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This paper provides a unified treatment of the fundamental methods used to obtain the density of states � via
molecular simulations with isothermal ensembles �IEs� and adiabatic ensembles �AEs�. Our analysis and
results show that � provides a natural bridge to go back and forth between IE and AE simulation data. They
also underline the difference between the density of states of potential energy macrostates � and that of total
energy macrostates �, even though both provide access to the thermodynamic properties of the system.
Visited-states approaches and transition matrix methods are described and applied to the Lennard-Jones fluid to
target � and � as functions of energy and volume macrostates. It is shown that one can obtain � via a
generalized acceptance-ratio formula that is applicable regardless of the conditions at which the ensemble is
simulated. In this way, one can obtain � while performing conventional IE or AE simulations, and do it at no
extra cost and with a higher accuracy than is achievable with histogram methods.
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I. INTRODUCTION

Molecular simulations with conventional statistical me-
chanical ensembles are still the main route to access the ther-
modynamic properties of a system �1,2�. In such simulations,
one primarily collects information about ensemble averages
of key quantities of the system which can, directly or indi-
rectly, be connected to macroscopic, thermodynamic proper-
ties. Such key quantities will be denoted macrostate variables
or macrovariables and are extensive properties that fluctuate
in the simulation. In recent years, it has been recognized that
simulation methods able to extract density of states � data
�as a function of the macrovariables� are particularly efficient
in mapping out thermodynamic properties over broad ranges
of conditions �1–10�. Ensemble averages can be easily ob-
tained from � by using straightforward statistical mechanical
formulas. One of the best-known approaches relies on esti-
mating � from the histogram�s� that record�s� the variations
of the ensemble macrovariables �3�. In practice, multiple his-
tograms, corresponding to simulations at different state
points, are collected and combined via the multihistogram
reweighting �MHR� method �4�; � is extracted �within a
multiplicative factor� that is usable over the macrovariable
domain sampled during the simulations. Often, � itself is not
obtained or reported but remains implicit in the equations
used for reweighing the thermodynamic properties of inter-
est. In some applications, a free-energy function I, rather
than �, is the property of interest or is the underlying func-
tion that allows the reweighting �9–16�. MHR is a “visited-
states” method in that � or I comes from data on the fre-
quency with which the system visited different macrostates.
More recently, another class of methods has been developed
wherein one gets � or I not from histogram data but from
data on the attempted transitions between macrostates
�17–25�. Such transition probability or transition matrix
�TM� methods have been shown to be more robust and ac-
curate than visited-states methods but, as of now, are still far
less popular than visited-states methods.

The methods described above have been extensively used
with isothermal ensembles �IEs�, i.e., those where the tem-
perature is fixed in the simulation. The MHR method has

been used with the canonical and grand canonical ensembles
�2–8,16�. TM methods have been used, for example, with the
canonical ensemble as the core from which I functions are
generated and reweighted to get properties associated with
grand canonical, isobaric-isothermal, and semigrand en-
sembles �20–25�. Recently �26�, it has been shown that MHR
and a particular type of TM method can also be used with
any adiabatic ensemble �AE�, i.e., ensembles where the sys-
tem is not in contact with a thermal bath and therefore the
temperature is not fixed �26–28�. Aside from the microca-
nonical ensemble or NVE ensemble, AEs are not as well
known or easy to implement as IEs but have been used in a
number of studies �see, for example, Refs. �26–42��. The
practical relevance of AEs may increase in the future as ther-
mally insulated, small systems can be experimentally real-
ized in microenvironments.

Because � does not depend on thermodynamic fields,
there also exist iterative schemes, like the multicanonical
�43,44�, entropy �45�, density of states �46–49�, and TM uni-
form ensemble �20,50,51� methods, that can target � in a
system without the need of specifying an ensemble, just the
constraints on the values of some extensive properties �e.g.,
to fix the size of the system�. In such a case, the distinction
between an IE and an AE vanishes. Such ensemble-weight-
independent methods, which can make use of either visited-
states or TM methods to estimate �, have been extensively
described elsewhere and will not be reviewed here. Instead,
we focus on methods to target � that do depend on the speci-
fication and simulation of an ensemble �that can be isother-
mal or adiabatic�. Both ensemble-weight-independent and
ensemble-weight-dependent routes to � are important be-
cause both are extensively used, have complementary
strengths, and the best choice is often system dependent.
Ensemble-weight-independent methods, e.g., work better for
unidimensional paths �when � is mapped out as a function of
a single varying property�, require some preliminary work
with conventional ensembles to identify the relevant macro-
variable domain, and involve an iterative scheme to con-
verge. Ensemble-weight-dependent methods, on the other
hand, work well even with multidimensional paths, are
often easily set up since the relevant macrovariable domain
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“follows” from the specification of thermodynamic states,
and can be less iterative.

The goal of this paper is thus to provide a unified frame-
work for the �ensemble-weight-dependent� simulation of �
and I with IEs and AEs. Both MHR and TM methods are
described that can be equally used with IEs and AEs to gen-
erate �. In particular, it is shown how by simulating multiple
state points with any conventional IE or AE, one can advan-
tageously use a TM scheme to generate � with higher accu-
racy than using MHR. Several proof-of-principle examples
are presented using the Lennard-Jones system as testbed, pri-
marily to illustrate how simulations with the less-known AEs
can be used to generate different types of density of states
functions and to pinpoint phase coexistence. These applica-
tions also underline some possible advantages of AEs over
IEs.

II. FORMULATION OF ISOTHERMAL
AND ADIABATIC ENSEMBLES

In Refs. �26,52� we described suitable notations to repre-
sent generalized IEs and AEs, respectively. Those notations
were not the same since their main purpose was conciseness.
For this discussion, however, we adopt the notation used in
Ref. �26� for both AEs and IEs. Let us denote as E the total
energy and as U the potential energy of the system, so that
E=U+K where K is the kinetic energy. Let us also define the
set of extensive properties Y= �V ,N1 , . . . ,Nc� and the set of
conjugate extensive fields f= �−P ,�1 , . . . ,�c�, where V is the
volume, Ni is the number of molecules of species i, P is the
pressure, and �i is the chemical potential of component i.
The fundamental thermodynamic equation

dE = T dS − P dV + �
i=1

c

�idNi

becomes

dE = T dS + f · dY . �1�

Clearly

f i = ��E/�Yi�S,Yj�i

and since

E = TS + f · Y , �2�

the Gibbs-Duhem equation takes the form 0=S dT+Y ·df.
The total density of macrostates can be written by factoring
out its ideal-gas and “excess” contributions:

�tot�K,U,Y� = �ig�K,Y��ex�U,Y�

= �ig
AE�Y�KF/2−1��K��ex�U,Y� �3�

where F is the number of degrees of freedom, and

�ig
AE =

VN

��F/2��i=1

c
ai

Ni

Ni!
�4�

where � is the gamma function and ai is a constant
specific to component i �e.g., for a single-site particle

ai= �2�mi /	2�3/2 where mi is the mass and 	 is de Broglie’s
wavelength�. The step function � in Eq. �3� simply con-
strains K to have positive values.

