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Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state
double-� system
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We investigate the simultaneous formation and propagation of coupled ultraslow optical soliton pairs in a
cold, lifetime-broadened three-state double-� atomic system. Starting from the equations of motion of atomic
response and two-mode probe-control electromagnetic fields, we derive coupled nonlinear Schrödinger equa-
tions that govern the nonlinear evolution of the envelopes of the probe fields in this four-wave mixing scheme
by means of the standard method of multiple scales. We demonstrate that for weak probe fields and with
suitable operation conditions, a pair of coupled optical solitons moving with remarkably slow propagating
velocity can be established in such a highly resonant atomic medium. The key elements to such a shape
preserving, well matched yet interacting soliton pair is the balance between dispersion effect and self- and
cross-phase modulation effects of the system.
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I. INTRODUCTION

Resonant interaction between electromagnetic radiation
and multilevel atomic media has been the center of many
recent studies. One of the important subjects in this field is
how to achieve loss-free and distortion-free propagation of
optical pulses in an optical thick medium. In the past de-
cades, significant progress has been made in this research
direction, including self-induced transparency in two-level
atoms �1�, simultons �simultaneous different-wavelength op-
tical solitons�, and counterintuitive pulse sequences in three-
and multilevel systems �2–7�. In all these works, the optical
fields involved are always intense enough that in general the
optical absorption and pulse distortion can be neglected.
When the fields are weak, however, strong one-photon ab-
sorption often significantly attenuates signal field, leading to
weak and distorted optical signal waves.

In recent years, the technique of electromagnetically in-
duced transparency �EIT� �8–11� has attracted a great deal of
attention mainly because it can render an otherwise opaque
medium transparent to a signal field even when the field is
tuned on to a very strong one-photon transition. It has been
shown that the wave propagation in such a highly resonant
optical medium possesses many striking features �12–16�.
One of these features is the change of dispersion �or index�
property of the medium by a control field that produces the
transparency. Such a significant change of material disper-
sion properties naturally leads to a modification of propagat-
ing velocity of the signal field. This effect is particularly
significant under weak driving conditions where the reduc-
tion of group velocity can be very substantial �17,18�. Such
ultraslow propagation of optical fields may have important
applications in the field of optical telecommunications where
devices such as high fidelity optical buffers, phase shifts,
transmission lines, switches, routers, and wavelength con-
verters �19�, etc., are highly desirable.
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In addition to efficient suppression of absorption and
modification of dispersion properties, the EIT technique can
be used to significantly enhance the Kerr nonlinearities of
optical media. In particular, it has been proposed for achiev-
ing a large nonlinear phase shift with a very weak control
optical field �12,14�. Furthermore, this technique has been
shown to be beneficial to certain nonlinear optical processes
under weak driving conditions, where the ultraslow propaga-
tion �17–20� is a dominant feature.

However, one must notice that the significant modification
of the material dispersion properties inevitably leads to sig-
nificant increase of signal field attenuation and distortion
�21�. This is why most of the recent studies on ultraslow
wave propagation also exhibit substantial signal field loss
and deformation. Thus it is necessary to seek an effective
remedy to reduce such a distortion yet to preserve important
features such as ultraslow propagation. It has been proposed
recently �22–25� to tailor the nonlinear properties of a highly
resonant medium to balance detrimental effects of attenua-
tion and distortion. This proposal leads to a new class of
optical solitons, i.e., ultraslow optical solitons, achievable
using highly resonant optical media under weak driving con-
dition. Such shape preserving optical pulse propagation may
have potential applications in optical information processing
and engineering. It is for this reason that ultraslow optical
solitons deserve to be pursued in both fields of fundamental
research and technological development �22–25�.

In the early study of ultraslow solitons �22�, only one
probe field is used and hence one obtains a single nonlinear
Schrödinger �NLS� equation that admits a single component
soliton under the condition where the dispersion effect can
be balanced by the self-phase modulation �SPM� effect. In
many cases that are of interest to both fundamental physics
and technical applications, however, one often encounters
propagation of multiple fields in a single medium. In these
cases, the interaction of the two or multiple fields via the
atomic medium will lead to coupled field propagation where
both SPM and cross-phase modulation �CPM� effects of the

input fields are of importance. Thus it is necessary to inves-
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tigate the effects of both SPM and CPM on ultraslow propa-
gation. It is this topic that will be addressed in the present
study. We shall consider simultaneous formation and propa-
gation of two coupled ultraslow optical solitons in a cold,
lifetime-broadened simple three-level double-� atomic sys-
tem. This scheme is simple and requires fewer resources; one
laser with a few acousto-optical modulators is sufficient to
generate all fields needed yet preserve the required phase
relations. It has been shown recently �26� that such a simple
scheme permits, under suitable conditions and by neglecting
higher nonlinear contributions, two independent input fields
to evolve into a pair of temporally, amplitude, and group-
velocity �TAG� matched ultraslow optical pulses. We will
show here that when nonlinear effects are included, the
coupled optical fields can evolve into a pair of ultraslow
optical solitons with remarkable propagating characteristics.
Such optical soliton pairs may have potential applications in
high-fidelity information storage, photon pair entanglement,
and quantum computing �26�. The paper is arranged as fol-
lows. In Sec. II, we describe a three-state two-mode model
and discuss its solution in a linear regime. In Sec. III, we
derive two coupled NLS equations controlling the evolution
of two wave envelopes of optical fields by using a method of
multiple scales. In Sec. IV, we provide the optical soliton
solutions of the coupled NLS equations and discuss their
physical properties. Section V contains a discussion and
summary of our results.

