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The dynamics of small spheres that are held by linear springs in a low Reynolds number shear flow at
neighboring locations is investigated. The flow elongates the beads, and the interplay of the shear gradient with
the nonlinear behavior of the hydrodynamic interaction among the spheres causes in a large range of param-
eters a bifurcation to a surprising oscillatory bead motion. The parameter ranges wherein this bifurcation is
either super- or subcritical are determined.
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INTRODUCTION

Studies about the motion of bacteria and flagella in a fluid
and the dynamics of blood cells and other small suspended
objects such as polymers in simple flows are currently of
central interest and count as one of the major issues of mi-
crofluidics �1–13�. According to the short spatial scales in-
volved in these cases, the fluid motion surrounding the par-
ticles can be described in the small Reynolds number limit
�1–4�, by the linear Stokes equation �1�.

The hydrodynamic interaction �HI� between neighboring
blood cells, swimming bacteria, different segments of a poly-
mer, or neighboring polymers is of nonlinear nature even in
the limit of low Reynolds numbers �14�. Moreover, this non-
linear behavior may cause dynamical effects, such as the
periodic motion of small sedimenting spheres �15,16� or the
synchronization effects between rotating strings and between
cilia �17,18�, or it may cause a hydrodynamic coupling of
particles in optical vortices �19�. The HI may also amplify
thermal fluctuations of polymers �22� to mention only a few
examples.

Free single polymers show already a complex dynamical
behavior in shear flow �7,8� and the hydrodynamic interac-
tion between many polymers leads to the so-called elastic
turbulence �5,6�. Furthermore, polymers fixed at one end in a
plug flow are also a major issue �20,21� where one finds in
this case significant hydrodynamic interaction effects for
both the static and dynamic properties of the tethered poly-
mers �21–23�. Tethered polymers in shear flow have also
been studied, but so far only a single polymer fixed with one
end at a wall has been considered �24–27�. Recently, inves-
tigations have been started in order to analyze the behavior
of several flexible polymers fixed with their ends at the top
of neighboring pillars �28� and exposed to a linear shear
flow. So the interesting question arises quite naturally: What
is the dynamics of neighboring tethered polymers in shear
flow and what role does the hydrodynamic interaction play?

We mimic a situation of interacting tethered polymers by
spheres anchored by springs and neglect in a first approach
thermal fluctuations. To the best of our knowledge this is the
first example where an oscillatory motion of bound particles
in low Reynolds number flow has its origin in the hydrody-
namic interaction.

MODEL

Three beads are fixed in a shear flow by linear springs
with a spring constant k as shown in Fig. 1. The locations
of the minima of the corresponding harmonic potentials,
Ri �i=1,2 ,3�, build, if not stated otherwise, an equilateral
triangle of side length b and height H=b /�2 with the upper
corner at R1= �0,h+H ,0� and the two lower corners at
R2,3= �0,h , ±b /2�. The bead-springs are elongated by a lin-
ear shear flow

u0�y� = ��̇y,0,0� �1�

and the actual bead positions ri �i=1,2 ,3� are determined by
the equations for the bead velocities

ṙi = u0�ri� −
k

�
r̃i + �

j�i

�u�̇�rij� − �RP�rij�kr̃ j� �2�

with r̃i=ri−Ri. The first term describes the linear shear flow
given by Eq. �1� and the second contribution is the ratio
between the spring force and the Stokes friction �=6��a
that a single fixed particle of effective bead radius a experi-
ences in a flow with shear viscosity �. Each fixed particle
causes a perturbation of the shear flow at the location of the
other beads, and vice versa. This so-called hydrodynamic
interaction is described for a Stokes flow by the Rotne-
Prager tensor �14�
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FIG. 1. The three-particle configuration in shear flow is shown.
The corners of the triangle in the y-z plane mark the minima of
the harmonic potentials of the beads. The flow-induced sphere dis-
placements are indicated by the dashed lines. h measures the shift of
the lower side of the triangle from the center of the shear flow,
u�0�=0.
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which describes together with the harmonic forces kr̃ j the
fourth contribution in Eq. �2�. Iij =�ij is the unity matrix. The
shear flow induces sphere rotations, which alter the flow field
and therefore its action on other spheres, as described by the
third term in Eq. �2� �29�,

u�̇�r� = �−
5
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�a

r
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+
20
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r
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 r · E · r

r2 r −
8

3
�a

r
	5

E · r ,

�4�

where Eij =
�̇
2 ��ix� jy +�iy� jx� if the particle can rotate freely

and Eij = �̇�iy� jx if an external torque prevents the rotation.
With the relaxation time �=� /k and the effective bead radius
a one may rescale time t→�t�, space r→ar�, and the
shear rate �̇�→��̇, and the results in this work are most
conveniently presented in terms of these dimensionless units,
as for instance the sphere displacement rd;i=ri�−Ri�
= �xd;i ,yd;i ,zd;i�.