In specifying different ensembles, we are basically setting
alternative representations of thermodynamic states which
can be suitably described by using Legendre transformations.
This has been explained in detail in �26,52�. Here we simply
summarize the key results. In any given ensemble, we can
identify some key extensive properties that, by construction,
are fixed and some that are allowed to fluctuate: the fixed

ones are called Ȳ �a subset of Y�, while the fluctuating ones

are �U , Ỹ� where Ỹ is the “rest” of the Y variables, i.e.,

Ỹ� Ȳ=Y. The fluctuations in Ỹ are “controlled” by speci-
fying �fixing� the corresponding conjugate f fields which are

placed in f̃ �a subset of f so that f̃� f̄= f�. The fluctuations
in U are controlled by specifying �fixing� a further
“special” property which we will denote as D. For IEs,
D=
=1/kT �k is Boltzmann’s constant�, while for AEs it is
an extensive property defined by

D = DAE = E − f̃ · Ỹ �AE only� . �5�

Consistent with Eq. �3�, the probability of �K ,U , Ỹ�
macrostates for an AE specified by the properties being fixed

�Ȳ, f̃, and D� is

��K,U,Ỹ	D,Ȳ, f̃� = ��U,Ỹ	D,Ȳ, f̃� � �tot�U,Ỹ	Ȳ� , �6�

where the K dependence of � became implicit in �U ,Y�
given that

K = D − U + f̃ · Ỹ �AE only� . �7�

For an IE, the probability of �K ,U , Ỹ� macrostates results
from multiplying �tot by the appropriate ensemble Boltz-
mann factor:

��K,U,Ỹ	
,Ȳ, f̃� � �tot�K,U,Ỹ	Ȳ�exp�− 
�E − f̃ · Ỹ�� .

�8�

Substituting Eq. �3� into Eq. �8�, integrating over K, and
recalling that 
0


KF/2−1 exp�−
K�dK=
−F/2��F /2�, we get

��U,Ỹ	
,Ȳ, f̃� � �ig
IE�Ỹ	Ȳ��ex�U,Ỹ	Ȳ�exp�− 
�U − f̃ · Ỹ��

�9�

where

�ig
IE = VN�

i=1

c
�ai


−3/2�Ni

Ni!
. �10�

Equations �3�, �6�, and �9� allow us to write a general expres-

sion for the probability of �U , Ỹ� macrostates for any such IE
or AE as

��U,Ỹ	D, f̃,Ȳ� � ��U,Ỹ	Ȳ�W�U,Ỹ	D, f̃� �11�

where � is a configurational density of states,
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��U,Ỹ	Ȳ� = �ig�Ỹ	Ȳ��ex�U,Ỹ	Ȳ� �12�

where for �ig one uses Eq. �4� or �10� depending on the
ensemble type �AE or IE, respectively�. In Eq. �11�, W is an
ensemble weight function given by

W = �exp�− 
�� for IEs,

�D − ��F/2−1��D − �� for AEs,
� �13�

where �=U− f̃ · Ỹ. Likewise, the probability of a particular

microstate or configuration �= �r , Ỹ� where r is the set of
atomic coordinates is

p��	D,Ȳ, f̃� � �ig�Ỹ	Ȳ�W�U�r�,Ỹ	D, f̃� �14�

where again �ig is given by Eq. �4� �for AEs� or Eq. �10� �for
IEs�. Table I summarizes the expressions for �ig and W in
AEs and IEs. It should be noted, however, that in simula-
tions, W often absorbs some of the terms in �ig so that all
properties needed are “configurational” quantities; explicit
equations that account for this have been presented in Ref.
�9�. The generalized partition function Q is given by integra-
tion of either Eq. �11�,

Q�D,Ȳ, f̃� = 

U,Ỹ

dU dỸ ��U,Ỹ	Ȳ�W�U,Ỹ	D, f̃� , �15�

or Eq. �14�,

Q�D,Ȳ, f̃� = 

Ỹ

dỸ �ig�Ỹ	Ȳ�

z

dz W�U�z�,Ỹ	D, f̃� , �15��

where z is the set of reduced particle coordinates. The ther-
modynamic bridge function I is

I = ln Q�D,Ȳ, f̃� . �16�

For IEs, I is related to the familiar free energies �which
depend on the specific ensemble� while for AEs I is always
the entropy �see Table I�. For both IEs and AEs, the “equi-
librium” state always corresponds to a maximum in the I

function. That the entropy is always a maximum in AEs is
readily seen by using Eqs. �1� and �5� to write the Clausius
inequality as

dD − T dS + f̄ · dȲ + Ỹ · df̃ � 0,

and since by construction Ȳ, f̃, and D are fixed in the AE, it
follows that dS�0. At equilibrium, the adiabatic condition
��q=dS /T=0� implies dS=0.

Multiensemble �ME� approaches involve an extended par-
tition function that combines different systems, each defined

by the same type of partition function Q�D , Ȳ , f̃� but for
different conditions �states� wherein one or several of those

properties in �D , Ȳ , f̃� change from one ensemble to the next.
If the set of variables that define each system in the ME
scheme is called �,

TABLE I. Summary of ensemble formulas. a, substance-specific constant, F, number of degrees of
freedom, �, gamma function, �, unit step function, K, kinetic energy, E, total energy, U, potential energy, V,
volume, N, number of molecules, � chemical potential, P, pressure, W, ensemble weight, and Q, partition

function. �=U− f̃ · Ỹ, f̃� f̄= f= �−P ,�1 , . . . ,�c�, and Ỹ� Ȳ=Y= �V ,N1 , . . . ,Nc�. In any ensemble, properties

f̃ �a subset of f�, Ȳ �a subset of Y�, and D are fixed.

Isothermal ensembles Adiabatic ensembles

D=
=1/kT D=E+�−U

W=exp�−
�� W=KF/2−1��K� K=D−�

�ig = VN�
i=1

c
�ai


−3/2�Ni

Ni!
�ig =

VN

��F/2��i=1

c
ai

Ni

Ni!

ln Q=I=−Df̄ · Ȳ ln Q=ln �=I=S /k

Examples �always D=
� Examples �always I=S /k�
NVT ensemble NVE ensemble

Ȳ= �N ,V� Ỹ=0 f̃=0 I=−
A D=E Ȳ= �N ,V� Ỹ=0 f̃=0

W=exp�−
U� W= �E−U�F/2−1��E−U�
NPT ensemble NPH ensemble

Ȳ=N, Ỹ=V, f̃=−P, I=−
G D=H Ȳ=N Ỹ=V f̃=−P

W=exp�−
�U+ PV�� W= �H−U− PV�F/2−1��H−U− PV�
�VT ensemble �VL ensemble

Ȳ=V, Ỹ=N, f̃=�, I=
PV D=L=E−�N Ȳ=V Ỹ=N f̃=�

W=exp�−
�U−�N�� W= �L−U+�N�F/2−1��L−U+�N�

SIMULATION OF THE DENSITY OF STATES IN¼ PHYSICAL REVIEW E 73, 056701 �2006�

056701-3



�i � �Di,Ȳi, f̃i� �17�

then each single-system “partition function” in the ME can
be denoted as Qi=Q��i�, with each Q fully defined by Eq.
�15�. ME approaches can be classified into parallel MEs �or
“replica exchange” methods� �14–16� and serial MEs like
expanded-ensemble methods �11–13�.

III. SIMULATION OF THE DENSITY OF STATES

There exist many iterative schemes �like the multicanoni-
cal and uniform-ensemble sampling �43–51�� that can target

��U , Ỹ 	 Ȳ� in a system without fully specifying an ensemble,

just the constraints in Ȳ. But as indicated in Sec. I, such
ensemble-weight-independent methods lie beyond the scope
of this work. Here we restrict ourselves to ensemble-weight-
dependent routes to � or �ex, noting that � and �ex are
trivially related via Eq. �12�. In principle any method used to
extract � with an IE should also be applicable to an AE and
in Secs. III B and III C, we will review two such general
methods. But first, we clarify the distinction between � and
other density of states functions.

