
of identical charge per mass. So far, however, these predic-
tions for multicomponent colloidal suspensions, which are
based on a mean-field-like Poisson-Boltzmann theory, have
not been tested against primitive model simulations. Given
that this layering effect could be exploited to, e.g., purify a
mixture of charged colloids, it is of practical importance to
establish this effect, and to assess the accuracy of the theory
and the regime of its breakdown. We expect the theory to
break down at high enough packings and/or at strong enough
electrostatic couplings. For these reasons we present in this
paper the results of our Monte Carlo simulations of sedimen-
tation equilibrium in multicomponent and monocomponent
charged colloidal systems. These systems are described on
the basis of the primitive model, i.e., the colloids and the
counterions are taken into account explicitly, interacting
through pairwise hard-core and Coulombic potentials, while
the solvent is viewed as a dielectric continuum �29�.

This paper is organized as follows. In Sec. II, we define
the details of the model and describe some of the computa-
tional details. In Sec. III, we present the resulting equilib-
rium profiles and compare them with those predicted by the
theory presented in Ref. �19�. Section IV is devoted to dis-
cussion and conclusions.

II. MODEL AND SIMULATION METHOD

We have performed Monte Carlo �MC� simulations at
constant temperature and volume �MC NVT� of the primitive
model of a deionized n-component colloidal system subject
to a homogeneous external gravity field in the negative ver-
tical z direction. Every colloidal species i �with i=1, . . . ,n�
has the same hard-core diameter �i=�, a fixed positive
charge Zie in its center �with Zi�0�, a buoyant mass mi, and
a gravitational length Li=kBT /mig. The number of colloidal

particles of species i is denoted by Ni. In addition, the system
contains N− monovalent negative counterions �charge −e�
which are massless. Global charge neutrality dictates that
N−=�iNiZi, such that the total number of particles in the
simulation is N=�iNi+N−. The hard-core diameter of the
ions is in all cases �−=� /19, i.e., much smaller than the
colloidal diameter �, but finite in order to prevent a collapse
of the system. We also introduce the Bjerrum length
�B=e2 /�kBT, with � the dielectric constant of the suspending
medium. We set �B=4�10−3� throughout this study. The
underlying microscopic Hamiltonian is therefore identical to
the one in the theoretical study of Ref. �19�, except perhaps
for the finite size of the microscopic ions in the simulations
compared to point ions in the theory. Given the small ionic
diameter compared to the colloidal one �combined with the
low ion concentrations of interest here�, we do not expect
any significant effect from this small difference.

The pair potential Uij�rij� between a particle of species i
and j at separation rij is given by

	Uij�rij� = � 
 , rij � �ij ,

ZiZj

rij
�B, rij � �ij , � �1�

where i , j� 	1, . . . ,n ,−
 label either colloidal or ionic
components, 	=1/kBT is the reciprocal temperature,
�ij = ��i+� j� /2 is the contact distance between the pair ij,
and where we understand that Z−=−1 for the counterions. In
addition to the interaction potential between the particles the
gravitational field acts on the colloids, as described by the
external potential 	Vi�z�=	migz=z /Li for colloidal species
i. This potential only affects the colloids, the microions are
considered massless.

The simulation box that we used has dimensions
Lx�Ly �H, such that the vertical z coordinate is restricted to
z� �0,H� with H the height of the sample, while the hori-
zontal in-plane coordinates are restricted to x ,y� �0,K�,
with K=Lx=Ly. Periodic boundary conditions are only ap-
plied in the xy directions, not in the z direction. In all our
simulations we set H�100�, and typically K
H, with
K� �4.8� ,7.4��.