STATIONARY DISPLACEMENT
OF THE SPHERES

The stationary solutions of the nonlinear equations �2�,
i.e., ṙi=0, with the displacements rd;i

0
ªri�

0−Ri�
= �xd;i

0 ,yd;i
0 ,zd;i

0 � are determined numerically by a Newton al-
gorithm. rd;i

0 of a single bead increases according to the
Stokes drag force F=6��au and the linear spring force lin-
early with the flow velocity u0. However, by virtue of the
nonlinear nature of the HI between the beads, the elongation
of the linear springs changes nonlinearly as a function of the
flow velocity, which itself varies linearly with the height h /a,
as depicted in Fig. 2 for ��̇=2.6.

For h=0 the flow velocity vanishes at the positions of
bead 2 and 3 and with a finite shear gradient �̇ only the upper
bead 1 is displaced. The flow perturbation caused by bead 1
shifts beads 2 and 3 slightly downward and pushes both
away in the z direction with zd;3

0 =−zd;2
0 . For finite h beads 2

and 3 are exposed to a finite velocity u0�r2,3� and also excite
flow perturbations, both pointing downward, at bead 1. This
requires yd;1

0 to become negative as well, and since both per-

turbations act downward one has yd;1
0 	yd;2

0 at intermediate
values of h, �cf. Fig. 2�. In the z direction both disturbances
compensate each other, so that zd;1

0 =0 is left unchanged. Ac-
cording to this stronger displacement yd;1

0 at intermediate val-
ues of h the relative distance between the upper and the two
lower beads is reduced and therefore the flow perturbations
caused by bead 1 are enhanced, and so are the values of �yd;3

0 �
and zd;3

0 =−zd;2
0 as a function of h.

It is very surprising that all these displacements reach
extrema, as shown in Fig. 2, and become smaller again for
large values of h. An explanation of this behavior may be
offered by inspecting the bead positions at large values of
h /a. In this case the triangle built by the bead positions is
again nearly parallel to the y-z plane and accordingly the
flow perturbations and the related forces caused at the neigh-
boring beads are nearly vanishing compared to their external
force. In this limit, however, the height H of the triangle is
smaller and the distance between the beads 2 and 3 is larger
than for a vanishing fluid velocity. The latter behavior is a
consequence of a complex balance between the spring forces
and the nonlinear forces due to the flow disturbances. Corre-
spondingly there is hitherto no simple qualitative picture for
both, the deformed triangle built by the beads and the de-
creasing behavior of the elongation beyond their extrema.

THRESHOLD OF THE HOPF BIFURCATION

Slightly beyond the extrema in Fig. 2 the stationary bead
displacements become unstable and one finds by numerically
integrating Eqs. �2� using a standard method a bifurcation to
oscillatory bead motions. The threshold of this bifurcation
may be determined by a linear stability analysis of the sta-
tionary elongation rd;i

0 with respect to small perturbations
�ri�t�. Using the ansatz ri=ri

0+�ri�t�, a linearization of Eqs.
�2� leads to a set of nine linear differential equations with
constant coefficients

Ẏ = L�ri
0�Y with Y�t� = ��r1,�r2,�r3� �5�

governing the linear dynamics of the perturbations �ri�t�.
Equation �5� is solved by Y=exp�
t�± i�t��Y0, which trans-
forms Eq. �5� into an eigenvalue problem. The eigenvalue
with the largest real part 
�h� has also a finite imaginary part
� and is positive within a finite range of h /a as shown in
Fig. 3 for three different values of the dimensionless shear
rate ��̇. The whole range of a positive 
�h� in the ��̇-h /a
plane is given by the shaded range in Fig. 4. The occurrence
of oscillatory bead motion is rather robust with respect to
changes of the anchor points of the linear springs that adhere
to the beads. We have tested this by changing the anchor
points of beads 1 and 2 in all three spatial directions. With
such modifications the three anchor points either build no
equilateral triangle or the equilateral triangle is inclined and
no longer perpendicular to the flow direction. The major
trends include the following ones. Bringing anchor points
closer together enhances the hydrodynamic interaction which
favors the Hopf bifurcation in a larger parameter range and it
then also takes place at smaller shear rates and h.