II. THE MODEL AND SOLUTION IN LINEAR REGIME

The lifetime-broadened three-level double-� atomic sys-
tem under consideration is shown in Fig. 1. Technically,
this system is very simple and a single laser with suit-
able acousto-optical modulators is sufficient to generate
all needed fields. In this model, there is a pulsed two-
frequency-mode probe field �with center angular fre-
quencies �pn �n=1,2�� and two-frequency-mode continuous-
wave �cw� control field �with center angular frequencies
�cn �n=1,2�� couple states �1� and �2�, and �2� and �3�, re-

FIG. 1. Lifetime-broadened three-level double-� atomic system
interacting with a two-mode probe field with angular fre-
quencies �pn and a two-mode control field with angular frequencies
�cn �n=1,2�. �1 and �2 are the two one-photon detunings, and �3

is the two-photon detuning. �pn and �cn are half of the Rabi fre-
quencies for the probe and control fields.
spectively. Thus, under suitable driving condition, we have a
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double-� four-wave mixing �FWM� scheme �27�. The probe
field has a pulse length �0 at the entrance of the medium. In
the interaction picture, the material equations of motion for
atomic response and the wave equation for the two-
component probe field are given by �26�

�i
�

�t
+ dpn�A2n + �cnA3 + �pnA1 = 0, �1a�

�i
�

�t
+ d3�A3 + �c1

* A21 + �c2
* A22 = 0, �1b�

i� �

�z
+

1

c

�

�t
��pn +

c

2�pn
� �2

�x2 +
�2

�y2��pn + �12A2nA1
* = 0,

�1c�

where A2n�n=1,2� is the part of state �2�’s amplitude with
the polarization at angular frequency �pn, dpn=�pn+ i�2 with
�pn being the one-photon detuning of the probe laser ��pn�
from �1�→ �2� resonance and �2 being the decay �homoge-
neous relaxation� rate of state �2�. In addition, A3 is the am-
plitude of state �3�, d3=�pn+ i�3 with �3 being the two-
photon detuning between the states �1� and �3� and �3 being
the decay rate of state �3�. Finally, 2�pn �2�cn� is the Rabi
frequency of the probe �control� field corresponding to the
relevant frequency mode, �12=2�N�pn �D12�2 / �	c� with N
and D12 being atomic concentration and the dipole moment
of the transition �1�→ �2�, respectively. The main approxima-
tion when obtaining Eqs. �1a�–�1c� is the neglect of far off-
resonant terms such as cross-mode emission with nonvanish-
ing two-photon detuning. It should always be accurate if the
probe field at �pn is sufficiently weak �26�.

We first consider the linear theory of wave propagation in
the system. When the probe field is very weak, the ground
state is not depleted and hence one has A1	1. Assuming that
�pn, A2n, and A3 are proportional to exp�i�Kz−�t�� and ne-
glecting the transverse diffraction effect, we obtain the linear
dispersion relation

K = K± =
�

c
+

�12

2D

− �D1 + D2� ± ��D1 − D2�2

+ 4��c1�c2�2�1/2� , �2�

where

Dn = ��cn�2 − �� + dpn��� + d3� ,

D = ��c1�2�� + dp2� + ��c2�2�� + dp1�

− �� + dp1��� + dp2��� + d3� .

We see that the system displays two branches of dispersion
curve, K=K±���. With these results we can construct a gen-
eral solution for the linear wave by a Fourier superposition,

�p1�z,t� = �


d��Fp
+ei�+ + Fp

−ei�−� , �3a�

−
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�p2�z,t� =
1

�12�c1�c2
* �

−





d��G+Fp
+ei�+ + G−Fp

−ei�−�

�3b�

with similar expressions for A2n and A3, where �±�K±z−�t
and G±= �K±−� /c�D+�12D2. The expressions for Fp

+ and Fp
−

are given by

Fp
+ =

�12�c1�c2
*

G+ − G−
�̃p2 −

G−

G+ − G−
�̃p1, �4a�

Fp
− =

G+

G+ − G−
�̃p1 −

�12�c1�c2
*

G+ − G−
�̃p2, �4b�

where �̃pn= 1
2�
−



 dt�pn�0, t�ei�t is the Fourier transform of
the probe field at the entrance of the medium. Thus one has
generally electromagnetic excitations with both K+ and K−

dispersion branches, with amplitudes being characterized by
the envelope functions Fp