A. Relating AEs and IEs via the density of states

The partition function of an AE can be associated with a
density of states function, to be denoted �. If we write Eq.
�15� for an AE we have

��D,Ȳ, f̃� = 

U,Ỹ

dU dỸ �tot�U,Ỹ	Ȳ�

= 

U,Ỹ

dU dỸ ��U,Ỹ	Ȳ�W . �18�

Clearly � and � in Eq. �18� are different in that � describes
the degeneracy of macrostates defined �at least partially� by
U while � does not. For illustration, consider the case of a
microcanonical ensemble �see Table I� for which

��E	N,V� = �ig
AE


−


E

dU �ex�U	N,V��E − U�F/2−1 �19�

where �ig
AE is a now a constant. The notation ��E 	N ,V�

highlights the constancy of N and V in the ��N ,V ,E� func-
tion. Equation �19� makes plain the key difference between
two seemingly identical densities of states ��E 	N ,V� and
�=�ig

AE �ex�U 	N ,V�. The function �ex is in principle acces-
sible through simulations in IEs or AEs; e.g., for fixed N and
V, canonical and microcanonical ensemble runs can access
�ex�U 	N ,V�. Equation �19� then shows how one can get
��E 	N ,V� via numerical integration of the simulated
�ex�U 	N ,V� data. Likewise, one could get the canonical par-
tition function from the numerical integration of �ex�U 	N ,V�
from

Q�N,V,
� = �ig
IE


−





dU �ex�U	N,V�exp�− 
U� . �20�

Equations �19� and �20� reflect the fact that �ex�U ,N ,V� is
the fundamental function that allows us to access either IE or

AE partition functions and any other ensemble-related prop-
erty. This conclusion follows more generally from Eqs. �11�
and �12� that show that �ex is the same function �within a
constant factor� regardless of ensemble type:

Isothermal ensemble

fixed Ȳf̃

↔ �ex�U,Ỹ	Ȳ� ↔

Adiabatic ensemble

fixed Ȳf̃DAE

�21�

Note that it is also possible to get ��U 	N ,V� from
��E 	N ,V� �or from Q�N ,V ,
�� data but this entails solving
an integral equation via an “inversion” method. For example,
Eq. �19� is a Volterra equation of the first kind that can be
solved for �ex via a numerical procedure �53�. Such indirect
routes, however, lie beyond the scope of this work.

Finally, we present two additional AI-AE connecting
equations that will be important for later reference. Using
K=E−U in Eq. �3�, it follows from Eqs. �8� and �18� that

��E,Ỹ	
,Ȳ, f̃� � exp�− 
�E − f̃ · Ỹ��

U

dU �tot�U,Ỹ	Ȳ�

� exp�− 
�E − f̃ · Ỹ����E,Ỹ	Ȳ� . �22�

Likewise, using K=DAE−U+ f̃ · Ỹ in Eq. �3�, it follows from
Eqs. �8� and �18� that

��DAE	
,Ȳ, f̃� � exp�− 
DAE�

U,Ỹ

dU dỸ �tot�U,Ỹ	Ȳ�

� exp�− 
DAE���DAE	Ȳ, f̃� . �23�

Equations �22� and �23� are instances wherein one can get
the probability density for an IE �left-hand sides� based on
information obtained in an AE simulation �� data�.

B. Estimating � and I from visited-states
or multihistogram reweighting methods

Histogram methods estimate � from simulation data on
the frequency with which the system visits different mac-
rostates �2,4�. Reference �26� provided a general formulation
for multihistogram reweighting with AEs using the notation
already introduced in Sec. II. Consider s different histograms
H1 ,H2 , . . . ,Hs collected from simulations performed at

states defined by properties �Dj , f̃ j�, j=1, . . . ,s, respectively,

and all for fixed Ȳ. These histograms can be combined by
using the Swedsen and Ferrenberg prescription �4�. One can
then show that

��U,Ỹ	Ȳ� =
� j=1

s H�U,Ỹ	Dj, f̃ j	Ȳ�

� j=1

s K jW�U,Ỹ	Dj, f̃ j�exp�− I j�
�24�

where K j is the number of entries in the jth histogram and
the I values are found self-consistently from
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I j = ln�

U,Ỹ

dU dỸ ��U,Ỹ	Ȳ�W�U,Ỹ	Dj, f̃ j�� . �25�

But since only I differences are meaningful, one can set I1
=0. Equation �11� can be used to “extrapolate” the �unnor-

malized� probability of �U , Ỹ� macrostates for arbitrary val-

ues of D and f̃ �but the same Ȳ�. In Ref. �9� MHR was
advantageously used to get � even with ensemble-weight-
independent approaches �i.e., when W does not individualize
an IE or AE�.

C. Estimating � and I with transition matrix methods

Transition matrix methods estimate � and I functions us-
ing simulation data on probabilities of attempted transitions
�among microstates�. Let macrostate I encompass a set of
microstates or configurations �i� I� that correspond to some
prespecified value of the property �. This property can be any
of those included in � �Eq. �17�� but can also include U and
other configuration-dependent order parameters; i.e.,

�� �D , f̃ , Ȳ ,U , . . . �. If the probability density of a microstate
is denoted by p�i�, then the probability of such a macrostate
I is ��I�=�i�Ip�i�. Consider now two macrostates I and J
each encompassing a number of configurations or mi-
crostates �i� and �j�, respectively. The detailed balance con-
dition for transitions between microstates i and j is

�i,jPacc�i → j�p�i� = � j,iPacc�j → i�p�j� �26�

where �i,j =��i→ j� and Pacc�i→ j� are the probabilities of
proposing and accepting the moves between microstates i
and j, respectively. Starting from the equation above, it was
shown in Ref. �54� that the “broad histogram” formula �55�
and the generalized “Bennett’s acceptance ratio” formula
�56� are the same and take the form

��J�
��I�

=
CI,J/nI

CJ,I/nJ
�27�

where

nK = �
all L

no. of attempts K → L , �28�

CL,K � CL→K = �
l�L

�1 + �l,k/�k,l�Pacc�l → k� . �29�

If �� �D , f̃ , Ȳ� �i.e., �=�=the ME reaction coordinate�, then
a particular value of � �together with any other imposed con-
straints� determines a thermodynamic state and a partition
function, so that ln ���i�=ln Q��i�=Ii �see Eq. �16��, and
Eq. �27� is the �unoptimized� acceptance ratio method �57� to
estimate free-energy differences. Of particular interest here,
however, is the case when � is or includes U so that it does
not determine a thermodynamic state. In such a case, if for
all microstates k�K we assign the same average probability
p̄�K�, i.e.,

p̄�K� = �p�k�� " k � K , �30�

then for any macrostate K there exists a density of states
��K� associated with it:

��K� = ��
k�K

p�k�� = p̄�K���K� . �31�

Consistent with Eqs. �11� and �12�, in Eq. �31� and thereafter,
� may denote the excess ��ex� or the configutational function
depending on whether or not �ig is included in p̄�K�. Equa-
tion �31� can be seen as the definition of p̄�K�. Substituting
Eq. �31� into Eq. �27�, we get

��J�
��I�

=
p̄�J�−1CI,J/nI

p̄�I�−1CJ,I/nJ

,

which can be conveniently rewritten as

exp�SJ − SI� =
��J�
��I�

=
ĈI,J/nI

ĈJ,I/nJ

�32�

with

ĈL,K = �
l�L

�1 + �l,k/�k,l�
Pacc�l → k�

Pacc�L → K�
. �32��

Here Pacc�L→K�, which only depends on the macrostate val-
ues �not on the microstates�, can take the Metropolis-rule
form:

Pacc�L → K� = PK/max�PL,PK� , �33�

or Baker’s rule form �58�

Pacc�L → K� = PK/�PL + PK� . �34�

If furthermore

p�k� = p̄�K� " k � K , �35�

and the �’s are symmetrical ��i,j =� j,i�, then Pacc�l→k�
= Pacc�L→K�, and Eq. �32� simplifies to

��J�
��I�

= ln� nI,J/nI

nJ,I/nJ
� �36�

where nI,J�nJ,I� is the number of times that a transition start-
ing with a microstate belonging to I�J� resulted in a mi-
crostate belonging to J�I�. Equation �36�, a special case of
Eq. �32�, is a form of the broad-histogram formula �20�. The
estimation of �relative values of� � or � from the use of Eq.
�27�, �32� or �36� is an overdetermined problem which has
been described in detail and solved elsewhere �20,51,54� �it
requires an optimization procedure where one minimizes the
variance of the estimations of ln ��.