FIG. 2. The figure shows the stationary vertical displacements
y3

0=y2
0 of the lower beads �dashed line� and y1

0 of the upper bead
�dash-dotted line� as well as the shift z3

0=−z2
0 in the z direction

�solid line� as a function of the vertical shift h /a and for the dimen-
sionless shear rate ��̇=2.6.
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NONLINEAR BEHAVIOR OF THE BEAD OSCILLATIONS

A typical example for the three-dimensional oscillatory
motion of the beads is given by a projection onto the x axis
in Fig. 5�a�. Here the deviations re,i= �xe;i ,ye;i ,ze;i� from the
center of mass of the stationary solutions rcm.=�i=1,2,3ri

0 /3
are displayed. Two characteristic features can be recognized.
Beads 2 and 3 oscillate with a phase shift of � and bead 1
oscillates along the x direction with twice the frequency of
the other two beads. The double frequency of bead 1 is an
effect of the projection onto the x axis, as can be seen from
the phase portrait in Fig. 5�b�. Similar phase portraits can be
obtained in the x-y and the y-z planes as well. Bead 1 per-
forms a three-dimensional motion and accordingly beads 2
and 3 are pushed away by a phase shift of � as indicated in
Fig. 5�a�.

The Hopf bifurcation is supercritical along the solid line
bounding the gray range in Fig. 4�a�. It is subcritical along
the dashed one and the range of hysteresis is indicated by the
striped range. The oscillation amplitude �ri

2 of bead 1 is
shown in Fig. 4�b� as a function of h /a at the shear rate
��̇=2.6. It indicates the supercritical behavior at the lower
threshold and the hysteresis at the upper one. Close to the
supercritical Hopf bifurcation the oscillations are harmonic.
Further away from this threshold and in the parameter range
with hysteresis in Fig. 4�a� the periodic motion becomes
rather anharmonic.

CONCLUSIONS

We found in this work a Hopf bifurcation of three
bounded spheres in a low Reynolds number linear shear flow,
which is induced by the interplay of the nonlinear behavior
of hydrodynamic interaction between the spheres and the
shear gradient. To the best of our knowledge it is the first
description of oscillations of bounded and hydrodynamically
interacting particles in a Stokes flow. Most of the results are
obtained for three beads anchored by linear springs at the
corners of an equilateral triangle that is perpendicularly ori-
ented with respect to the flow direction. The phenomenon is
very robust against various variations of the anchor points.
We did not find oscillations for two beads

Our results may also guide investigations on hydrody-
namically interacting polymers fixed at small spheres and
held by laser tweezers or anchored at boundaries in shear
flow as well as for polymers that are fixed in shear flow close
to boundaries at the top of pillars �28�. It is also an interest-
ing question to be addressed whether a recently discussed
cyclic motion for grafted polymers �24,26,27� is related to
the Hopf bifurcation discussed here.

We expect that several modifications of our model favor
oscillatory motion too, for instance, nonlinear spring con-

FIG. 3. The largest real part 
�h� is given in �a� as a function of
the vertical shift h /a for different shear rates �̇ and �b� shows the
corresponding imaginary parts �.

FIG. 4. �a� In the gray range the stationary bead elongations are
unstable with respect to a supercritical Hopf bifurcation along the
solid border line and to a subcritical one along the dashed line.
Within the striped region the Hopf bifurcation is hysteretic. �b� The
oscillation amplitude of bead 1 in the x direction is given as a
function of h for ��̇=2.6. The dotted line marks the upper threshold
of the Hopf bifurcation.

FIG. 5. �a� The time dependence of the deviation re;i from the
center of mass for bead 1 �solid line�, 2 �dashed line�, and 3 �dash-
dotted line� for ��̇=2.6 and h /a=35.5. �b� The corresponding bead
oscillations in the x-z plane.
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stants �which may mimic tethered polymers�, different spring
constants in different directions, or exposure of the three
beads to a Poiseuille flow with its spatially dependent shear
rate. The effects of these and other extensions are the subject
of forthcoming work.
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