+ and Fp
−, respectively. However,

note that in some particular cases one can get excitations
from only one dispersion branch. For example, if the bound-

ary condition is chosen such that G+�̃p1=�12�c1�c2
* �̃p2, one

has Fp
�−�=0 and hence only the K+ branch appears; this case

will be discussed in Sec. IV A.
Equation �2� shows that the system displays dispersion,

which will result in a broadening of the input pulse. To dem-
onstrate this, we make the Taylor expansion at the center
frequency of the probe field �i.e., �=0�,

K±��� = K0
± + K1

±� +
1

2
K2

±�2 + ¯ , �5�

where Kj
±= �� jK± /�� j���=0 �j=0,1 ,2 , . . . �. For input Gauss-

ian wave packets �pn�0, t�=�pn�0,0�exp�−t2 /�0
2�, we obtain

the following expression �also a similar expression for
�p2�z , t��:

�p1�z,t� =
�p

+�0,0�
�b1

+ − ib2
+

exp�iK0
+z −

�K1
+z − t�2

�0
2�b1

+ − ib2
+��

+
�p

−�0,0�
�b1

− − ib2
−
exp�iK−

0z −
�K1

−z − t�2

�0
2�b1

− − ib2
−�� ,

where b1
±=1+2z Im�K2

±� /�0
2, b2

±=−2z Re�K2
±� /�0

2, �p
+�0,0�

= ��p2�0,0�−G−�0��p1�0,0�� / �G+�0�−G−�0��, and �p
−�0,0�

= �G+�0��p1�0,0�−�p2�0,0�� / �G+�0�−G−�0��. Clearly, each
input field will break into two propagation components,
propagating with the different group velocities 1 /Re�K1

+� and
1/Re�K1

+�, respectively. Due to nonvanishing K2
±, the wave

packets will spread and attenuate as the distance z increases,
and will eventually separate from each other.

III. ASYMPTOTIC EXPANSION AND NONLINEAR
ENVELOPE EQUATIONS

In this section, we apply a weak nonlinear perturbation
theory to the three-state double � system and search for the

formation and propagation of shape-preserving probe pulses.
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We note that nonvanishing one- and two-photon detunings
are necessary to introduce group-velocity dispersion and also
induce SPM and CPM effects, which can provide effective
means to balance the detrimental dispersion effect, leading to
stable formation and propagation of solitonlike probe pulses.
To make the nonlinear effect of the system significant, the
intensity of the probe field should be increased to deplete the
population of the ground state �1�. We go beyond the linear
theory by systematically including the depletion of the
ground-state population and the nonadiabatic corrections of
the atomic response. We assume that the dispersion and non-
linearity of the system are not strong so that a standard
method of multiple scales �28� can be used to derive the
nonlinearly coupled envelope equations for both dispersion
branches. For this purpose, we make the following
asymptotic expansion �n=1,2�:

A1 = 1 + 
2a1
�2� + 
3a1

�3� + ¯ , �6a�

A2n = 
a2n
�1� + 
2a2n

�2� + 
3a2n
�3� + ¯ , �6b�

A3 = 
a3
�1� + 
2a3

�2� + 
3a3
�3� + ¯ , �6c�

�pn = 
�pn
�1� + 
2�pn

�2� + 
3�pn
�3� + ¯ , �6d�

where 
 is a small parameter characterizing the small popu-
lation depletion in the ground state. To obtain a divergence-
free expansion, we assume all quantities on the right-hand
side �rhs� of Eqs. �6a�–�6d� are the functions of the multi-
scale variables zl=
lz�l=0,1 ,2�, tl=
lt�l=0,1�, x1=
x, and
y1=
y. Then Eqs. �1a�–�1c� are converted into

�i
�

�t0
+ dpn�a2n

�j� + �cna3
�j� + �pn

�j� = Mn
�j�, �7a�

�i
�

�t0
+ d3�a3

�j� + �c1
* a21

�j� + �c2
* a22

�j� = N�j�, �7b�

i� �

�z0
+

1

c

�

�t0
��pn

�j� + �12a2n
�j� = Pn

�j�, �7c�

together with the condition a1
�2�+ �a1

�2��*=−�a21
�1�+a22

�1���a21
�1�

+a22
�1��*−a3

�1��a3
�1��* �higher-order a1

�j� �j�3� are not needed
and thus neglected�. The explicit expressions of Mn

�j�, N�j�,
and Pn

�j� �n=1,2� are omitted to save space.
Equations �7a�–�7c� can be solved order by order. The

case for j=1 is just the linear problem solved in the preced-
ing section and hence one can obtain the linear dispersion
relation, given by Eq. �2�, and the solution for a2n

�1�, a3
�1�, and

�pn
�1� in a general form. However, here we are interested in

the case in which only one dispersion branch is excited. Thus
we take

�p1
�1� = Fp

+ei�+ + Fp
−ei�−, �8�

where �±=K±z0−�t0=K±z−�t. The solutions for �p2
�1�, a2n

�1�,
and a3

�1� are given by

�p2
�1� =

1

� � �* �G+Fp
+ei�+ + G−Fp

−ei�−� , �9a�

12 c1 c2
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a21
�1� =

1

�12
��K+ −

�

c
�Fp

+ei�+ + �K− −
�

c
�Fp

−ei�−� , �9b�

a22
�1� =

1

�12
2 �c1�c2

* ��K+ −
�

c
�G+Fp

+ei�+ + �K− −
�

c
�G−Fp

−ei�−� ,

�9c�

a3
�1� = H+Fp

+ei�+ + H−Fp
−ei�−, �9d�

where H±=−�1+ ��+d3��K±−� /c� /�12� /�c1, and Fp
± are yet

to be determined envelope functions depending on the slow
variables zj and tj.

