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We consider a Brownian particle acted on by a linear conservative force, a nonlinear frictional force, and
multiplicative colored and additive white noises; the frictional force can be negative when the external energy
supply is large enough. We numerically calculate the mean first passage time �MFPT� for the particle to escape
from an unstable limit cycle and find resonant activation, i.e., the MFPT first decreases, followed by a rise after
passing through a minimum with increasing noise correlation time � for a fixed noise variance. For fixed noise
strength of the multiplicative noise the MFPT increases linearly with �. This is in sharp contrast to the case of
fluctuations of nonlinear potentials, in which the MFPT first increases nonlinearly before reaching a limiting
value. Our model could be useful for understanding some biological processes.
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The processes of noise-driven escape of particles over po-
tential barriers, i.e., the well-known Kramers’ problem �1�,
are ubiquitous in a wide variety of physical, chemical, and
biological contexts �2�. Kramers considered a model Brown-
ian particle trapped in a one-dimensional well representing
the reactant state, which is separated by a barrier of finite
height from a deeper well, signifying the product state. The
particle was supposed to be immersed in a medium such that
the medium exerts a frictional force on the particle but ther-
mally activates it so that the particle may gain enough energy
to cross the barrier. Over several decades the model and
many of its variants have served as standard paradigms in
various problems of physical and chemical kinetics to under-
stand the decay rate of metastable systems in the over-
damped and underdamped limits �3�, the effect of anharmo-
nicities �4�, the role of the relaxing bath �5�, the signature of
non-Markovian effects �6�, and quantum and semiclassical
corrections to the classical rate and related similar aspects
�7�. The vast body of literature has been the subject of sev-
eral reviews �2,8�. In the majority of these studies the focus
lies on the competing attractors of the dynamical system,
which are separated by a separatrix containing a saddle point.
However, models where the separatrix is instead an unstable
limit cycle often arise in the context of chemical reactions
constrained to occur far from a equilibrium �9�. The rate of
escape through the unstable limit cycle in the weak noise
limit has been studied �10� and noise-driven transitions in
models with an unstable limit cycle can be found in Ref.
�11�.

Most of the works mentioned above have considered the
static barrier. However, a surge of fresh interest in this topic
was triggered, not long ago, by Doering and Gadoua �12�
who studied how the interwell mean first passage time
�MFPT� of a Brownian particle in a bistable potential de-

pends on the correlation time � of the barrier fluctuations.
They observed that this dependence may be nonmonotonic
and called it resonant activation �RA�. This interesting phe-
nomenon �12� has been further investigated �13–19�. In the
present paper we examine a related issue. We show that the
phenomenon of RA appears in the problem of escape through
an unstable limit cycle in the presence of multiplicative col-
ored and additive white noises. Although traditionally RA
appears due to fluctuations in a nonlinear potential, the
present analysis suggests that it may be observed even in the
presence of a linear potential as a result of strange behavior
of the limit cycle. The limit cycle is a conspicuous feature in
a variety of models in biology and chemistry that deal with
situations far from thermal equilibrium. On the other hand, in
Refs. �17,19� it was emphasized that “far from equilibrium”
is one of the necessary conditions for the RA phenomenon.

To start with, we consider a simple model defined by

v̇ = − aq + b�v2 − 1�v + q��t� + ��t� , �1�

where q and v� q̇ represent the coordinate and the velocity
of the Brownian particle, and ��t� and ��t� are Gaussian
colored and white noises, respectively. In general, we ex-
press the thermal fluctuation of the system as additive noise
and the effect of the external environmental fluctuation on
the system as multiplicative noise. Thus ��t� and ��t� in Eq.
�1� correspond to internal thermal noise and external noise,
respectively. In a complex system multiplicative noise is
very relevant and it makes the system far from equilibrium.
The two noises are characterized by the relations ���t��=0,
���t��=0,

���t���t��� =
D0

�
e−�t−t��/�, �2�

���t���t��� = 2D��t − t�� . �3�

Here D0 and � are the strength and correlation time of the
multiplicative noise; D is the strength of the additive white
noise. Equation �2� shows that � in Eq. �1� is the Ornstein-
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Uhlenbeck colored noise �20�. The time evolution of � is
given by

�̇�t� = −
�

�
+

	D0

�
�1, �4�

where �1 is the white Gaussian noise having variance

��1�t��1�t��� = 2��t − t�� . �5�

Some pertinent points regarding the present model may be
in order. It captures essential features of barrier crossing
through an unstable limit cycle in the presence of fluctua-
tions in the activation energy. Because of the multiplicative
noise term, the frequency of the linear oscillator becomes
random and thereby the activation energy becomes fluctuat-
ing. The noise-driven limit cycle is a generic model for com-
plex physical and biological processes. On the other hand,
fluctuations in activation energy appear in many complex
biological and physical systems. Examples include the es-
cape of O2 or CO ligand molecules out of a myoglobin
“pocket” after photodissociation �21� and the intracellular
motion of a molecular motor along a microtubule �22�; the
binding of ATP and the release of ADP serve to randomly
modulate the activation energy experienced by the motor
protein as it travels along the biopolymer backbone. Also in
other strongly coupled chemical systems �23�, and even for
some aspects of protein folding and relaxation in glasses,
fluctuating energy barriers are likely to be of relevance
�21,24�. Second, when the external energy supply is large
enough, the friction �second� term in Eq. �1� becomes nega-
tive and it describes an active Brownian particle �25�. It
stands for a simplified model of active biological motion
�26�. For biological systems, an external supply of energy is
crucial, e.g., to maintain metabolism and to perform move-
ment �26�. Finally, the present model goes beyond Brownian
or easy diffusive motion due to the nonlinear friction and due
to being in nonequilibrium.

