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Large positive and negative lateral optical beam shift in prism-waveguide coupling system
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In this paper, the lateral beam shift in a prism-waveguide coupling system at wavelengths ranging from
visible to near infrared is theoretically examined. A simple theoretical formula is derived to analyze the
behavior of the beam shift. We demonstrate that large positive and negative lateral optical beam shifts can be
obtained when guided modes are excited. It is also found that the magnitude of the beam shift is closely related
to the intrinsic and radiative damping. When the intrinsic damping is larger than the radiative damping,
negative lateral beam shift occurs. Numerical calculations confirm the theoretical analysis and show that a
beam shift of the order of millimeters is possible.
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I. INTRODUCTION

Since the Goos-Hänchen �GH� shift was first demon-
strated experimentally by Goos and Hänchen in 1947 �1�, it
has been the subject of many theoretical and experimental
investigations �2–14�. It refers to the lateral shift of a totally
reflected beam from the position predicted by geometrical
optics. Artmann explained the effect by expanding the inci-
dent beam into its plane wave components, each with a
slightly different transverse wave vector. Then each plane
wave component undergoes a slightly different phase change
after total internal reflection so that the sum of all the re-
flected plane waves, which forms the reflected beam, results
in a lateral shift of the intensity peak �2�.

At a single dielectric interface, the GH shift is of the order
of the wavelength. The smallness of the shift for optical
wavelengths impeded its direct observation in a single reflec-
tion until Bretenaker et al. proposed a new experimental
method based on the sensitivity of laser eigenstates to small
perturbations �3�. Large lateral shifts under different condi-
tions were analyzed in many papers �4–11�. Tamir et al. have
demonstrated the relation between the lateral beam shift and
leaky waves and shown that the beam shift in multilayered
structures could be of the order of the beam width �4�.
Schreier et al. reported large positive beam displacement in a
waveguide structure, which could reach the millimeter scale
at the optical wavelength �6�. Meanwhile, a negative lateral
beam shift was found in the reflection from layered struc-
tures with left-handed metamaterials �7,10�, weakly absorb-
ing media �13,14�, negatively refractive media �15,16�, reso-
nant artificial structures �17�. Recently, Yin et al. reported the
observation of abnormally large positive and negative lateral
optical beam shifts when the surface plasmon resonance
�SPR� is excited. They also found that the optimal metal
thickness for minimal reflection in the SPR configuration
1 + r23r34 exp�2ik3zd3� + r12�r2
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was identified as the critical thickness above which a nega-
tive beam displacement was observed �8�.

In this paper, we examine theoretically the lateral beam
shift in a prism-waveguide coupling system at wavelengths
ranging from visible to near infrared. A simple theoretical
formula has been obtained to analyze the behavior of the
beam shift. Our calculations show that large positive and
negative lateral optical beam shifts can be obtained. It is also
found that the lateral beam shift depends on the intrinsic and
radiative damping. Negative lateral beam shift can be ob-
tained when the intrinsic damping is larger than the radiative
damping. The positive lateral shift corresponds to the reverse
case. Numerical simulations demonstrate the validity of the
theoretical analysis and show that a lateral beam shift of the
order of millimeters is possible.

II. PRINCIPLE

According to the stationary-phase approach, the lateral
beam shift is given by �2�

S = −
1

k

d�

d�
�1�

where k is the wave vector in the medium of incidence, � is
the incident angle, and � is the phase difference between the
reflected and incident waves.

The schematic diagram of the prism-waveguide coupling
system is shown in Fig. 1. The guiding film on the substrate
is separated from the high-index prism by an air gap. As a
polarized laser beam is incident upon the prism base with a
synchronous angle which is always larger than the critical
angle of total reflection, the intensity of the reflected light
decreases sharply due to the energy transfer from the inci-
dent light into the guided mode. The reflection coefficient of
the four-layer optical system can be written as
r1234 =
r12 + r12r23r34 exp�2ik3zd3� + �r23 + r34 exp�2ik3zd3��exp�2ik2zd2�

�2�

3 + r34 exp�2ik3zd3��exp�2ik2zd2�
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with

rij = �
kiz/�i − kjz/� j

kiz/�i + kjz/� j
for TM polarization,

kiz − kjz

kiz + kjz
for TE polarization, � �3�

where rij is the Fresnel reflection coefficient, kiz are the nor-
mal components of the wave vectors in each medium, and
�i=ni

2 are the dielectric constants. The subscripts i , j=1–4
refer to the prism, the air gap, the guiding film, and the
substrate, respectively. Here it is assumed that the guiding
layer is a weakly absorbing medium and the substrate is loss-
less. When guided modes are excited, the electromagnetic
fields in the air gap and the substrate are evanescent, that is,
k2z and k4z are purely imaginary. In order to calculate the
lateral beam shift, both the numerator and denominator in
Eq. �2� are multiplied by the complex conjugate of the de-
nominator. Then the phase difference � can be defined by

tan � =
Im�ND*�
Re�ND*�

�4�

where N and D* represent the numerator and the complex
conjugate of the denominator in Eq. �2�. From Eqs. �1�–�4�,
the lateral shift of the reflected beam can be obtained.