In the next order �j=2�, a solvability condition for the
second-order solution of Eq. �7� requires

i� �

�z1
+

1

Vg
±

�

�t1
�Fp

± = 0, �10�

where Vg
±=K1

± is the group velocity of the wave envelope Fp
±.

In the order j=3, the solvability conditions for the third-
order solution of Eq. �7� yield to the closed equations,

i
�Fp

+

�z2
−

1

2
K2

+�2Fp
+

�t1
2 + �+� �2

�x1
2 +

�2

�y1
2�Fp

+

− ��11�Fp
+�2 + �12�Fp

−�2�Fp
+ = 0, �11a�

i
�Fp

−

�z2
−

1

2
K2

−�2Fp
−

�t1
2 + �−� �2

�x1
2 +

�2

�y1
2�Fp

−

− ��21�Fp
+�2 + �22�Fp

−�2�Fp
− = 0, �11b�

where the explicit expressions of the coefficients have been
given in Appendix A. Combining Eqs. �10� and �11� and
returning to original variables, we obtain

i
�U+

�z
+ i�

�U+

��
−

1

2
K2

+�2U+

��2 + �+� �2

�x2 +
�2

�y2�U+

− ��11�U+�2 + �12�U−�2�U+ = 0, �12a�

i
�U−

�z
− i�

�U−

��
−

1

2
K2

−�2U−

��2 + �−� �2

�x2 +
�2

�y2�U−

− ��21�U+�2 + �22�U−�2�U− = 0, �12b�

where U±=
Fp
±, �= t−z /Vg, and �= �1/Vg

+−1/Vg
−� /2 with

Vg=2Vg
+Vg

− / �Vg
++Vg

−�. Equations �12a� and �12b� are the key
coupled nonlinear equations controlling the propagation of
the two-frequency-mode probe field. In the following sec-
tions, we will discuss various cases where stable formation
and propagation of an optical soliton pair can be achieved.

IV. COUPLED OPTICAL SOLITON SOLUTIONS

Equations �12a� and �12b� are two coupled NLS equa-
tions, with parameters �, K2

±, �±, �n,n, �n,3−n �n=1,2� char-
acterizing, respectively, the group-velocity mismatch, disper-
sion, diffraction, SPM, and CPM effects of the system.

Although there is a large body of research on coupled soli-
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tons �also called vector solitons �29�� in the fields of optical
fibers �30�, crystal lattices �31�, and others �32–34�, as we
shall show below, the coupled optical solitons predicted here
are characteristically very different from those obtained in
solid media under very different excitation conditions. In-
deed, in contrast to the conventional optical soliton genera-
tion techniques, which can be classified as far-off resonance
techniques, the scheme described in the present study is
qualified as a near-resonance technique. Obviously, the latter
entertains the possibility of tunability and dynamic switch-
ing, which is inherently lack in the conventional methods.

A. Single-dispersion-branch excitation

We first consider a single-dispersion-branch excitation,
which is possible in two cases. One is that when the input
condition of the two-frequency-mode probe field is chosen

such that G+�̃p1=�12�c1�c2
* �̃p2. In this case, one has Fp

�−�

=0 �see Eq. �4a� in Sec. II� and hence only a K+ branch
exists. Another case corresponds to small values of �3 and
�3. In this situation, a detailed analysis reveals readily that
the K− branch has a larger imaginary part than the K+ branch,
thus after a short propagation distance the K−-branch compo-
nent has decayed away. Note that small detuning �3 is easy
to realize in experiment, and in an ultracold atomic gas �such
as ultracold 87Rb vapor� where the Doppler broadening is
negligible and the homogeneous relaxation rate of the energy
state �3� can be made very small, e.g., �3=104 s−1 or less.
Thus a single-dispersion-branch excitation is realistic in our
three-state double-� system.