In order to speed up the simulations, we implemented the
lattice method proposed by Panagiotopoulos and Kumar
�30�. In this method, the particles are constrained to the dis-
crete positions of a simple cubic lattice with lattice spacing
a, such that all particle-particle interactions are calculated
�and stored� only once at the beginning of the simulation and
read out �without calculation� during the simulation. The lat-
tice discretization is characterized by the parameter
���+− /a, where �+−= ��+�−� /2, and is such that �→

corresponds to the continuum limit of interest, whereas
�=1 is the lattice gas model. In this work we set �=10,
which we consider a good balance and which was also used
previously by other authors for similar systems �22,31�.
Moreover, it is known from earlier work that the difference
between the critical parameters of electrolytes at �=10 and
�→
 is small, about 1% for the critical temperature and
about 4% for the density �32�.
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The long-range character of the Coulomb interaction is
such that a proper evaluation of the total Coulomb energy U
of the present system �no periodicity in the z direction� must
include the contributions from particles in all the periodic
images in the x and y directions. An efficient way to accom-
plish this is the Ewald summation technique, which is a stan-
dard textbook method �33,34�, at least for bulk systems with
periodic images in all three directions. However, for the so-
called slab geometry �34–37� of interest here, the standard
three-dimensional Ewald summation method �EWD3D� must
be adjusted; see, e.g., �36� and references therein for several
approaches to this problem. In the Appendix we compare
two ways to implement the Ewald summation in a slab ge-
ometry, the exact two-dimensional Ewald summation
�EWD2D�, which is inconvenient because of the high com-
putational cost, and the three-dimensional Ewald summation
with an additional slab of vacuum and a correction for the
spurious dipolar interactions �EWD3DC�. Comparing both
methods, we find that the EWD3DC method introduces an
artifact when the system presents an intrinsic dipolar mo-
ment. In order to avoid the artifacts associated with the cor-
rected EWD3D method we have chosen to implement the
exact, but computationally expensive, EWD2D method
�38–40� in this work. The computational cost is, however,
significantly reduced by combining it with the lattice
method, in which all interactions are precalculated only once
and stored as discussed above.

For all simulations that are presented in this paper, we fix
the height of the box to H=100�, with variations of the order
of a few � such that the box size is compatible with the
dimensions of the lattice. The horizontal dimensions Lx and
Ly are chosen such that the packing fraction of the system
matches with a required value, for a fixed number of par-
ticles. The parameters of the EWD2D method are the same
as described in the Appendix. The colloidal charge numbers
used in this work �Z� �6,100�� are lower than in typical
realistic colloidal suspensions. We have restricted ourselves
to these values for practical reasons: the total number of
particles in the system is otherwise too big to obtain equili-
brated configurations in a reasonable simulation time, while
the physical phenomena can still be revealed for lower col-
loid charges.

For a similar reason we present here only simulations for
deionized systems. We have performed some tests with low
salt densities, but we found similar behavior as in the deion-
ized situation. In order to find stronger differences, it would
be necessary to increase the salt concentration considerably,
and thereby, the number of particles in the simulations and,
hence the simulation time. Our simulations for low ionized
systems show the same level of agreement with the theory of
�19� than the deionized system presented in this paper.

A typical simulation consists of 50 000 cycles to equili-
brate the system and 100 000 cycles to obtain the averages.
A cycle consists of N trials to move a randomly chosen col-
loid or microion �with N the total number of counterions and
colloids in the system�. In a dense system of microions, a
simple Monte Carlo move of a colloid would almost cer-
tainly result in a hard-core overlap with one of the microions.
In order to avoid such overlaps we use a “cluster move”
technique, where ions that overlap with the new colloid po-

sition are moved into the space left empty by the displaced
colloid; more details on this technique can be found in Refs.
�31,41�. The percentage of accepted moves of each compo-
nent �colloids and microions� was maintained at �40%. To
check if the system is equilibrated, the center of mass of the
colloids was monitored in the simulation. If this center of
mass was not stable along the simulation, further equilibra-
tion took place before measurements were taken. All initial
configurations of the simulations were random distributions
of colloids and microions. The simulations are computation-
ally more expensive with increasing microion densities. For
instance, the simulation for Z=100 at a colloid packing frac-
tion �=0.0093 takes about one month of AMD Athlon 64
3200+ processor time. We are therefore restricted to colloidal
charges Z�100 and low colloid densities.

III. RESULTS AND DISCUSSION

The first system that we consider represents a deionized
ternary mixture �n=3� with colloid charges and gravitational
lengths given by �Zi ,Li /��= �50,4�, �20,6�, and �10,6�, for
i=1, 2, and 3, respectively. The mixture is equimolar with a
total packing fraction �=0.0095. These parameters are such
that ZiLi /�=200, 120, and 60 for i=1, 2, and 3. Hence one
expects, on the basis of the theory of Ref. �19�, a pronounced
segregation into three layers with species 3 at the bottom
�because it has the smallest value for ZiLi�, species 1 at the
top �because it has the highest value ZiLi�, and species 2 in
between. This is indeed what was found in our simulations
�see Fig. 1�, where the three packing fraction profiles are
shown. The theoretical predictions, based on the theory of
Ref. �19�, are represented by the dashed curves, that agree
perfectly with the simulations.