Under the conditions �exp�2ik2zd2���1, the reflection co-
efficient of Eq. �2� can be approximated by a Lorentzian-type
relation around the resonance angle of a guided mode and
may be cast in the form �18�

r1234 = r12
kx − �Re��0� + Re���rad�� − i�Im��0� − Im���rad��
kx − �Re��0� + Re���rad�� − i�Im��0� + Im���rad��

�5�

where kx is the parallel component of the wave vector, and
�0 is the eigenpropagation constant of a guided mode for the
three-layer waveguide in which the thickness of the second

medium for the proposed configuration is semi-infinite.

as �see the Appendix�
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��rad, which arises from the presence of the coupling prism,
represents the difference between the eigenpropagation con-
stants of the three-layer waveguide and the prism-waveguide
coupling system. It is approximately given by �18�

��rad = �k3z
0 r12�r23

0 + r34
0 exp�2ik3z

0 d3��exp�2ik2zd2�/2�0	

� 
 �2�3�k2z
0 2 − k3z

0 2�
k2z

0 �k2z
0 2�3

2 − k3z
0 2�2

2�

+
�3�4�k3z

0 2 − k4z
0 2�

k4z
0 �k3z

0 2�4
2 − k4z

0 2�3
2�

− id3�−1

�6�

for TM modes and

��rad =
k3z

0 r12�r23
0 + r34

0 exp�2ik3z
0 d3��exp�2ik2zd2�

2�0
 1

k2z
0 +

1

k4z
0 − id3� �7�

for TE modes, where the superscript 0 denotes the function’s
value at kx=�0. The imaginary parts of �0 and ��rad are
called the intrinsic and radiative dampings, respectively. The
former results from Im��3� and represents absorption loss of
the guided wave due to the materials. The latter represents
the leakage loss of the guided mode back into the prism and
is inversely proportional to the exponential function of d2.
Calculation shows these two dampings can be roughly ap-
proximated by �19�

Im��0� � c1n3i/d3 �8�

and

Im���rad� �
c2 exp�2ik2zd2�

Re��0�d3
, �9�

where c1 ,c2 are constants, and n3i is the imaginary part of the
refractive index of the guiding layer.

From Eq. �5�, the reflectivity of the multilayer system can

be written as �18�
R = �r12�2
1 −
4 Im��0�Im���rad�

�kx − �Re��0� + Re���rad��	2 + �Im��0� + Im���rad��2� . �10�
When the phase-matching condition kx=Re��0�+Re���rad�
is satisfied, the reflectivity reaches the minimal value

Rmin = �r12�2
1 −
4 Im��0�Im���rad�

�Im��0� + Im���rad��2� �11�

and the lateral beam shift at the resonance can be simplified
S = −
2 Im���rad�

Im��0�2 − Im���rad�2 cos �r �12�

where �r is the incident angle under the phase-matching
condition. Equation �11� shows that the minimal reflectivity
of the system becomes zero when the intrinsic damping is
equal to the radiative damping, that is to say,

Im��0� = Im���rad� . �13�

From Eq. �12�, it is clear that the sign of the lateral beam
shift is determined by the intrinsic and radiative dampings.
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When the intrinsic damping is larger than the radiative
damping, a negative lateral beam shift can be obtained. The
positive lateral shift corresponds to the reverse case.

III. RESULT AND DISCUSSION

From Eqs. �1�–�4�, the calculated dependence of the lat-
eral beam shift on incident angle with various thickness of
the air gap d2 is shown in Fig. 2. The incident light is as-
sumed to be a TM-polarized He-Ne laser at the wavelength
of 632.8 nm. The parameters are taken as follows: a high-
index prism �ZF7, �1=3.23�, air ��2=1.0�, a polymer layer
��3=2.8+0.001i�, glass substrate ��4=2.25�, and d3

=1.0 �m. Without loss of any generality, the TM1 mode is
employed as an example. The reflectivity and phase differ-
ence � as functions of incident angle with various thickness
of the air gap d2 are plotted in Figs. 3�a� and 3�b�. With the
parameter set above, �exp�2ik2zd2��
0.068, which satisfy the

FIG. 1. Schematic diagram of prism-waveguide coupling sys-
tem: �1� the prism, �2� the air gap, �3� the guiding film, �4� the
substrate. �1=3.23, �2=1.0, �3=2.8+0.001i, �4=2.25.