In order to make an estimation for the relative importance
of various terms in the equation for U+, we write it in dimen-
sionless form,

i
�u+

�s
− dD

�2u+

��2 − dNL�u+�2u+ + dF� �2u+

�x�2 +
�2u+

�y�2� = 0,

�13�

where we have scaled the variables by using �= �t
−z /Vg

+� /�0, s=z /LD, �x� ,y��= �x ,y� /R�, and u+=U+ /U0.
Here LD=2�0

2 / �K2
+� is the dispersion length and R� is the

beam radius of the probe field pulse. In order to favor the
formation of a soliton, we have assumed LD is equal to LNL
�the nonlinear length�, i.e., the balance of the dispersion and
nonlinearity of the system, where LNL=1/ �U0

2 ��11 � � is the
nonlinear length, with 2U0=�0

−1�2 �K2
+ � / ��11 � �1/2 being the

typical Rabi frequency of the probe field. The dimension-
less coefficients of Eq. �13�, are given by dD=sgn�K2

+�,
dNL=sgn��11�, and dF=LD /LF, with LF=R�

2 /�+ �diffraction
length�. Note that when getting the dimensionless Eq. �13�,
we have assumed that the imaginary parts of its coefficients
are much less than the relevant real parts, thus they can be
neglected. The rationality and reality of this assumption will
be discussed below.

If dF�1, the diffraction term can be neglected. Then Eq.
�13� is reduced to the well known NLS equation that is com-
pletely integrable and allows bright and dark soliton solu-
tions, depending on the sign of dDdNL. When dDdNL�0, one
has the single-soliton solution u+=�2 sech � exp�−is�, or in
-4
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terms of probe field �near the center frequency, i.e., �=0�,

�p1�z,t� =
1

�0
� �K2

+�
��11�

�1/2

sech� 1

�0
�t −

z

Vg
+��

�exp�iK+�0�z − i
z

LD
� , �14a�

�p2�z,t� =
G+�0�

�12�c1�c2
*

1

�0
� �K2

+�
��11�

�1/2

sech� 1

�0
�t −

z

Vg
+��

�exp�iK+�0�z − i
z

LD
� =

G+�0�
�12�c1�c2

* �p1�z,t� ,

�14b�

when returning to original variables. Equation �14� repre-
sents typical bright solitons traveling with common propa-
gating velocity Vg

+.
Before getting into specific parameters, let us consider a

few particular cases.
�i� The limit of single-frequency-mode probe field.

If we remove the second control field at �c2, the system is
reduced to a single-frequency-mode probe field limit. In this
case, one has no internally generated field �p2 and from the
discussion given after Eq. �3a� one has G+=0 and hence only
the solution given by Eq. �14a�, which describes a single
soliton in a three-state single-� system, as has been studied
before �24�.

�ii� The case of �3=0 and �pn=0 (n=1,2). In this
case, it is clear from Eq. �2� and the definition of Dn and D
that under the adiabatic condition used in our derivation, Dn
is largely a real quantity whereas D is purely imaginary �as-
suming �3	0�. It follows that K± are imaginary and the
exponential factors in Eqs. �14� indicate there will be no
soliton formation. This is in accord with the previous find-
ings that the two-photon detuning is necessary to bring out
possible soliton behavior �23,24�.

We now give a set of experimental realistic numeri-
cal parameters for the formation of the solitons given
above. For ultracold 87Rb atomic vapors, we choose
�1�=5S1/2 �F=1,MF=−1�, �2�=5P1/2 �F=2,MF=0�, and
�3�=5S1/2 �F=2,MF=1�. Since the lifetime of the 5P1/2

level is 27.7�10−9 s, we have �2=1.805�10−7 s−1. Tak-
ing D12=2.20�10−18 esu cm and N=1014, we have
�12=2.28�1011 cm s−1. Other parameters are selected as
�3=1.0�104 s−1, �1=1.0�108 s−1, �2=2.0�108 s−1,
�3=1.0�106 s−1, �c1=�c2=1.0�108 s−1, �0=3.0�107 s−1,
�p1��p2=0.8�10−4 cm, and R�=0.1 cm. With the above
parameters one gets K+= �11.49+0.13i� cm−1, K1

+= �1.15
+0.0023i��10−5 cm−1 s, K2

+= �8.83+1.08i��10−14 cm−1 s2,
and �11= �1.15+0.013i��10−15 cm−1 s2. Note that the imagi-
nary parts of the above quantities are much less than the
relevant real parts, thus they can be safely neglected �i.e., the
damping due to the small imaginary parts can be taken as a
perturbation on solitons�. The reason for the small imaginary
parts in these quantities is due to one- and three-photon de-
structive interferences and hence a kind of induced transpar-
ency for the probe field �26�. In terms of these quantities, we

7 −1 +
obtain U0=2.07�10 s , LD=LNL=2.02 cm, L�1�1/ ImK

056606
�linear absorption length�=7.93 cm, and LF=792.4 cm. Since
L�1 and LF are much larger than LD, the damping and dif-
fraction effects can be safely neglected. When the light pulse
propagates to distance z=2.02 cm, the solitons �14� �with
spatial width 0.026 cm� form, and their propagating velocity
is given by Vg

+=2.88�10−6 c. Thus the solitons obtained
have indeed an ultraslow propagating velocity comparing
with the light speed in vacuum.