The second system we consider is deionized equimolar
mixture with n=5 colloidal components with a total packing

FIG. 1. Packing fraction profiles ��z� for an equimolar ternary
colloidal mixture with height H=100� and Lx=Ly =7.4�. The total
packing fraction is �=0.0095 and the colloids have charge and
gravitational length �Z ,L /��= �50,4�, �20,6�, and �10,6�, respec-
tively. The inset shows the density profile for the microions in the
system. The dashed lines are the theoretical predictions of �19� and
the solid lines the present simulation results.
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fraction of �=0.014. The charges and the gravitational
lengths are �Zi ,Li /��= �6,5�, �12,6�, �18,7�, �24,8�, and
�30,9�, respectively. In Fig. 2 we show the packing fraction
profiles of this system. In Figs. 1 and 2, the counterion pro-
files are shown in the inset; the counterions span the whole
simulation box, in agreement with the notion that the ionic
entropy is close to optimal in the low-salt regime studied
here. The dashed curves are the theoretical predictions based
on Ref. �19�, which are again in quantitative agreement with
the simulations. Also the ordering of the layers according to
ZiLi is as predicted in Refs. �18,19�.

In order to further compare the simulation results with the
theoretical predictions, we also measured the total charge
density profile

q�z� = − �−�z� + �
i=1

n

Zi�i�z� �2�

of the systems studied in Figs. 1 and 2. The result is shown
in Fig. 3, and reveals for both cases a pronounced net posi-
tive charge close to the bottom and a net negative charge
close to the top, combined with an essentially locally neutral
regime in the “bulk” �10�z /��90� of the system. This is in
agreement with the theory represented by the dashed curves.
The charge distributions satisfy global charge neutrality ex-
actly, and give rise to an electric field similar to that of a
plate condenser with two opposite surface charges on the
parallel plates. The strength of this electric field E�z� at
height z is related to the charge distribution q�z� as follows
from integrating the Poisson equation

E�z�e�

kBT
= 4�

�B

�
�2


0

z

q�z��dz�. �3�

In Fig. 4, we plot this spontaneously formed electric field for
the three- and five-component systems that we investigated,

together with the theoretical predictions. The agreement is
pretty good, although there are some deviations between
theory and simulation, which are probably due to finite par-
ticle sizes and correlations that are ignored in the theory. We
also see that the electric field is rather homogeneous in the
bulk, but not exactly, indicating that the charge distribution is
small but not exactly vanishing in the bulk.

The simulations presented so far correspond to systems
with relatively low colloid charges and low total packing
fractions. Our simulations provide a confirmation of the the-
oretical predictions on the segregation into layers of sedi-
menting multicomponent mixtures of charged colloids and
they show that the accuracy of the theory �19� is of high
level for the system parameters considered here. An imme-
diate question that arises concerns the limitations of the
theory. In order to investigate the break down of the theory,
we perform simulations at higher total densities for monodis-

FIG. 2. Packing fraction profiles ��z� for an equimolar five-
component colloidal mixture with height H=100�, Lx=Ly =7.4�,
total packing fraction �=0.014, and colloids with charge and gravi-
tational length �Z ,L /��= �6,5�, �12,6�, �18,7�, �24,8�, and �30,9�.
The inset shows the density profile for the microions in the system.
The dashed lines are the theoretical prediction of �19� and the solid
lines the present simulation results.

FIG. 3. Total charge density profile q�z� �see Eq. �2��, obtained
from simulation �solid line� and theoretically by Ref. �19� �dashed
line�. �a� and �b� correspond to the systems described in Figs. 1 and
2, respectively. For clarity, the graph for �b� is shifted upward by
0.2.

