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Equation of state data and electrical resistivity of warm dense gold were measured in the internal energy
range 8–12 MJ/kg. Experimental results were compared with quantum molecular dynamics simulations. The
theoretical results match well the experimental data, allowing a detailed interpretation of the theoretical ther-
modynamic properties and frequency-dependent conductivities.
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I. INTRODUCTION

There has been a growing interest in the exploration of
atomic properties of strongly coupled partially degenerate
plasmas, also referred to as warm dense matter �WDM�. This
complex thermodynamic regime, encountered in Jovian plan-
ets’ interior, cool dense stars, and in laboratory experiments,
opens a challenging field for both experiments and theoreti-
cal calculations �1�. However, at the present stage, experi-
mental data are scarce and there are a very small number of
ab initio theories that can reproduce thermodynamic data and
transport coefficients of such plasmas in a self-consistent
way �2–5�.

From the theoretical point of view, the calculations are
made using various assumptions about electronic or ionic
structure. These two quantities are difficult to obtain, espe-
cially in the WDM regime where a self-consistent descrip-
tion of the ionic and electronic structure is needed to obtain
an accurate description of the atomic properties. It is espe-
cially true when electron localization and/or details of the
ionic structure can play an important role, particularly in the
vicinity of a metal-insulator transition. Moreover, the
frequency-dependent part of the conductivity remains exces-
sively hard to calculate, especially when the frequency-
dependent conductivity shows no Drude character at low fre-
quencies.

From the experimental point of view, the interest in WDM
studies is mainly motivated by laboratory experiments in-
volving short-pulsed lasers or exploded wire experiments.
Some experiments have been carried out to measure the elec-
trical resistivity �6,7�, the optical properties �8–12�, the ion-
ization and recombination dynamics of transient plasmas
�13�, or the combination of electrical resistivity and equation
of state �EOS� data �14,15� under conditions of thermal equi-
librium and at sufficiently high pressure to be well above the
predicted critical point pressure.

Due to its chemical inertness, large isothermal compress-
ibility, and the large pressure and temperature stability
ranges of its ambient fcc phase, gold has been employed as a
primary EOS for many years �16�. However, noble metals as
gold present a complex electronic structure and provide a
well-known challenge for theoretical modeling. Recent mea-

surements of electrical conductivity of solid density gold
have been reported in the internal energy range
0.2–20 MJ/kg �12�. In this study, collision time and electron
density were inferred using the Drude model �17�.

In this paper, we report on combined electrical resistivity,
pressure, and internal energy variation measurements of a
gold plasma at a density of 0.5 g/cm3. Compared to the ex-
perimental works previously reported, the achieved density
studies a thermodynamic regime particularly interesting be-
cause it maps the transition between the low-density atomic
vapor and the partially ionized plasma. The experiments
were performed in an isochoric plasma closed vessel �EPI�
where a sample goes from the solid state at normal density
and room temperature to a well-known density plasma re-
gime in the internal energy range 8–12 MJ/kg.

The goal of this paper is to show, by a careful comparison
with experimental data, that quantum molecular dynamics
simulations are particularly well suited for describing this
regime and are providing a consistent view of the system in
terms of the EOS and the transport properties, even for a
noble metal which presents a complex electronic structure.

This paper is organized as follows. In Sec. II, we will
describe the experimental setup. Details of theoretical calcu-
lations are given in Sec. III. Experimental and theoretical
results are presented in Sec. IV. Section V is the conclusion.