Using the above parameters, it is easy to show that
G+�0� / ��12�c1�c2

* �=1. We then arrive at

�p1�z,t� = �p2�z,t� . �15�

Thus we have obtained an ultraslowly propagating optical
soliton pair, which is completely matched in amplitude, wave
form, and propagating velocity, i.e., TAG matched nonlinear
pulse pair �35�. Such a completely matched ultraslow optical
soliton pair in a single-species three-state medium may have
important applications in high-fidelity quantum information
storage, photon pair entanglement, and quantum computing
�26�.

We now discuss the formation condition of the ultraslow
optical soliton pair. The flux of energy of the probe field is
given by the Poynting vector integrated over the cross sec-
tion of the sample,

P =� � dS�Ep � Hp� · ez, �16�

where ez is the unit vector in the propagation direction.
To leading order, the field is transverse and one has
Ep= �Ep1+Ep2 ,0 ,0�, then Hp= �0,Hp1+Hp2 ,0� with Hpn

=
0cn��pn�Epn, where n��pn� is the refractive index of
the probe field at frequency �pn. Note that when Epn
= �	 /D0��pnexp�i��pnz /c−�pnt� �+c.c., one obtains the av-
erage flux of energy over the carrier-wave period,

P̄ = P̄maxsech2� 1

�0
�t −

z

Vg
+�� , �17�

where the peak power reads

P̄max = 2
0cS0�n��p1��Ep1�2 + n��p2��Ep2�2�

= 4
0cS0�n��p1� + n��p2�

�� �G+�
�12��c1�c2

��2�� 	

D12
�2 1

�0
2

�K2
+�

��11�
, �18�

where S0 is the cross-section area of the sample. We see
that the peak power is directly proportional to the dis-
persion coefficient �K2

+� and inversely proportional to the
square of the pulse width �0 as well as the self-phase modu-
lation coefficient ��11�. Using the above numerical example
and taking D12=2.1�10−27 cm C and S0=1.0�10−2 cm2,

we obtain �Ep1�max= �Ep2�max=2.07�102 V/m and P̄max
=4.53�10−4 W. Thus, very low field intensity and input
power are required for generating an ultraslow optical soliton
pair using a highly resonant atomic medium. This is drasti-

cally different from the conventional optical soliton genera-
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tion technique using optical fibers where ps or fs laser pulses
are needed to reach very high peak power in order to bring
out the nonlinear effect needed for soliton formation.

B. Two-dispersion-branch excitations

We now consider the case in which both dispersion
branches �i.e., K+ and K− branches� are excitated in the sys-
tem. We show that it is still possible to generate soliton pairs
from each probe wave. That is, it is possible to generate two
simultaneous solitons �simultons �2,36�� that move with the
same propagating velocity. To this end we rewrite Eqs. �12a�
and �12b� in the following dimensionless form:

i
�u+

�s
+ id�

�u+

��
− d1D

�2u+

��2 − d11�u+�2u+ − d12�u−�2u+ = 0,

�19a�

i
�u−

�s
− id�

�u−

��
− d2D

�2u−

��2 − d21�u+�2u− − d22�u−�2u− = 0.

�19b�

Here, s=z /LD, �=� /�0, u±=U± /U0, d1D=K2
+ / �K2

−�, d2D
=sgn�K2

−�, dln=�ln / ��22� �l ,n=1,2�, and d�=sgn���LD /L�,
with LD=2�0

2 / �K2
−� �dispersion length� and L�=�0 / ��� �group-

velocity mismatch length�. Again, in favoring the formation
of solitons, we assume that the imaginary parts of the coef-
ficients in Eq. �19� are small in comparison with their corre-
sponding real parts �see the discussion below�. At the same
time, we also set LD=LNL, where LNL=1/ ���22 �U0

2� is the
nonlinear length, which results in U0=�0

−1��K2
− � / �2 ��22 � ��1/2.

We will also neglect the diffraction effect, which is valid for
a larger beam radius of the probe pulse.

In general, Eq. �19� admits various coupled soliton solu-
tions �31,33,34�, including bright-bright, bright-dark, dark-
bright, and dark-dark soliton pair solutions, as will be seen
below.

�i� Bright-bright solitons. If the parameters
dln �l ,n=1,2� fulfill the conditions d11d22−d12d21�0,
d22d1D−d12d2D�0, and d11d2D−d21d1D�0, or d11d22
−d12d21�0, d22d1D−d12d2D�0, and d11d2D−d21d1D�0, we
have the bright-bright soliton pair solution,

u+ = �2u0sech � exp�i�k1� + �1s�� , �20a�

u− = �2v0sech � exp�i�k2� + �2s�� , �20b�

where u0= ��d22d1D−d12d2D� / �d11d22−d12d21��1/2, v0

= ��d11d2D−d21d1D� / �d11d22−d12d21��1/2, k1=d� / �2d1D�, k2

=−d� / �2d2D�, �1=−d�
2 / �4d1D�−d1D, and �2=−d�

2 / �4d2D�
−d2D.