FIG. 4. Dimensionless electric field defined by Eq. �3� from the
simulations �solid line� and predicted theoretically by �19� �dashed
line�. The profiles labeled �a� and �b� correspond to the systems
described in Figs. 1 and 2, respectively. For clarity, the graph �b� is
shifted upward by 0.01.
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perse and multicomponent systems and at stronger electro-
static couplings by increasing the colloidal charge for mono-
disperse suspensions. The theory presented in Ref. �19�
ignores the hard core of the colloidal particles and we there-
fore expect it to break down at higher packing fractions. In
Fig. 5, we show the packing fraction profiles ��z� for a
monodisperse system of colloids with a gravitational length
L=10� and colloidal charge Z=10 and total colloidal pack-
ing fraction �=0.0093, 0.055, 0.099, and 0.128, respectively.
The packing fraction profile close to the bottom wall is
shown at an expanded scale in the inset. For comparison, we
present the theoretical predictions, based on the theory of
Ref. �19�, by the dashed curves. The most dilute system has
been studied previously by Hynninen et al. using molecular
dynamics simulations �31�. Figure 5 shows at this dilute
packing fraction the same level of agreement between theory
and simulation as reported previously �31�. In addition, Fig.
5 shows deviations between simulations and theory upon in-
creasing the total packing fraction. Both the theory and the
simulations show a linear behavior of the packing fraction
profile, but the slope predicted by the theory is higher than
that found by simulations. The more expanded packing frac-
tion profiles found in the simulations is due to the hard-core
interactions of the colloids that expel the colloidal particles
from the bottom of the container to higher altitudes, where
the density is lower. The hard-core interactions are, however,
neglected in the theory, resulting in a more inhomogeneous
packing fraction profile. In addition, the inset shows that the
density of the first fluid layer increases enormously upon
increasing �, while the “second” fluid layer is less pro-
nounced. The formation of fluid layers at the wall due to
packing effects is not predicted by theory, as the theory ne-
glects the excluded volume interactions between the colloids
and of the colloids with the wall.

In Fig. 6 we study the equimolar ternary mixture de-
scribed in Fig. 1, but at a higher total packing fraction, i.e,

�=0.115. We again observe as in Fig. 1, a segregation of the
components into three layers, where colloids with large
charge-to-mass ratio sediment higher in the sample. The the-
oretical predictions agree qualitatively with the simulations,
but quantitatively we do find deviations. As in the monodis-
perse case, we again find that the packing fraction profiles
obtained from simulations are more expanded than those ob-
tained from theory due to hard-core interactions. Moreover,
we find at this high packing fraction the formation of fluid
layers close to the bottom wall due to packing effects. These
oscillations in the profiles are absent in the theoretical pre-
dictions for reasons discussed above.

We also studied the effect of electrostatic coupling by
increasing the colloidal charge. In Fig. 7, we plot the packing
fraction profiles ��z� obtained from simulations �solid line�
and theory �dashed line�, for monodisperse colloidal suspen-
sions with gravitational length L=10� and colloidal charges
Z=0, 10, 20, and 100, respectively. The total packing frac-
tion is �=0.0093. Figure 7 shows that the distribution of the
colloids in the system becomes more homogeneous upon in-
creasing the colloidal charge. In addition, Fig. 7 shows that
the simulated packing profile differs from the theoretical pre-
diction for Z=0. The theory predicts a barometric distribu-
tion, while the profile obtained from simulation is more ex-
panded due to excluded volume effects. At Z=100, the
packing fraction profile is completely flat in the bulk, apart
from some structure close to the bottom and upper wall. The
theoretical predictions are in good agreement with the simu-
lation results for the colloidal charges studied here. Again we
find a peak in the packing fraction profiles close to the walls.
The peak moves away from the walls upon increasing the
colloidal charge and as the effective diameter of the colloids
increases.

Finally, we explore the effect of the composition of a
colloidal binary mixture �n=2� on segregation under gravity.
To this end we studied a rather asymmetric deionized colloi-
dal mixture with charges and gravitational lengths given

FIG. 5. Packing fraction profiles ��z� for a monodisperse
suspension of colloids with a charge Z=10, gravitational length
L /�=10, and height H=103� and Lx=Ly =4.8�. The profiles la-
beled �a�–�d� correspond to total packing fractions �=0.0093,
0.055, 0.099, and 0.128, respectively. The inset show the packing
fraction profile near the bottom wall at an expanded scale. The
dashed lines denote the theoretical predictions of �19� and the solid
lines are the simulation results.