FIG. 2. Calculated dependence of the lateral beam shift on in-
cident angle with various thicknesses of the air gap, d2. The dielec-
tric constants are the same as shown in Fig. 1. d3=1.0 �m. The
incident beam is assumed to be a TM-polarized He-Ne laser at

632.8 nm.
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requirement of the derivation of Eq. �5�, and the calculated
optimal thickness of the air gap for zero reflection is 110 nm.
As discussed above, zero reflection means the intrinsic
damping is equal to the radiative damping.

Figure 2 shows that the lateral shift S is greatly enhanced
owing to the resonance of guided mode. It is shown in Fig. 3
that around the resonance angle of the guided mode, the
phase difference experiences a distinct sharp variation. As a
result, Artmann’s formula Eq. �1� leads to a large lateral
beam shift, which can be of the order of millimeter. Figure 3
also shows that the phase difference exhibits different fea-
tures for different thickness of air gap. The behavior of the
lateral shift with the variation of d2 can be easily explained
by use of the intrinsic and radiative dampings in Eq. �12�. As
mentioned above, the intrinsic damping is independent of the
thickness of the air gap d2 and the radiative damping is in-
versely proportional to the exponential function of d2. When
d2	110 nm, which means the radiative damping is larger
than the intrinsic damping, the phase difference is a mono-
tonically decreasing function of incident angle and the posi-
tive lateral beam shift can be obtained. As the thickness of
the air gap approaches the optimal value, the lateral shift
becomes larger and larger and would approach to an approxi-
mated 
 function near the optimal thickness 110 nm. In this
case, the reflectivity becomes zero and the radiative damping
equals the intrinsic damping. Thus the phase difference �
suffers an abrupt change and the shift S is infinity. However,
� has no physical meaning in this case �9,11�. When the

FIG. 3. Calculated reflectivity and phase difference as functions
of incident angle with various thickness of the air gap, d2. The solid
lines are phase curves, the dashed lines correspond to reflectivity
curves. The numbers in the panels represent different thickness of
the air gap: d2= �1� 60; �2� 80; �3� 100; �4� 110; �5� 130; �6�

160 nm.
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thickness d2 exceeds the optimal value, which means the
radiative damping is smaller than the intrinsic damping, large
negative shift occurs.

Figure 4 shows the calculated lateral beam shift as a func-
tion of incident angle with various Im��3�. d2 is assumed to
be 110 nm. Other parameters are the same as in Fig. 2. The
optimal value of Im��3� of zero reflection is about 0.001.
According to Eq. �8�, Im��3� is directly proportional to the
intrinsic damping. Calculation shows the variation of the ra-
diative damping with Im��3� is so small that Im���rad� can
be nearly regarded as a constant. From Fig. 4, it is clear that,
above the optimal value of Im��3� of zero reflection, which
means Im��0�� Im���rad�, negative beam shifts occurs.
Consequently, both the results in Figs. 2 and 4 are in good
agreement with Eq. �12�. In addition, we examined the lat-
eral beam shift for TE polarization �not shown here� and the
results are fundamentally same as those for TM polarization.

In order to demonstrate the validity of the above analysis,
numerical calculations have been performed. Considering an
incident beam of Gaussian shape, �i�x ,z=0�=exp�−x2 /2wx

2

+ ikx0x�, which can be represented by the Fourier integral

�i�x,z = 0� =
1

�2

� A�kx�exp�ikxx�dkx �14�

where wx=w0 sec �0, w0 is the beam width at the waist, and
A�kx�=wx exp�−�wx

2 /2��kx−kx0�2� is the Fourier spectrum of
the incident beam, the field of the reflected beam is given by

�r�x,z = 0� =
1

�2

� r1234�kx�A�kx�exp�ikxx�dkx. �15�

The integration above is extended over the interval
�−kp ,kp� and kp is the wave vector in the prism. The calcu-
lated beam shift can be obtained by finding the location
where ��r�z=0 is maximal �11,12�.

As an example, Fig. 5 shows the numerical calculation
results of curve 1 in Fig. 2, i.e., d2=100 nm. The incident
beam width is chosen to be w0=1580�
1 mm and w0
=790�
0.5 mm. For comparison, both the numerical and
theoretical results are shown in Fig. 5. The peaks of the
numerical shifts are about 539 �m for w0=1580� and

FIG. 4. The calculated lateral beam shift as a function of inci-
dent angle with various Im��3�. d2=110 nm. Other parameters are
the same as in Fig. 2.
407 �m for w0=790�, and the peak of the theoretical shift is
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about 668 �m. As indicated by Shadrivov et al. �10�, Eq. �1�
is accurate if the phase difference � is a linear function of the
incident angle across the spectral width of the beam, i.e., the
incident beam is a wide beam. If the incident beam is narrow,
the reflected beam will be distorted, which results in a dis-
crepancy between the theoretical and numerical results. The
narrower the incident beam is, the larger the discrepancy is
�9,11�. Because the absorption loss of the guiding layer is
very weak, the reflection resonance dip of the TM1 mode is
narrow �its full width at half maximum is only about 0.085°�,
which requires the incident beam to be sufficiently wide to
keep the profile of the reflected beam almost undistorted.
Calculation results show that when w0 is smaller than
0.2 mm, the reflected beam is seriously distorted and cannot
be described in terms of a shifted beam.