�ii� Bright-dark solitons. When dln satisfies d11d22
−d12d21�0, d12d2D−d22d1D�0, and d11d2D−d21d1D�0, or
d11d22−d12d21�0, d12d2D−d22d1D�0, and d11d2D−d21d1D
�0, one obtains the bright-dark soliton pair,

+
u = �2u0sech � exp�i�k1� + �1s�� , �21a�
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u− = �2v0tanh � exp�i�k2� + �2s�� , �21b�

with u0= ��d22d1D−d12d2D� / �d11d22−d12d21��1/2, v0

= ��d21d1D−d11d2D� / �d11d22−d12d21��1/2, k1=d� / �2d1D�, k2

=−d� / �2d2D�, �1=−k1d�−d1D�1−k1
2�−d12v0

2, and �2=k2d�

+d2D�2+k2
2�−d21u0

2.
�iii� Dark-bright solitons. If the parameters dln ful-

fill the conditions d11d22−d12d21�0, d12d2D−d12d2D�0, and
d11d2D−d21d1D�0, or d11d22−d12d21�0, d22d1D−d12d2D
�0, and d11d2D−d21d1D�0, we have the dark-bright soliton
pair solution,

u+ = �2u0tanh � exp�i�k1� + �1s�� , �22a�

u− = �2v0sech � exp�i�k2� + �2s�� , �22b�

where u0= ��d12d2D−d22d1D� / �d11d22−d12d21��1/2, v0

= ��d11d2D−d21d1D� / �d11d22−d12d21��1/2, k1=d� / �2d1D�, k2

=−d� / �2d2D�, �1=−k1d�+ �2+k1
2�d1D−d12v0

2, and �2=k2d�

− �1−k2
2�d2D−d21u0

2.
�iv� Dark-dark solitons. One can also get a dark-

dark soliton pair if d11d22−d12d21�0, d12d2D−d22d1D�0,
and d21d1D−d11d2D�0, or d11d22−d12d21�0, d12d2D
−d22d1D�0, and d21d1D−d11d2D�0,

u+ = �2u0tanh � exp�i�k1� + �1s�� , �23a�

u− = �2v0tanh � exp�i�k2� + �2s�� , �23b�

with u0= ��d12d2D−d22d1D� / �d11d22−d12d21��1/2, v0

= ��d21d1D−d11d2D� / �d11d22−d12d21��1/2, k1=d� / �2d1D�, k2

=−d� / �2d2D�, �1=−k1d�+ �2+k1
2�d1D, and �2=k2d�+ �2

+k2
2�d2D.
As has been mentioned before and from the above results,

we see that each probe pulse breaks into two solitons because
of the two dispersion branches �i.e., K+ and K−�. Correspond-
ingly, one has two pairs of TAG matched solitons. In general,
the dark soliton component of the soliton pairs given above
can be replaced by a gray soliton with a different condition
�34�.

It should be pointed out that group velocity matching
�i.e., d�=0� is not a prerequisite of achieving stable soliton
solutions. In practice, however, in order to form a soliton
pair in a finite distance and time, one should choose param-
eters to make the length of significant group-velocity mis-
match be larger than the dispersion and nonlinear lengths so
that there is effective energy transfer between two wave
components. Another key point to make soliton-pair propa-
gation possible is that both absorption lengths of the K+ and
K− branches, given, respectively, by L�1�=1/Im�K+�� and
L�2�=1/Im�K−��, should be larger than the dispersion and
nonlinear lengths.

We now present a practical numerical example to demon-
strate the formation and propagation of soliton pairs, as de-
scribed above. We consider an atomic alkali system where
the decay rates are �1=�2=5.0�107 s−1 and �3=1.0
�104 s−1. We choose the density of the medium, Rabi fre-
quencies of the control fields, and detunings so that �12
=5.0�1011 cm−1 s−1, �c1=�c2=2.0�109 s−1, �1=0.5�2

9 −1 8 −1
=3.0�10 s , and �3=5.0�10 s . The typical pulse
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length will be about �0=1.0�10−8 s−1, and the excitation
wavelengths are �p1��p2=c /�p=0.8�10−4 cm. With these
parameters we obtain K2

+= �8.89+0.16i��10−17 cm−1 s2,
K2

−= �−8.45+0.27i��10−18cm−1 s2, �11= �1.27+0.005i�
�10−17cm−1 s2, �12= �8.63+0.37i��10−18 cm−1 s2, �21

= �−3.20+0.031i��10−17 cm−1 s2, and �22= �−2.17+0.023i�
�10−17 cm−1 s2. With these values we have U0=4.42
�107 s−1, LD=LNL=2.25 cm, L�1=10.1 cm, L�2=8.6 cm,
d11=0.59, d12=0.40, d21=−1.48, d22=−1.0, d1D=10.52, d2D
=−1.0, and d�=9.36. Using these parameters we obtain a
dark-bright soliton-pair solution �22� with u0=71.13 and v0
=86.54. We note that since L�n�LD �n=1,2� in this case, the
damping effect can be safely neglected. When the light pulse
propagates to a distance z=2.25 cm, the soliton pair �with
spatial width 0.14 cm� forms, and their propagating velocity
is given by Vg=4.7�10−4 c. The light intensity for each
probe field at this depth of propagation can be calculated as
follows. For �p1 we get