FIG. 6. Packing fraction profiles ��z� for an equimolar ternary
colloidal mixture with height H=100� and Lx=Ly =7.4�. The col-
loids have identical charges and gravitational lengths as in Fig. 1.
The total packing fraction is �=0.115. The dashed lines are the
theoretical predictions of �19� and the solid lines the simulation
results.
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�Zi ,Li /��= �50,1� and �10,10� for i=1 and 2, respectively. In
Fig. 8, we show the simulated density profiles for �a� the
equimolar case with �1=�2=0.01, and �b� the case where the
lighter component is ten times more dilute such that
�1=0.01 and �2=0.001. In both cases the layered structure
persists, with the lighter component 2 floating on top of the
heavier component 1 since Z2L2�Z1L1, in agreement with
earlier conclusions �18,19�. An important difference, cer-
tainly in the light of a possible purification application, is the

complete expulsion of the heavier component 1 from the top
20� of the suspension below the meniscus in the equimolar
case �a� compared to the considerable local mixing of the
two species in this part of the sample in �b�. The separation
of the two components suggests that this phenomenology
may be used to separate and extract components from a so-
lution, even for trace components. The main difference be-
tween this case and the binary mixtures studied by Eszter-
mann and Löwen �18� is the higher asymmetry between the
charge and gravitational length of both species in the present
case. In the situation presented here this asymmetry enhances
the separation of the components. Figure 8 shows that the
theoretical predictions agree perfectly with the simulations
and, so the theory of Ref. �19� can be used to estimate the
optimal parameters to separate the components.

IV. SUMMARY AND CONCLUSIONS

We have performed MC simulations and Poisson-
Boltzmann calculations of sedimentation equilibrium of
multi-component colloidal suspensions within the primitive
model. Our simulations of sedimentation equilibrium of
equimolar ternary and five-component systems are in quan-
titative agreement with the Poisson-Boltzmann theory of
Ref. �19� in situations with low colloidal charge and dilute
regimes, and thus confirm the existence of the lift effect of
the colloids to much higher altitudes than expected from
their buoyant mass as well as the separation according to
mass per charge in multicomponent systems of charged col-
loids at low salinity. It may be of interest to explore the
possibility to purify colloidal mixtures on this basis.

In addition, we have performed computer simulations in a
regime where we expect the theory to break down, i.e., at
high packing fractions and high electrostatic couplings by
increasing the colloidal charge. We find deviations between
simulations and theory upon increasing the total densities in
the monodisperse and multicomponent systems. The density
profiles obtained from simulations are more homogeneous
than those predicted by theory. The more expanded profiles
obtained from simulations are a direct consequence of the
excluded volume interactions between the colloids, which
are ignored in the theory. We do find good agreement be-
tween theory and simulation when the colloidal charge is
increased in the monodisperse case for the parameters we
investigated here.

So far, we have not been able to test all aspects of the
theory. For instance, we have only considered here some
deionized cases, whereas an interesting prediction concerns
the crossover to ideal-gas-like �or hard-sphere-like� sedimen-
tation at sufficiently high salt concentrations. This crossover
salt concentration is, however, so high that the number of
ions is exceedingly large.
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packing fraction profiles for Z=10, 20, and 100, near the bottom
wall at an expanded scale. The dashed lines are the theoretical pre-
dictions of �19� and the solid lines simulation results. For clarity the
graphs �c� and �d� are shifted upward by 0.01 and 0.02, respectively.

FIG. 8. Packing fraction profiles ��z� for binary mixtures of
colloids with charge and gravitational length �Z ,L /��= �50,1� and
�10,10�. The �a� labeled profiles correspond to an equimolar mixture
where each component has packing fraction �i=0.01. The �b� la-
beled profiles correspond to a situation where the packing fraction
of the heaviest component is �=0.01 and for the lighter �=0.001.
�a-1� and �b-1� correspond in each situation to the heaviest compo-
nent, while �a-2� and �b-2� correspond to the lighter component.
The dashed lines are the theoretical predictions of �19� and the solid
lines the present simulation results.
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APPENDIX: EWALD SUMMATION FOR A SLAB
GEOMETRY

Below we discuss two approaches to handle the long-
range interaction in a slab geometry, the exact two-
dimensional Ewald summation and the three-dimensional
Ewald summation with an additional slab of vacuum and a
correction for the spurious dipolar interactions. Comparing
both methods, we find that the EWD3DC method introduces
an artifact when the system presents an intrinsic dipolar
moment.