Without noise the model of Eq. �1� reduces to a time-
reversible van der Pol oscillator. In 1996, Maier and Stein
�10� calculated the white-noise-activated rate of escape
through the unstable limit cycle. Now it is difficult to deal
with the problem analytically because of the finite correla-
tion of multiplicative noise and also because of the nonlin-
earity in velocity in Eq. �1�. Therefore, we study the present
problem numerically. To have the essential features of the
dynamics we have solved the differential equations �1� and
�4� simultaneously using Heun’s method, a stochastic variant
of the Euler method which reduces to the second-order
Runge-Kutta method in the absence of noise �27�.

Now our first task is to define the first passage time �T�
for escape through an unstable limit cycle which is associ-
ated with a linear potential. To do so we plot q�t� vs v�t� in
Fig. 1. It is apparent that if the velocity is less than −2 or
greater than 2 then motion is definitely out of the attractor
basin. Therefore one can define the first passage time as the
time required for the particle to go from the origin of phase
space �0,0� to the point where v=2 or v=−2 for the first
time. Similarly one can define it in terms of the coordinate
also. Since T is a statistical quantity in the presence of noise,

we calculate �T�, that is, the average of T over many �say,
5000� realizations. We have calculated the MFPT for several
cases. First of all, we have determined how �T� changes with
increasing noise correlation time � of multiplicative colored
noise and the result is plotted in Fig. 2. To obtain data for
Fig. 2, we fix the noise variance C and have

D0 = C� . �6�

We choose this relation with the anticipation that the non-
equilibrium potential �11� in the present model might have a
similar role as that of the nonlinear potential �14� in the
ordinary barrier-crossing dynamics. For the nonlinear poten-
tial it was shown that RA can occur generically whenever the
colored noise intensity increases sufficiently fast with in-

FIG. 1. Plot of the coordinate q vs the velocity v of the particle
for a single realization with the parameter set a=b=1.0, �=0.5, C
=0.5, and D=0.05 �units are arbitrary�.

FIG. 2. Mean first passage time �T� vs the noise correlation time
� of the multiplicative colored noise with fixed noise variance for
the same parameter set as in Fig. 1.
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creasing �, i.e., for a linear increase in the case when the
noise variance is constant. The relation �6� has also been
used in �15–18�. Figure 2 shows that the MFPT first de-
creases, followed by an increase after passing through a
minimum. Similar results are obtained for other values of C.
Thus RA is also observed for the escape of a particle through
an unstable limit cycle instead of a saddle point. One impor-
tant point is that we have observed RA even for a linear
potential system. The feedback of energy through the nonlin-
ear velocity-dependent term in the equation of motion plays
a crucial role. It is apparent that the RA appears due to non-
monotonic behavior of the barrier height associated with the
nonequilibrium potential for increase of the strength of the
multiplicative noise as a linear function of the noise correla-
tion time.

In the next step we explore how �T� changes with � when
noise strength is kept fixed. In Fig. 3, we plot �T� vs � for a
given value of D0. The increase of �T� linearly with � in Fig.
3 is in sharp contrast to what we observe in the calculation of
the same in the case of fluctuations of nonlinear potentials. In
the latter situation the MFPT first increases nonlinearly and
then reaches a limiting value �17�. Thus the effect of the
noise correlation time on the barrier height and the frequency
factor of the rate of escape through an unstable limit cycle is
different from that of escape through a saddle point.

Now we investigate the variation of �T� with strength of
the multiplicative colored noise D0. We plot the logarithm of
1/ �T� vs 1/D0 in Fig. 4 which shows that the plot is linear at
small noise strength and is exponentially decaying for large
values of D0. It implies that multiplicative noise strength
affects both the frequency and exponential factors of the
barrier-crossing rate expression when the strength is large,
and the frequency factor becomes independent of it in the
weak noise limit. For additive noise our numerical experi-
ment shows that this plot is linear �Fig. 5� for arbitrary noise
strength, which is well known for the escape of a particle
through a saddle point.

In summary, using a noise-driven van der Pol oscillator
we have studied two aspects simultaneously: first, the escape
of a Brownian particle through an unstable limit cycle in the
presence of multiplicative and additive noises; second, the
extraction of energy from internal thermal fluctuations as
well as external fluctuations by an active Brownian particle.
We have calculated here the MFPT for a Brownian particle
which escapes through an unstable limit cycle from an attrac-
tor basin and found resonant activation for a given variance
of the colored multiplicative noise. The essential behavior is
due to the strange behavior of the limit cycle since in the
present model the concerned potential is linear. From the
point of view of an active Brownian particle this result im-
plies that the energy extraction ability is first enhanced with
increase of noise correlation time and then decreases after
passing through a maximum for fixed variance of the multi-
plicative noise. We have also shown that the MFPT increases
linearly with � �thus the efficiency of the active Brownian
particle decreases linearly with increasing �� for a fixed value

FIG. 3. Mean first passage time �T� vs the noise correlation time
� with fixed noise strength for the parameter set a=b=1.0, D0

=0.1, and D=0.05.

FIG. 4. ln�1/ �T�� vs �1/D0� for a=b=�=1.0 and D=0.05.

FIG. 5. ln�1/ �T�� vs 1/D, the inverse of the strength of additive
white noise for a=b=�=1.0, and D0=0.1.
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of the noise strength. Finally, we have shown that the
strength of the multiplicative noise affects both the frequency
and exponential factors at large noise strength, but the former
remains unaffected as the noise strength goes to zero. Deter-
mination of the barrier-crossing rate analytically in terms of
the noise correlation time and noise strength for the escape of

a particle through an unstable limit cycle is an open problem
for further investigation.
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