��p1/V0�2 = exp�− 2d01s�tanh2 � + �v0/u0�2

�exp�− 2d02s�sech2 � + 2�v0/u0�

�exp�− �d01 + d02�s�sech � tanh � cos � ,

�24�

where V0=U0u0, d0n=LD /L�n, �= �k2−k1��+ ��2−�1

+LD /Lga2−LD /Lga1�s. In Fig. 2 we have shown the space-
time evolution of the dimensionless probe field intensity
��p1 /V0�2 for the dark-bright soliton solution versus the di-
mensionless delay time �=� /�0 and propagating distance
s=z /LD using parameters given above. As expected, there is
an internal oscillation due to the interference between the
bright and dark soliton components.

We note that other types of soliton pair solutions
described above can be obtained by choosing different
sets of parameters. For instance, by choosing �1=�2=2.0
�107 s−1, �3=9.0�105 s−1, �1=3.2�109 s−1, �2=2.4
�109 s−1, � =−1.0�108 s−1, and � =3.0�10−9 s−1, with

FIG. 2. �Color online� Evolution of the relative probe field in-
tensity ��p1 /V0�2 �V0=U0u0� in the case of dark-bright soliton so-
lution vs the dimensionless delay time � /�0 and propagating dis-
tance z /LD with the system parameters given in Sec. IV B and
R�=0.05 cm.
3 0
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all other parameters being the same as those given above, we
can get a bright-dark soliton pair solution �21�.

V. DISCUSSION AND SUMMARY

Notice that another type of optical soliton with very low
propagating velocity �i.e., slow-light solitons� in three-state
� systems has been suggested in recent studies �37–39�. Es-
pecially, a slow-light soliton with controllable speed was
constructed first in Ref. �37�. Although the slow-light soli-
tons proposed by these authors possess some similar charac-
teristics of the ultraslow optical solitons, suggested in Refs.
�22–25� and this work, there are many differences between
them. The most important one is that to produce the slow-
light solitons, both strong probe and control fields are re-
quired. However, to produce the ultraslow optical solitons,
one needs only very weak probe fields.

In conclusion, we have investigated the simultaneous for-
mation and propagation of coupled ultraslow optical soliton
pairs in a cold, lifetime-broadened three-state double-�
atomic system. By using the standard method of multiple
scales, we have derived coupled nonlinear Schrödinger equa-
tions that describe the weak nonlinear evolution of two wave
envelopes of probe fields. In these envelope equations, both
SPM and CPM effects and nonadiabatic corrections of
atomic response are included in a systematic way. Such ef-
fects are important for the formation of shape-preserving,
localized optical pulses in the system. We have shown that
multiple coupled optical soliton pairs can be established in a
short propagation distance and under low-level deriving con-
ditions. These TAG-matched optical soliton pairs move with
remarkably slow propagating velocity and have the dynamic
characteristics that are not admitted in the conventional op-
tical fiber based soliton generation schemes. The coupled
ultraslow optical pair formation techniques discussed here
may be applied to other multiwavelength experiments where
significant index modification is a key feature. Because of
their robust nature and ultraslow propagating velocity, the
optical soliton pairs predicted in this study may have poten-
tial applications in modern optical information processing
optical telecommunication engineering.
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APPENDIX A: THE COEFFICIENTS
IN EQS. (11a) and (11a)

The explicit expressions of the coefficients of the Eqs.
�11a� and �11b� are given by

�± =
c 1 � F± +

1 � , �A1a�

2 F± + G± �p1 �p2
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�11 =
1

2D̃+

U+��J0
+�2 + �J1

+�2� , �A1b�

�12 =
1

2D̃+


U+��J0
−�2 + �J1

−�2� + U−�J0
+�J0

−�* + J1
+�J1

−�*�� ,

�A1c�

�21 =
1

2D̃−


V+��J0
+�*J0

− + �J1
+�*J1

−� + V−��J0
+�2 + �J1

+�2�� ,

�A1d�

�22 =
1

2D̃−

V−��J0
−�2 + �J1

−�2� . �A1e�

with

F± = �K± −
�

c
�D + �12D1, �A2a�

±
G± = �K − �/c�D + �12D2, �A2b�

�17� L. V. Hau et al., Nature �London� 397, 594 �1999�.
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J0
± =

1

�12
�K± −

�

c
��1 +

G±

�12�c1�c2
* � , �A2c�

J1
± = −

1

�c1
�1 +

� + d3

�12
�K± −

�

c
�� , �A2d�

D̃±��� = D�1 +
G±

F±
� . �A2e�

U± and V± are defined as

U± = 2D�K± −
�

c
� + �− �12D1G± + �12

2 ��c1�2��c2�2

+ D�K± − �/c�G±�/F+, �A3a�

V± = 2D�K± −
�

c
� + �− �12D1G± + �12

2 ��c1�2��c2�2

+ D�K − �/c�G �/F . �A3b�
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