The great appeal of Eq. �32� is that the sums ĈI,J and nI
can be accumulated regardless of ensemble weight and could
then be used to consolidate the contributions to � from mul-
tiple simulation state points; e.g., from those performed in a
ME wherein ���. To illustrate this idea, consider the case of
an NVT simulation with �=U �suitably discretized in bins� so
that � in Eq. �32� is ��U 	N ,V�. If we are interested in
��U 	N ,V� over a broader range of U �for fixed N and V
values�, then one could run a ME�T 	NV� for multiple values
of �=T. From these simulations, one simply needs to accu-

mulate the counters ĈI,J and nI �regardless of the value of T�
and add them together to get � via Eqs. �32� and �32��.
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If � is a continuous variable and macrostates have been
discretized into bins, then condition �35� does not strictly
apply but if the bin width is not too wide one can use

p̄�K� = �p�k�� � p��k�� , �37�

i.e., each p̄�K� is evaluated at the average values of the k
microstates belonging to bin K. Note that if one forces Eq.
�35� to be obeyed, then Eq. �36� will give valid � values but
the simulated state points will no longer �exactly� correspond
to the specified ensemble states �the calculation would then
be analogous to a non-Boltzmann sampling scheme�.

The most important application of Eq. �32� is when a
macrostate is defined by combinations of values of all fluc-
tuating properties in the ensemble; in that case � is a multi-
dimensional vector

� = �U,Ỹ�, ���� = �ex�U,Ỹ	Ȳ� , �38�

so that ��K�=��UK , ỸK 	D , Ȳ , f̃� and p̄�K���ig�ỸK 	Y�
�W�UK , ỸK 	D , f̃�, consistent with Eqs. �11� and �14�. A key
feature of Eq. �38� is that � does not depend directly on any
thermodynamic field used in the simulation.

IV. SIMULATION OF PHASE COEXISTENCE
WITH MULTI-ENSEMBLES

In general, if we denote two phases as I and II, then at
coexistence all thermodynamic fields must be the same:

f̄ i
I = f̄ i

I � f̄ i " f̄ i � f̄ , �39�

TI = TII � Tcoex. �40�

And the equality of the fields in f̃ can be established by direct
specification. While there are several approaches to enact
Eqs. �39� and �40� via simulation �e.g., via Gibbs ensembles
�2,58,36��, we focus here on the use of MEs as a means to
access the thermodynamic properties of a system, including
phase equilibrium.

A. Isothermal ensembles

Several MEs have been used to map out phase coexist-
ence with the IE �e.g., see �11–16��. The case when �=

�recall Eq. �17�� has been extensively used with an expanded
ensemble and replica exchange �REX� algorithm �parallel
tempering� �11–16� to improve conformational sampling and
identify conformation transitions �e.g., in proteins�. For com-
pleteness, we simply review another popular case of ME
wherein one conducts a ME where T is fixed and only one

extensive property �=Y� is varied: Y�� Ȳ�= Ȳ, so that each

IE in the ME has partition function Q�Y��=Q�Y� , Ȳ� ,
 , f̃�.
Using methods such as those in Sec. III one can obtain the
difference in the I�Y�� values associated with these Q’s. If f�

is the field conjugate to Y�, one can then readily obtain the
probability of Y� macrostates in the “expanded” ensemble

Q�f��=Q�Ȳ� ,
 , f̃ , f�� from

��Y�	f�� = exp�I�Y�� + 
f�Y��/Q�f��, fixed Ȳ�,
, f̃ ,

�41�

where

Q�f�� =
 dY���Y�	f�� . �42�

Then if for a particular value of f� the ��Y� 	 f�� function
exhibits a bimodal distribution with equal area under each

hump, one has located a state where besides T, f̃, and f�, also

the free-energy function I�f��=ln Q�f��=−
f̄� · Ȳ� is the
same in both phases. The latter implies phase coexistence if

the vector Ȳ� �or f̄�� has only one component. This procedure
has been employed for Y�=N, V, or N2−N1 in several studies
�e.g., in Refs. �21–25��.

B. Adiabatic ensembles

For concreteness, we only consider here a particular case
of ME wherein just one extensive property is the reaction
coordinate; namely, when �=D so that different states along

the ME path correspond to different values of D �while f̃ and

Ȳ are fixed�. Examples of this ME have been reported before
�26� and extensions to multidimensional �’s can be pursued
by following similar arguments. For the AEs, since D=E

− f̃ · Ỹ, using Eq. �2� we get

D = TS + f̄ · Ȳ . �43�

At phase coexistence where Eqs. �39� and �40� apply, Eq.
�43� leads to

DI − TcoexS
I = DII − TcoexS

II. �44�

And using Eq. �1� one finds �26�

T−1 = � �S

�D
�

Ȳ,f̃
, �45�

�S =
 T−1dD, Ȳ, f̃ constant, �46�

which when integrated between DI and DII and combined
with Eq. �44� leads to



DI

DII � 1

Tcoex
−

1

T
�dD = 0. �47�

In a T−1 vs D plot, Eq. �47� can be seen as a generalized
equal area Maxwell construction. Note that in AEs, the
average T value for a given simulation point is obtained from
�26�

kT = 2�K/�F − 2�� . �48�

The ME�D 	 Ȳ , f̃� runs can generate relative values of

S /k=ln ��D 	 Ȳ , f̃� by either the thermodynamic integration
embodied by Eq. �46� or by using one of the methods in
Sec. III.
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The most complete and systematic AE↔ IE connection is

given by using as bridge the �ex�U , Ỹ 	 Ȳ� function as de-
scribed in Sec. III. Another, albeit more limited, connection
is to use Eq. �23� to go from AE runs with partition function

��Ȳ , f̃ ,D� and �=D=DAE to simulation data for an IE with

partition function Q�Ȳ , f̃ ,
�. Since differences in S /k

=ln ��D 	 Ȳ , f̃� are accessible from the ME�D 	 Ȳ , f̃� runs,
then Eq. �23� allows us to get the probability of DAB mac-

rostates ��DAE 	 Ȳ , f̃ ,
� with which the average of a property
X could be projected into the IE by using

�X�Ȳ,f̃,
 � 

DAE

dDAEX�DAE,Ȳ, f̃���DAE	Ȳ, f̃,
� . �49�

Formulas �23� and �49�, which are applicable within a lim-
ited range of temperatures �
� corresponding to the simu-
lated DAE domain, can be useful in pinpointing phase coex-
istence by allowing calculations for different T values �see
Sec. VI�.

V. SIMULATION DETAILS

All the simulation tests were performed for a single-
component Lennard-Jones �LJ� system in a cubic box with
periodic boundary conditions. All properties for this system
will be reported dimensionless as they have been reduced by
suitable combinations of the standard LJ energy � and dis-
tance � parameters and Boltzmann constant k �1,2�. The pair-
wise potential energy interactions were cut off at a distance
of 2.5 and standard long-range tail correction added �2�.
Configurational sampling �at constant volume� consisted of
translation moves where randomly chosen particles attempt
to move in a random direction by a maximum distance dmax.
The value of dmax was chosen to maintain an acceptance rate
in the 30–40% range. Volume moves, when needed, entailed
incremental expansions or contractions of the simulation box
dimensions while the positions of the particles were rescaled
by maintaining their reduced coordinates �with respect to the
box length� unchanged �2�. The maximum volume change
	�Vmax	 was tuned to give a 30% acceptance rate. Both trans-
lation and volume moves �going from microstate o to n�
were accepted using the Metropolis criterion

Pacc = min�1,
�ig,nWn

�ig,oWo
� . �50�

Because Eq. �32� overspecifies � ratios for any given pair
of macrostates, optimal values were obtained via an explicit
order-N formula described in Ref. �54�.