II. EXPERIMENTAL SETUP

The experiments were performed in EPI, which has been
described in detail in previous papers �14,15�. EPI combines
two techniques: a high-pulse power bank to obtain a fast
heating of the metallic sample and a high-pressure closed
vessel built in sapphire that mechanically controls the plasma
volume. The sapphire rings are bound in the center of high-
pressure tungsten carbide rings forming �once stacked� a tube
of 19 cm in length and 1.2 cm in diameter. This facility al-
lows an absolute measurement of the internal energy, pres-
sure, and electrical resistance. Seven gold tubes with a length
of 19 cm, an outside diameter of 1 mm, an inside diameter of
0.7 mm, and a purity of 99.95% are linked together with a
500 �m thick gold wire and placed inside the vessel. The
amount of matter in the chamber yields the exact density of
the homogeneous plasma phase. For the described experi-
ments, a total gold mass of 10.8 g leads to an average density
of 0.5 g/cm3. Current is driven from four capacitors con-*Electronic address: patrick.renaudin@cea.fr
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nected in parallel, totaling 2.42 mF, and is switched by a
pressurized spark gap switch. Internal inductance of the cir-
cuit is 6 �H. With such setup, the sample is heated in
100 microseconds. A Rogowski belt surrounds one electrode
to measure the time derivative of the current, and a resistive
divider is used to measure the voltage drop across the
plasma. The time derivative dI /dt of the current and the
inductance L of the plasma are small enough to make the
L�dI /dt term negligible compared to the measured voltage,
except at the very beginning of the discharge. Therefore, no
inductive correction is needed to obtain the plasma resistivity
from the current and voltage measurements �shown in Fig.
1�a�� �14�. Two acceleration-compensated piezoelectrical
sensors with 2 �s rise time are placed at each end of the
vessel to measure the pressure during the discharge, allowing
a maximum pressure measurement of 2.5 GPa. The time
evolution of the pressure, the internal energy, and the elec-
trical resistance measured during one experiment are re-
ported in Fig. 1�b�. The plotted pressure is the mean value of
the two pressures measured at each end of the vessel. These
two pressures are equal within 2%. The calibration procedure
produces a 15% uncertainty in the pressure of the plasma
�15�. During the evaporation, the liquid and the vapor are
heated independently. At the point labeled �1� in Fig. 1�a�,
the effective phase of vaporization begins. At that time, the
pressure rises quickly. The heating becomes isochoric when
the vapor ionization induces an arc regime. No arc regime
was observed during these experiments and we assumed that

homogeneity was achieved at the point labeled �2�, when an
inflection point appears on the current curve. At the point �3�
�at time 350 �s�, the maximum of the electrical conductivity
is reached. Beyond point �3�, cooling begins. Finally, the
interpretation of the resistance R�t� in term of resistivity ��t�
is meaningful only when the plasma is homogeneous, i.e.,
between points �2� and �3�. The input energy and the electri-
cal resistivity of the plasma are inferred from the current and
voltage measurements �14�. Note that all quantities are
known versus the internal energy variation. To preserve the
quality of our data we will show them this way. The uncer-
tainties in the measurements of the conductivity and the in-
ternal energy variation are related to the accuracy of current
and voltage measurements and are estimated at about 15%.

III. THEORETICAL CALCULATIONS

In quantum molecular dynamics �QMD�, the ions follow
classical trajectories determined by the forces acting on them
while the electronic subsystem remains in ground state at
each instant �the Born-Oppenheimer principle�. The equa-
tions of motions for the ions are solved via the velocity Ver-
let algorithm. The forces are calculated from the electronic
ground state using the Hellman-Feynmam theorem. For each
position of the ions, the ground-state electronic density is
computed by minimizing the free-energy functional of the
electron gas in the framework of finite temperature density
functional theory �18�. This leads to solution of a set of equa-
tions for the electronic orbitals �n and eigenvalues �n of the
Kohn-Sham form,

�−
1

2
�2 + Vion�r� + VH�r� + Vxc�r���n�r� = �n�n�r� , �1�

where the first term is the kinetic energy of a system of
noninteracting electrons with density �, Vion is the electron-
ion potential, VH is the Hartree potential, Vxc is the exchange
and correlation potential. In this work, the exchange and cor-
relation term in the density functional expression is repre-
sented by the local density approximation. It is expressed
from the exchange and correlation energy of a uniform elec-
tron gas with the same electronic density as the one of the
system. We used the energy estimation computed by Ceper-
ley and Adler using a Monte Carlo method �19�. The projec-
tor augmented wave �PAW� method is used to construct
electron-ion potential �20,21�. Only valence electrons are ex-
plicitly represented. The Au 5d and 6s electrons are counted
as valence electrons, and all more tightly bond electrons are
counted as part of the core. The valence electronic orbitals
are expanded in plane waves. In this expansion, all plane
waves are included whose wave vector G satisfies
�2G2 /2m�Ecut, where Ecut is referred to as the plane-wave
cutoff energy. The calculations are taken to convergence by
using an energy cutoff of 287 eV.