We also numerically calculated the lateral beam shift un-
der Gaussian beam illumination with various d2. Other pa-
rameters are the same as in Fig. 2. The beam width is chosen
to be w0=1580�. It is found that when 108�d2�111 nm,
which means d2 is near the optimal thickness of zero reflec-
tion, the reflected beam is very weak and its profile is dis-
torted so severely that the beam shift concept loses its physi-
cal meaning �9–11�. When d2 is equal to 107 and 112 nm,
the maximum reachable shifts are 920 and −723 �m, respec-
tively. It shows that lateral beam shifts of the order of a
millimeter are possible and confirms the conclusions drawn
above by the stationary-phase method.

IV. CONCLUSION

In conclusion, the lateral beam shift in a prism-waveguide
coupling system is examined. We have shown that large posi-
tive and negative lateral optical beam shifts can be obtained
when guided modes are excited. It is also found that the
lateral beam shift depends on the intrinsic and radiative
dampings of the system. When the intrinsic damping is larger
than the radiative damping, negative lateral beam shift oc-
curs. A positive lateral shift occurs in the reverse case. It
should be pointed out that the conclusion holds not only for
guided modes in an air gap prism coupler, but also for SPR

FIG. 5. Dependence of the lateral beam shift on the incident
angle. d2=100 nm. Other parameters are the same as in Fig. 2. The
theoretical result is shown by the solid curve; the numerical results
are shown by solid squares �for w0=1580�� and open circles �for
w0=790��.
�8� and guided modes in other prism-waveguide coupling
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systems, for example, where the second medium is a metal
layer. Numerical simulations confirm the theoretical analysis
and show that a lateral beam shift of the order of a millimeter
is possible. Because the prism-waveguide coupling technique
is widely used, the predicted effects may have potential ap-
plications in the detection of surface irregularities, rough-
ness, or variation of material absorption owing to its high
sensitivity to the thickness of the second medium and ab-
sorption loss of the waveguide.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under Grants No. 60237010 and No.
60408010.

APPENDIX

In order to calculate the lateral beam shift, Eq. �5� can be
rewritten as

r1234 = r12
W2 + �Im��0�2 − Im���rad�2� + 2iW Im���rad�

W2 + �Im��0� + Im���rad��2

�A1�

with

W = kx − �Re��0� + Re���rad�� .

Equation �A1� shows that the phase difference � of the re-
flection coefficient r1234 is composed of two terms, which are
the phase of r12 and that of the second term. We use �1 and
�2 to denote them. Therefore the lateral beam shift is given
by

S = −
1

k0n1

d�

d�
= −

1

k0n1

d�1

d�
+

d�2

d�
� �A2�

with
�9� C. W. Hsue and T. Tamir, J. Opt. Soc. Am. A 2, 978 �1985�.
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�2 = arctan
 2W Im���rad�
W2 + �Im��0�2 − Im���rad�2�� �A3�

where n1 is the refractive index of the prism. Calculations
show that d�1 /d��d�2 /d�. Therefore d�1 /d� can be ig-
nored. After some calculations, we obtain

d�2

dkx
= 
2 Im���rad��Im��0�2 − Im���rad�2 − W2�

dW

dkx

− 4W Im��0�Im���rad�
d�Im��0��

dkx
+ 2W�Im��0�2

+ Im���rad�2 + W2�
d�Im���rad��

dkx
���Im��0�2

− Im���rad�2 + W2�2 + 4W2 Im���rad�2	−1. �A4�

When the phase-matching condition is satisfied, that is, W
=0, the reflectivity reaches the minimal value and Eq. �A4�
may be cast in the form

d�2

dkx
=

2 Im���rad�
�Im��0�2 − Im���rad�2�

dW

dkx
. �A5�

It is noted that �0 is the eigenpropagation constant of a
guided mode and ��rad is the difference between the eigen-
propagation constants of the three-layer waveguide and the
prism-waveguide coupling system. Both of them are inde-
pendent of the parallel component of the wave vector kx,
which means

dW

dkx
= 1. �A6�

Substituting Eqs. �A5� and �A6� into Eq. �A2�, we get

S = −
1

k0n1

d�2

dkx

dkx

d�
= −

2 Im���rad�
Im��0�2 − Im���rad�2 cos �r

�A7�

where �r is the incident angle under the phase-matching con-
dition.
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