Most ME simulations were performed using a replica ex-

change algorithm. For REX, the Ȳ properties in � �Eq. �17��
are fixed so that each individual replica corresponds to an

ensemble with a distinct �� �D , f̃�. The overall partition
function for Ns replicas with such a REX scheme is Q*���
=�i=1

Ns Q��i� and the probability density of a � state is

���i� = Q��i�/Q*��� . �51�

To sample states according to Eq. �51�, we performed
configurational moves as described above and “swap”

moves between neighboring replicas. If a swap is attempted

between replicas i and j having identical Ȳ parameters

but with �i= �Di , f̃i� and � j = �Dj , f̃ j�, and having microstates

�i= �Ỹi ,ri� and � j = �Ỹ j ,r j�, respectively, then the Metropolis
rule is

Pacc = min�1,
W�� j,�i�W��i,� j�
W��i,�i�W�� j,� j�

� , �52�

Successive � values were manually chosen so that Pacc
ranged between 0.1 and 0.3. Note that our ME runs did not
need to be performed in parallel with REX; however, this
improves ergodic sampling and gives as a by-product the
values of �I. In fact, the change in property I �see Eq. �16��
between any pair of neighboring states i and j can be readily
obtained with Bennett’s method, at no extra cost, from the
replica swap attempts by simply using Eq. �27� and realizing
that I��i�=ln ���i� with �i=�i. In our applications, the I’s
thus obtained were almost indistinguishable from those ob-
tained from the self-consistent MHR relation �Eq. �25��.

VI. RESULTS

Because N will always be constant in the ensuing appli-
cations, we will omit it in the notation of �, S, and ME so
that, e.g., ��U 	N ,V� will just appear as ��U 	V�.

A. Targeting the � density of states

First we demonstrate the AI-AE connection of Eq. �21� by
using as AI the NVT ensemble and as AE the NVE ensemble
�see Table I�. Note that for either ensemble, �ex and �
agree within a constant factor. In both cases, F=3N and

Ȳ= �N ,V� with N=110 LJ particles and V=125 �liquid-
like density�; the ME runs involved 10 state points and
3�105 cycles per replica where each cycle consisted of 250
translation moves and 1 swap move. Also in both cases, we
targeted the ��U 	V� function in the range of U from −700 to
−500 using a discretized scale with �U=1 �i.e., 200 mac-
rostates�. For the NVT runs, the temperatures were 0.73,
0.84, 0.97, 1.11, 1.28, 1.47, 1.69, 1.94, 2.23, and 2.57 �ap-
prox. Ti+1=1.15Ti� which gave REX swap acceptance rates
between 20% and 30%. For the NVE runs, the energies were
−600, −572, −540, −505, −465, −418, −360, −290, −210,
and −110; the REX swap acceptance rates ranged between
12% and 15%. For these two MEs, the Pacc�L→K� �for
translation moves� were discretized �with �U=1� to allow

the collection of ĈI,J data for direct use with Eq. �32� to get
��U 	V�. For comparison, additional conventional MEs were
conducted where ��U 	V� was obtained via the MHR Eqs.
�24� and �25� �instead of Eq. �32��.

Figure 1 shows the results for the incremental values of
ln � obtained for the ME�T 	V� runs. Clearly � obtained via
Eq. �32� ME agrees quantitatively with that obtained with the
conventional ME �obtained via the MHR Eq. �24��, although
the latter exhibits noticeable larger noise than the former.
The improved statistical accuracy in � estimates from TM
methods �like Eq. �32�� relative to those from visited-states
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methods �like MHR� has been thoroughly quantified before

�20,51,54�. The importance of using the appropriate ĈI,J defi-
nition is illustrated by obtaining � via Eq. �36� instead of the
“correct” Eq. �32�; clearly, Eq. �36� leads to results exhibit-
ing systematic errors. Similar outcomes were obtained when
we performed the corresponding comparison with data from
adiabatic ME runs �not shown�. Further, the � values ob-
tained from isothermal MEs agree completely with those
from adiabatic MEs, whether one uses Eq. �32� or Eq. �24�
�with the latter always exhibiting larger noise�. This agree-
ment is illustrated in Fig. 2 where we show that the energy
histograms for several temperatures collected with the stan-
dard isothermal MEs, match well those reweighted �e.g.,
with Eq. �11�� from the � obtained via Eq. �32� with the
adiabatic ME.

The simulations described above were also used to test
the validity of Eq. �19�. Because the results for �

��ex�U 	V� found before �from either ME series� targeted the
U range �−700,−500�, the two integration limits in Eq. �19�
pose some limitations: �1� the resulting ��E 	V� will be ap-
proximate because �ex is not known down to U→
 �lower
limit�, and �2� we can only get results for � up to E=−500
�upper limit�. In Fig. 3 we plot the results obtained from
this integration and for I=S /k=ln ��E 	V� as obtained from
the use of Eq. �27� for the ME�E 	V� REX swaps. It can be
seen that both sets of data agree well in the overlapping
range of E.

If we are interested in obtaining a “two-dimensional”
�2D� ��U ,V� over a broad �U ,V� domain, an economic way
to do so is by assembling several ��U 	V� isochores, gener-
ated for different volumes, via multiple NVE or NVT runs.
Such a “multiple 1D paths” approach to � has been illus-
trated before �54� wherein the ��U 	V� isochores were first
found using an �ensemble-weight-independent�
multicanonical-type TM method, and then “stitched” to-
gether via a ME�V 	T� run. Of course, one can use instead
multiple NVE or NVT ensemble runs to get the ��U 	V�
curves �instead of an ensemble-weight-independent ap-
proach�. We tested two such schemes for the N=128 LJ sys-
tem, one relying exclusively on IEs and the other on AEs.
Since the results from both are comparable, we will only
describe the adiabatic scheme wherein we used ME�E 	V�
runs to get the isochoric �’s and stitched them with a
ME�V 	E� run. For each volume, we performed the ME�E 	V�
using REX with 28 E values ranging from −600 to +1400
�with intervals gradually increasing�, monitored the U range
between −806� and 64� discretized in 435 bins ��U=��
=2�, and used Eq. �32� to get ��U 	V�; each ensemble state
was run for 15 000 cycles, where each cycle consisted of
attempting 700 translations and four REX swaps. We simu-
lated 40 such isochores for volumes ranging from 129.43
to 9878.4 with a nearly logarithmic spacing. For the
�stitching� volume-varying ME run, we let V adopt 195
discrete values in the same range as before with Vi
=127.996 exp�0.022 345�i−0.5�� for i=1,2 , . . . ,195. In this
case we used a serial ME wherein volume transitions in-
volved only two neighbor ensembles at a time �similar to

FIG. 1. �Color online� Density of states function ln ��U 	V� for
the LJ fluid obtained from ten NVT ensemble runs �for T=0.73,
0.84, 0.97, 1.11, 1.28, 1.47, 1.69, 1.94, 2.23, and 2.57� and fixed
N=110, V=125. Results are shown for the MHR technique �gray
�red� lines�, for the correct TM method �Eq. �32�, full lines�, and for
the “incorrect” TM method �Eq. �36�, dashed lines�.