As a test for the potential transferability, we compute
some properties of solid gold and of the dimer Au2 at zero
pressure and zero temperature. For the lattice constant and
bulk modulus of solid gold, Brillouin zone sampling is per-
formed by the usual Monkhorst-Pack scheme �22� and we
use 120 k points. This method generate a set of special k

FIG. 1. Time evolution of �a� the current and the voltage and �b�
the pressure, the internal energy Uint, and the electrical resistance
measured during the experiment. The homogeneous density of gold
is equal to 0.5 g/cm3.
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points in the Brillouin zone which provides an efficient
means of integrating periodic functions. We obtain, respec-
tively, 4.08 Å and 183 GPa to be compared with experimen-
tal values of 4.08 Å and 172 GPa �23�. According to Boet-
tger’s result, we found that the local density approximation
gives better static lattice properties than the generalized gra-
dient approximation �24,25� for solid gold. For the dimer, we
compute an equilibrium distance of 2.47 Å. The experimen-
tal value is 2.47 Å �26�. These results are comparable to
those obtained using all-electron density functional calcula-
tions �23,27�.

QMD simulations for warm dense gold are performed for
six temperatures ranging from 15 000 to 40 000 K. A 16-
atom cubic cell of appropriate size to reproduce the experi-
mental density �=0.5 g/cm3 is used with periodic boundary
conditions of the simple cubic type. Electronic orbitals are
populated according to the Fermi-Dirac distribution function,
with a number of states from 1000 to 1500 and the electronic
temperature set equal to that of ions. Trajectories are gener-
ated in the microcanonical ensemble for 500 time steps of
2 fs. In this ensemble, the system remains free to adjust to an
average equilibrium ionic temperature, and the total energy
should be conserved. During the molecular dynamic simula-
tion, the � point only is used to sample the Brillouin zone.
Then, we use four k vectors to obtain the detailed electronic
structure needed to compute optical response of warm dense
gold. For all simulations, we use the VASP �Vienna ab initio
Simulation Program� plane-wave code developed at the
Technical University of Vienna �28�.

In linear response theory, the real part of the frequency-
dependent conductivity is given in terms of the Kubo-
Greenwood equation �29,30�,

	�
� =
2�e2

3

� dk�

n,m
�fn − fm�

� 	
�n	v̂	�m�	2��Em − En − �
� , �2�

where 
 is the frequency, e is the electronic charge, �n and
En are the electronic eigenstates and eigenvalues for the elec-
tronic state n, fn is the Fermi-Dirac distribution function, and
v̂ is the velocity operator. We use a Gaussian broadening of
the � function with a width set to obtain smooth and con-
verged curves. Following the QMD simulations, six configu-
rations were extracted from the calculated trajectories. For
each configuration, the frequency-dependent conductivity
was calculated using the Kubo-Greenwood formulation.

A QMD simulation of the fcc solid phase at 300 K with
108 atoms sets the reference energy. All further energies are
given relative to this reference energy, allowing a direct com-
parison between theoretical results and experimental data.

IV. DISCUSSION

The experimental and QMD pressures are reported in Fig.
2�a�. The experimental electrical resistivity is compared with
QMD results in Fig. 2�b�. All the experimental data are re-
ported in Table I.

The interpretation of the resistance in terms of resistivity
and the calculation of the internal energy from the input en-

ergy are meaningful only between points �2� and �3� in Fig.
1�a�. Therefore, the experimental data are plotted from
80 to 11.5 MJ/kg, corresponding to the evolution of the in-
ternal energy between these two points. Determining the tim-
ing when the plasma homogeneity is reached, i.e., measuring
the saturation pressure and/or the electrical resistivity on the

FIG. 2. Experimental and theoretical �a� pressure and �b� elec-
trical resistivity versus internal energy variation for gold at �
=0.5 g/cm3. Each black square is a QMD calculation correspond-
ing to the four considered temperatures and the line is for
readability.

TABLE I. Experimental internal energy Uint, electrical resistiv-
ity �e, and pressure P of gold at 0.5 g/cm3.

Uint �MJ/kg� �e �
 m� P �GPa�

8.00 2.95�10−5 0.672

8.50 2.90�10−5 0.700

9.00 2.85�10−5 0.792

9.50 2.80�10−5 0.820

9.75 3.40�10−5 0.871

10.00 2.75�10−5 0.895

10.25 3.15�10−5 0.910

10.50 2.65�10−5 0.940

10.75 2.85�10−5 0.975

11.00 2.55�10−5 1.017

11.50 2.45�10−5 1.080
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saturation curve, would present a new opportunity to test
EOS and transport theories along the saturation curve and in
the vicinity of a metal-insulator transition �7�. Such work is
beyond the scope of this study.