The two-dimensional Ewald summation �EWD2D�
�38–40� is the most accurate approach, in which the total
Coulombic energy of N particles is given by

	Uij

�B
=

1

2 �
i,j=1

N

�
�m�=0




�ZiZj

erfc���rij + m��
�rij + m�

+
�

2A

��
i,j=1

N

�
h�0

ZiZj
cos�rij · h�

h
�exp�hzij�erfc��zij +

h

2�
�

+ exp�− hzij�erfc�− �zij +
h

2�
��

−
�

A
�
i,j=1

N

ZiZj�zij erf��zij� +
1

���
exp�− �2zij

2 ��
− � �

��
��

i=1

N

Zi
2 �A1�

where m= �mxLx ,myLy ,0� is the lattice vector with mx ,my

integers and Lx=Ly =K is the box dimension in the x and y
directions. We also introduced the reciprocal lattice vector
given by h= �2�mx� /Lx ,2�my� /Ly ,0� with integer mx� ,my�, and
the area of the unit cell A=LxLy. The primed sum indicates
the omission of the i= j term when m=0, � and the number
of vectors m and h are adjustable parameters chosen such
that computational efficiency is optimized. erf� � and erfc� �
denote the error function and the complementary error func-
tion, respectively.

Even though Eq. �A1� is very accurate �provided the cor-
rect parameters are chosen�, it is inconvenient to use in prac-
tice because of the high computational cost associated with
the double sum over the particles in the Fourier part of the
expression. For this reason several approximations have been
proposed to speed up the computation of the long-range in-
teractions in the slab geometry. One of these is to periodi-
cally repeat the cell in the z direction such that the more
efficient Ewald summation in three dimensions can be used,
which then has to be corrected in order to remove the con-
tribution from the repeating dipole �and higher order multi-
poles� in the z direction �EWD3DC� �34–37�. The lowest-
order correction term is given by �42�

	Uc

�B
=

2�

V
��

i

N

Zizi�2

�A2�

where V is the volume of the box. It was shown in Ref. �36�
that applying this correction to the EWD3D sum gives a
result in excellent agreement with the more expensive
EWD2D result given by Eq. �A1�. However, our tests re-
vealed a pronounced difference between the results of the
more expensive EWD2D and the corrected EWD3DC
method. The test result that we present in Fig. 9 is one of the
cases studied by molecular dynamics simulations in Ref.
�24�, and represents the total charge distribution of a deion-
ized monodisperse colloidal system �n=1� with L /�=10,
Z=10, �B=4�10−3�, H=100�, and total colloidal packing
fraction �=0.01. Our Ewald summations were implemented
with 112 Fourier-space vectors and �=0.68�−1, with the
real-space sum in U limited to the central cell. To facilitate
comparison, we coarse-grain the density profiles in Fig. 9.
The EWD2D result, which we find to be indistinguishable
from the simulations and the theory of Ref. �24�, reveals a
charge separation such that the bottom �z�0� is positively
charged while the meniscus �z�H� is negatively charged.
The resulting electric field pushes the �positive� colloids up
against gravity. This result is quite different from the charge
profile obtained with the EWD3DC method, which shows
oscillations with a periodicity �H /2 and an amplitude of the
same magnitude as the charge density that causes the electric
field with the EWD2D method. A tentative explanation for
these oscillations, which we consider to be artefacts, is that
the lowest-order correction of the EWD3DC method is most
likely not sufficient in slab geometries with an intrinsic di-
pole moment. We note that this does not necessarily imply
that the EWD3DC cannot be used at all in such cases, but it
seems that one should correct for higher-order multipoles as
well. In order to avoid the artifacts associated with the cor-
rected EWD3D method we have chosen to implement the
EWD2D method in this work.

FIG. 9. Comparison between the charge profile obtained with
the EWD3DC method �dashed line� and the EWD2D method �solid
line�. The profiles are coarse grained to facilitate the comparison.
See the main text for details.
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