FIG. 2. Comparison of energy histograms for the LJ fluid ob-
tained from standard canonical simulations for temperatures 0.97,
1.11, 1.28, 1.47, 1.69, and 1.94 �circles� and by reweighting of the
��U 	V� function obtained from ME�E 	N ,V� �lines�. The latter
comprised ten runs with E=−600, −572, −540, −505, −465, −418,
−360, −290, −210, and −110. In all cases N=110, V=125.

FIG. 3. Comparison of the simulated entropy �ln ��E 	V�� for
the LJ fluid as obtained from multiple NVE runs �circles� and from
the integration �via Eq. �19�� of the ��U 	V� data shown in Fig. 1
�lines�.
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“successive umbrella sampling” �59�� so that in average, ev-
ery ensemble point was run for 15 000 cycles, each consist-
ing of attempting 200 single-particle translations and eight
volume changes. For this stitching ME, we set E=Es=150
and used Eq. �27� to obtain the ratios of successive ��V�
values.

The scheme described above also allows us to get ��E ,V�
if we collect the �I=�S�E 	V� values from the REX swaps
�isochoric runs�. The stitching can be done by using

S�E,V� = S�E	V� + �S�V	Es� − S�V0	Es��

− �S�Es	V� − S�Es	V0�� �53�

where V0 is an arbitrary volume used as reference, and the
terms in the first square brackets are from the ME�V 	Es� run
while all the others in the right hand side of Eq. �53� are
from the ME�E 	V� runs. To get S�U ,V�=k ln ��U ,V�, it can
be shown that the stitching can be done with

S�U,V� = S�U	V� + �S�V	Es� − S�V0	Es��

− �S� �Es	V� − S� �Es	V0�� �54�

where the S� terms are found by integration of the simulated

��U 	V�=exp�S�U 	V�� data �from the ME�E 	V� run� via Eq.
�19�; i.e.,

S� �Es	V� = ln ��Es	V� = ln�

−


Es

dU���U�	V��Es − U��F/2−1� .

�55�

Figure 4�a� shows the excess part of the S�U ,V� function
�i.e., it does not include the ideal �N ln V� contribution�
which agrees quantitatively with that reported before �e.g., in
�50,54��. Figure 4�b� shows our results for the corresponding
excess S�E ,V� surface which, compared to S�U ,V�, exhibits
similar rough trends �e.g., larger S for larger energies� but
has a very different local topography. In the S�U ,V� surface,
the “difficult” region is that of larger volumes and more
negative energies because it corresponds to inhomogeneous
states where molecules form cluster and interfaces; our simu-
lation scheme is able to sample that region more comprehen-
sively than other approaches �e.g., the one based on
ME�T 	V� runs, or the one used in �50��. Because the E in-
crements are much larger than the U increments, the S�E ,V�
surface is defined over a coarser grid than the S�U ,V� sur-
face; however, one could use interpolation methods to get S
at any point inside the domains. Also, the stitching procedure
of the multiple 1D paths �which circumvents a full 2D sam-
pling scheme� is more straightforward for S�E ,V�.

Despite the difference between S�U ,V� and S�E ,V�, both
can be used �once ideal gas contributions are added� to gen-
erate all key thermodynamic properties; e.g., from

T−1 = ��S/�E�V, P = T��S/�V�E, �56�

and G=E+ PV−TS. Also, they can be used to estimate the
macrostate probability density for given P and T; i.e., from
Eq. �11� applied to the NPT ensemble,

��U,V	P,T� � exp�S�U,V�/k − U/kT − PV/kT� �57�

and from Eq. �22�

FIG. 4. �a� Excess S�U ,V� surface and �b� excess S�E ,V� sur-
face for the LJ fluid �N=128�. Both surfaces were extracted from a
series of ME�E 	V� runs, each for a different volume and spanning
28 different values of E �from −600 to 1400�. The stitching
ME�V 	E� run was with E=150 and spanned 195 different values of
V �from 129.4 to 9878.4�. The surfaces can be shifted vertically by
an arbitrary amount.

FIG. 5. T=1.15 isotherm for the N=128 LJ system obtained by
finding the average specific volume �v� for preset T and P via Eq.
�57� �full lines� and Eq. �58� �circles�. Also shown is the isotherm
found via Eq. �56� applied to the surface of Fig. 4�b� �dotted lines�
which, unlike the previous two, does show a van der Waals loop
�consistent with a saturation pressure of �0.062�.
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��E,V	P,T� � exp�S�E,V�/k − E/kT − PV/kT� �58�

with which average properties �X�=
X��U ,V�dU dV and
�X�=
X��E ,V�dE dV can be found. Figure 5 shows PV data
for a subcritical isotherm found using Eqs. �56�–�58�. Al-
though phase coexistence could be estimated from such iso-
therms, Eqs. �57� and �58� allow a more direct route via the
“equal-probability-volume” criterion wherein one finds P-T
pairs of values that give a bimodal probability density having
equal “volume” �total probability� under each peak. Unre-
ported sample coexistence results using Eqs. �57� and �58�
�see, however, Fig. 6�b�� agree with each other and with
those given in Ref. �50�. Note that ��U+K ,V 	 P ,T� from Eq.
�57� with K=3NkT /2 �a maximum term approximation� is
not the same as ��E ,V 	 P ,T� from Eq. �58� since the former
does not capture the variability of K.

We can also sample a portion of ��U ,V� via simulations
in an ensemble where both U and V are allowed to fluctuate
like the NPT and NPH ensembles. We illustrate this calcu-
lation using a ME with NPH ensembles and �=H, i.e., a
ME�H 	 P� �see Table I�. We use the same N=128 LJ system

as before and use a subcritical pressure P=0.06 and H values
ranging from −560 to +400 with 25 points �step size of 40�;
in this way, the simulated points go from liquid states to
vapor states. The ME was run for 5�104 cycles/replica,
where each cycle consisted of 800 translation moves,
five volume moves, and four REX swaps. In this case each
macrostate is defined by the values of U and V, a case con-
sistent with Eq. �38�. In implementing Eq. �32�, U was col-
lected in bins with a width of �U=2 and the volume was
discretized so that allowable values lie on a logarithmic
scale: ln Vi=0.022 345i+const. Such a discretization of V
is done for convenience and is not essential; one could use
instead a continuous V and classify their values into discrete
bins �as is done with U�. To obtain S�U ,V� from Eq. �32�
we used the method described in the Appendix �with
V=property 1 and U=property 2�.

A plot of the excess S surface thus obtained is shown in
Fig. 6�a� which is overlaid on that of Fig. 4�a�. Clearly the
ME�H 	 P� run used here is able to sample only a small por-
tion of S that lies just below the flat upper terrace toward the
drop region. However, this small region is an interesting one
because, by virtue of our selection of P and H values, we
have targeted the liquid and vapor states in and around the
binodal curve. We show this by using Eq. �57� to pinpoint
coexistence data via the equal-probability-volume criterion.
Figure 6�b� shows the marginal ��V 	 P ,T� histograms at co-
existence �i.e., for equal-area peaks� found from the
ME�H 	 P�-derived S�U ,V� function for three pressures: 0.06
�the one used in the ME run�, 0.04, and 0.11 �as close to the
critical point as is sensible�. The estimated coexistence tem-
peratures for these pressures are very close though, as ex-
pected from our small system size, consistently lower �by
0.6%� than those obtained from the Lotfi et al. correlation
�60�. If it is desired to estimate coexistence conditions for
even lower pressures, one simply needs to add more points at
the ends of the H spectrum in our ME�H 	 P� to collect
S�U ,V� data relevant to denser liquids and lighter vapors.
While ��U ,V� can come from NPH runs or NPT runs �61�,
the key advantage of using the former is that they readily
sample macrostates inside the bimodal curve �two-phase re-
gion� and therefore allow connecting vapor and liquid states
and pinpoint phase coexistence without having to do a bridge
around or near the critical point �a similar advantage exists in
using a VL� ME over a VT� ME�.

The same calculations associated with Fig. 6 can be car-
ried out if one collects macrostate histograms and uses the
MHR Eq. �24� rather than the TM Eq. �32�, though the
former always gives noisier results. We illustrate such a
MHR implementation using the same ME�H 	 P� approach
used before but for a larger LJ system with N=250 to facili-
tate comparison with previously reported data �26,62�. We
thus set P=0.06 with states that ranged from H=−1000
to +700 with 35 equally spaced points. The ME was run for
5�104 cycles/replica, where each cycle consisted of 800
translation moves, six volume moves, and two REX swaps.
We collected histograms �of U and V� for each of the 35
states and used Eq. �24� to obtain ��U ,V�:

FIG. 6. Results from a ME�H 	 P� run with P=0.06 and 25 H
values �from −560 to +400� for the N=128 LJ fluid. �a� Excess
S�U ,V� surface from this ME is shown by full lines; for reference,
the surface from Fig. 4�a� is also shown by dotted lines. �b� Volume
probability density at coexistence for three pressures obtained from
the S of Fig. 6�a�; the equal-area criterion is satisfied by each bi-
modal curve although this is distorted by the logarithmic scale of V.

FERNANDO A. ESCOBEDO PHYSICAL REVIEW E 73, 056701 �2006�

056701-10



��U,V� =
� j=1

s H�U,V	Hj,Pj�

� j=1

s K jW�U,V	Hj,Pj�exp�− Sj/k�
, �24��

where W is given in Table I, and Sj is the �relative� entropy
of the jth state �found from either Eq. �25� or from Bennett’s
Eq. �27� applied to the REX swaps�. We then obtained the
probability density of macrostates at other conditions of H
and P, from

��U,V	H,P� � ��U,V�W�U,V	H,P� , �11��

and from these we got �T�NPH and ���NPH. The T vs � results
thus reweighted for P=0.04 and 0.1 are shown in Fig. 7 and
compared against the data obtained from direct simulation at
those pressures. Clearly, the extrapolations agree well with
the direct simulation data. Just as was done in Fig. 6�b�, we
could also get accurate coexistence results for 0.035� P
�0.11.

B. Pinpointing phase coexistence
with adiabatic �’s (without �)

If ��U ,V� is known over a sufficiently large domain as in
Figs. 4�a� and 6�a�, then most of the vapor-liquid coexistence
curve can be readily mapped out via the equal-probability-
volume criterion as was done in Ref. �50� and illustrated in
Fig. 6�b�. Here, however, we consider an alternative scenario
where the � is unknown but � �or S� is accessible in some
domain. This may correspond to cases where � depends on

numerous variables and we are only interested in a limited
region of a phase diagram. To illustrate this “targeted” ap-
proach, we use as a basis the ME�H 	 P� simulation results
obtained before for the LJ system at P=0.06 and N=250,
and H values ranging from −1000 to +700. For convenience,
we list several methods that can be used.

�1� Maxwell construction—thermodynamic integration.
This involves the use of Eq. �47� which in this case is

HL

HV�1/Tcoex−1/T�dH=0. This construction, illustrated in
Fig. 8�a�, only requires knowledge of T�H� simulation data
�which embody S data as per Eq. �46��.

�2� Double-tangent construction. This is based on Eqs.
�44� and �45� so that the points HV and HL �at phase coex-
istence� must satisfy ��S /�HL�N,P= ��S /�HV�N,P=1/Tcoex and
−Gcoex /Tcoex=SV−HV /Tcoex=SL−HL /Tcoex. This implies that
if one draws the S�H� curve, straight lines tangent at the
vapor and liquid equilibrium points must have the same
slope and intercept; i.e., they fuse into a line that is simulta-
neously tangent at both points. This construction, illustrated
in Fig. 8�b�, only requires the knowledge of S�H� simulation
data.

�3� The “intersection” or chemical potential method. This
is based on Eq. �44� that can be used to get the chemical
potential from

��H� = �H − T�H�S�H��/N .

A plot of ��H� vs T �or T−1� should show phase coexistence
as an intersection point between two branches: at that point
one has equality of both the temperature �x axis� and the
chemical potential �y axis� for the phases representing these
two branches. This construction is illustrated in Fig. 8�c� and
requires knowledge of both T�H� and S�H� data from simu-
lation.

�4� The ensemble projection method. This is based on the
AE-to-IE transformation described by Eqs. �23� and �49�.
Phase coexistence is estimated by detecting the signs of a
first-order transition in an IE. In our case, the relevant trans-
formation is to go from NPH data to NPT data. The first
variant �method 4a� is based on Eq. �23� which in this case
reads

��H	P,T� � exp�S�H�/k − H/kT� �59�

where constancy of N and P is implicit in S�H�. To find the
coexistence point for the given P, one reweights ��H 	 P ,T�
using Eq. �59� until finding a T for which an equal-area bi-
modal histogram is obtained. This construction, illustrated in
Fig. 8�d�, only requires the knowledge of S�H� data from
simulation. In a second variant of this method �4b�, we look
for a discontinuity in the free-energy derivative; e.g., on the
average density vs T �along an isobar�. Using Eqs. �49� and
�59�, we can get ���NPT at fixed N, P, and T from ���NPT

=
H��H���H 	 P ,T�dH. A plot of ���NPT vs T is illustrated in
Fig. 8�e�. It requires data of S�H� and ��H� from simulation.
Note that no actual discontinuity in ���NPT is seen at a par-
ticular T �Tsat�, but rather a sharp drop. A third variant of this
method �4c� involves monitoring the divergence of a second-
order derivative of G; e.g., in the heat capacity found from

FIG. 7. Two representation of three isobars for the LJ fluid �N
=250� obtained from ME�H 	 P� runs �lines� wherein for each pres-
sure the simulations spanned 35 values of H �from −1000 to 700�.
MHR extrapolations from the P=0.06 ME are shown by circles.
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Cp =
1

kT2 ��H2�NPT − �H�NPT
2 � , �60�

where each expectation value in Eq. �60� is found from Eq.
�49�. Tcoex is at the point where �Cp�NPT vs T exhibits a sharp
peak. This construction, illustrated in Fig. 8�f�, only requires
knowledge of S�H� simulation data.

All the methods above agree �within error bars� on giving
Tcoex�1.15±0.002 which in turn agrees with accepted re-
sults �60�. Note that in terms of raw simulation data needed
for the determination, methods 2, 4a, and 4c are equivalent
�need S�H� data only�, method 1 uses the most readily acces-
sible data �T�H� only�, and methods 3 and 4b require more
data �S�H� and either T�H� or ��H�, respectively�. Unlike
methods that obtain ��U ,V�, none of the methods listed here
allows estimation of coexistence data at pressures other than

the one used in the ME�H 	 P� runs; for example, one could
apply Maxwell’s construction �method 1� to the isobars of
Fig. 7�b� to obtain Tcoex for P=0.04 and P=0.1. It is noted
that methods 1 and 3 were used in Ref. �26� to estimate
vapor-liquid and solid-liquid coexistence in pure and binary
systems.

VII. CONCLUSIONS

We have presented the common statistical mechanical ba-
sis for the simulation of the density of states in an arbitrary
ensemble. Building on a robust notation system previously
used to describe AEs, we have given a unified formulation of
the partition function of both AEs and IEs and presented
general formulas that encapsulate different methods involved
in obtaining the density of states �ex from simulations of

FIG. 8. �Color online� Illustration of different approaches to estimate coexistence conditions from ME�H 	 P� runs. Data are for the LJ
fluid with N=250 and P=0.06. In �a�, �b�, and �c� T refers to the temperature in the NPH ensemble runs; i.e., T= �T�NPH, while in �d�, �e�,
and �f� T refers to an input temperature used to evaluate the system properties �like p�H�, �, and Cp� at NPT conditions.
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AEs and IEs. Once �ex is obtained, whether it was from
IE or AE runs, we showed that one can reweight �ex
via Eq. �11� to obtain probability densities and other pro-
perties for the suitable ensemble. For example one could
go from NVT �multi�ensemble data→�ex�U 	N ,V�→NVE
ensemble data, or vice versa; i.e., from NVE �multi�ensemble
data→�ex�U 	N ,V�→NVT ensemble data.

Using the Lennard-Jones system as a testbed, we have
applied and compared the calculation of � based on MHR �a
visited-states method� and a TM scheme �a transition prob-
ability method�. We found that the latter generates results
with less statistical noise than the former, an advantage that
has been associated with TM methods before and is expected
to hold for more complex systems. We have also shown that
by a suitable generalization of the acceptance-ratio method
one arrives at a simple formula �Eq. �32�� that allows the
information on microstate transitions from different simula-
tion points to be simply added to global counters. In this
way, the TM route to � is not only more accurate than the
MHR route but it provides a convenient bookkeeping
scheme to consolidate all the statistical data needed to get �.

Unlike multiple NPT runs �for varying T�, the use of mul-
tiple NPH runs �for varying H� allows one to bridge two
coexistence phases for any P. This leads to the collection of
a more complete � function for the reweighting of data over
a broad range of T and P; in particular, to obtain vapor-liquid
coexistence data over a wide pressure range. Finally, we il-
lustrated the use of different approaches to pinpoint vapor-
liquid coexistence in the LJ fluid from the information of
multiple NPH runs at constant pressure. Such methods are
not confined to the NPH ensemble nor to pure components
and could be especially valuable in cases where insertion or
deletion of particles is troublesome �e.g., for large or cyclic
molecules�.

It is expected that the IE↔�ex↔AE connection will help
identify instances where one can harness the strengths of AIs
and AEs. Generating S�E ,V� rather than S�U ,V�, for ex-
ample, may be advantageous in some cases. While we fo-
cused on mapping S�U ,V� and S�E ,V�, similar approaches
can be used to map S�U ,N� and S�E ,N�. For convenience,
we have employed the simplest possible systems to validate
the advocated methods. Some algorithmic refinements may
be needed to simulate systems with more components or
with macrostates defined by structure-dependent order pa-
rameters. For example, within the framework of REX and
Bennett’s acceptance-ratio methods, data from virtual swap
moves could be used to optimize the estimation of the J or �
function as was done in Ref. �63�.
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APPENDIX: IMPLEMENTATION OF EQ. (32)
FOR A 2D DOMAIN

The determination of S differences from Eq. �32� is an
overdetermined problem because for any macrostates I and

J, SJ−SI can be found not only from the direct transitions
between I and J but also from the results of other jumps; i.e.,
via any path that starts at I and ends at J in more than 1 step.
The solution to the problem of finding “optimal” S differ-
ences has been described before for cases when a “mac-
rostate” is defined by the values of a single macrovariable
�20,51,54�. It involves the minimization of the total variance
of the estimation of S differences via a least-squares analysis.
In principle, the same procedure can be used when each mac-
rostate is defined by two or more macrovariables but the size
of the arrays can become very large and cumbersome to
handle. We describe here an alternative procedure for a case
with two macrovariables that takes advantage of the fact that
for one of the macrovariables, denoted here “property 1,”
transitions can at most take the system between macrostates
having neighboring values of such a property. Property 1
could be for instance V or any other property �like N� whose
values �and transition between them� can be directly speci-
fied. On the other hand, “property 2” is a macrovariable like
U for which transition end points cannot be directly specified
�due to its coupling with the system configuration�.

Every macrostate can then be specified by two indexes so

that the terms Ĉ and n in Eq. �32� are denoted Ĉ�i ,�i , j ,k�
and n�i ,�i , j� where the index i gives the current state of
property 1, and �i gives its change as a result of by the
proposed transition; �i= ±1 if a change in property 1 is
proposed and �i=0 otherwise. The indices j and k denote
the current and new values of property 2, respectively.
The entropy change associated with any transition �i , j�
→ �i+�i ,k� is therefore denoted as S�i+�i ,k�−S�i , j�. In-
stead of solving for all the optimal S values at once, we
adopted the following two-step process.

�1� Find first the optimal S�i ,k�−S�i , j� values, i.e., for
every “slice” of macrophase space with fixed value of prop-
erty 1. For each value of i �and with �i=0�, this involves the
solution of a 1D problem for the �i , j�→ �i ,k� transitions
which is identical to previous applications of the optimiza-
tion method and to the one we used to get S in Fig. 1 �where
V was fixed and only transitions between U macrostates were
considered�. In the present case Eq. �32� takes the form

S�i,k� − S�i, j� = ln� Ĉ�i,0, j,k�/n�i,0, j�

Ĉ�i,0,k, j�/n�i,0,k�
� . �A1�

The redundancy in the information on �i , j�→ �i ,k� transi-
tions was used to estimate optimal S*�i ,k�−S*�i , j� values as
reported in Ref. �54� �the asterisks are used to denote optimal
S values found in this step�.

�2� Find the relative shifts �S between successive S slices
found in step 1; i.e.,

�Si+1 = Sopt�i + 1,k� − Sopt�i,k�

− �S*�i + 1,k� − S*�i,k�� " k . �A2�

In other words, �Si+1 is the quantity that we need to add to
Sopt�i ,k� to get the best value for the next slice Sopt�i+1,k�.
Note that the differences �S*�i+1,k�−S*�i ,k�� obtained from
step 1 are arbitrary. Meaningful estimates for �S�i+1,k�
−S�i ,k�� can be obtained from transitions that involved
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changes of property 1 �only� between values i and i+1; these
can be estimated using Eq. �32�:

�Sj,k = S�i + 1,k� − S�i, j�

= ln� Ĉ�i, + 1, j,k�/n�i, + 1, j�

Ĉ�i + 1,− 1,k, j�/n�i + 1,− 1,k�
� . �A3�

Thus estimates for the �S shift can be found from

�Si+1 = �Sj,k − �Sj,k
*

where �Sj,k is from Eq. �A3� and �Sj,k
* =S*�i+1,k�−S*�i , j�.

Since �S must be the same regardless of the values of prop-
erty 2 �i.e., for any j and k values�, we can find the optimal
shift �Si+1

opt by minimizing the total variance given by

�i,tot
2 = �

j,k

��Si+1
opt − ��Sj,k − �Sj,k

* ��2

� j,k
2 �A4�

where

� j,k
2 = 1/Ĉ�i, + 1, j,k� + 1/Ĉ�i + 1,− 1,k, j�

+ 1/n�i, + 1, j� + 1/n�i + 1,− 1,k� . �A5�

Setting d�i,tot
2 /d��Si+1

opt�=0 we find the sought-after solution:

�Si+1
opt = �

j,k

��Sj,k − �Sj,k
* �

� j,k
2 ��

j,k

1

� j,k
2 . �A6�

Once �Si+1
opt is found, one then uses Eq. �A2� to find the op-

timal values for Sopt�i+1,k� for all k values, and going se-
quentially from i=2,3 , . . ., having set Sopt�1,k�=S*�1,k�.
Note that in some respects, this two-step procedure is remi-
niscent of the multiple 1D paths+stitching approach de-
scribed in Sec. VI �regarding Fig. 4�, except that here the ME
run involved 2D transitions so that the information for the
stitching �step 2 here� does not require a separate run. This
two-step process is not restricted to ME runs but can also be
applied to ensemble-weight-independent multicanonical-type
simulations and generalized for more than two macro
variables.
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