The QMD pressures agree perfectly with experimental re-
sults. This excellent agreement demonstrates that the QMD
describes very accurately the fluid and also the various den-
sity effects in the thermodynamic regime of the experiment.
In various atomic models, density effects such as pressure
ionization and plasma ion correlation are entered through the
ion sphere model or in a more phenomenological way, in
contrast with QMD calculations. We show in Fig. 3 the con-
sidered gold isochore calculated using the QMD, the
Thomas-Fermi-Dirac �TFD� model, and the ideal gas �IG�
model. At low temperatures, the ionization effects are negli-
gible and the thermodynamic properties of the fluid calcu-
lated by QMD are those of an ideal gas. For the temperature
range considered, the main contribution to the pressure is the
ionic contribution which represents more than 95% of the
total pressure at 10 000 K and 65% at 30 000 K. The sum of
the TFD electronic pressure and the IG ionic pressure, noted
as TFD+IG in Fig. 3, is 30% higher than the VASP pressure.
The Thomas-Fermi and TFD models overestimate the elec-
tronic pressure in this low-temperature and intermediate den-
sity regime. This comparison shows that, for the highest tem-
peratures displayed in Fig. 3, the accuracy of the EOS
models depends on their capabilities to accurately describe
the electronic structure. The excellent agreement between ex-
perimental EOS data and QMD simulations shows that the
calculated electronic structure is well representative of warm
dense gold. To further quantify the modification of the elec-
tronic structure of gold as temperature is varied, we now
consider the variation of the resistivity over the same physi-
cal conditions, as displayed in Fig. 2�b�.

The QMD electrical resistivities agree well with the ex-
perimental data. This good agreement shows that the Kubo-
Greenwood formulation of the electrical conductivity is ac-
curate for the warm dense noble metals. We now consider the
whole optical conductivity as given by the Kubo-Greenwood
formula. The evolution of the frequency-dependent conduc-

tivity of gold with temperature is reported in Fig. 4.
As for simple �4,31� and transition �32� metals in the

same thermodynamic regime, the frequency-dependent con-
ductivity is the sum of interband transitions �the two major
peaks located between 5 and 11 eV�, and intraband transi-
tions with a Drude form at low frequencies. At T
=15 000 K, the free-free transitions at low frequency are
very weak. This is consistent with the fact that gold is nearly
an ideal gas at this low temperature and, hence, becomes an
insulator. Considering the 5d and 6s orbitals and the absence
of f orbital in the PAW potential used here, two allowed
atomic transitions exist in the calculated spectral range: the
6s→6p and 5d→6p transitions. Therefore, the two major
peaks in Fig. 4, around 5.7 and 7.8 eV for the smallest tem-
perature, can be attributed to these two transitions, respec-
tively. One limitation of the plane-wave technique is that this
nonlocal basis set does not provide a natural way of quanti-
fying local atomic properties. Moreover, the density func-
tional theory, which considers statistically populated levels,
realizes a continuous transition from the atomic to the singly
ionized state and, hence, a continuous shift of the energy of
the different transitions. At T= 30 000 K, the Drude form at
low frequencies is more pronounced, in accordance with the
fact that the number of free electrons and the population of
Au+ have increased.

We now examine the implications of the results by assum-
ing nearly free electron �NFE� behavior of warm dense gold.
The ac conductivity can be described by the Drude model,

	�
� =
	0

1 + �
��2 , �3�

where � is the collisional relaxation time. This formula has
been used to fit the low-frequency part of the QMD
frequency-dependent conductivities for the four considered
temperatures shown in Fig. 4. As the static conductivity 	0 is
taken from the QMD results, this fitting procedure allows us
to determine a collisional relaxation time �D and an electron

FIG. 3. Pressure of gold at a density of �=0.5 g/cm3 as a func-
tion of temperature, calculated with different theoretical models.
Each black square is a QMD calculation and the line is for
readability.

FIG. 4. Frequency-dependent conductivity for gold at �
=0.5 g/cm3 and for temperatures from 15 000 to 30 000 K.
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density neD from neD=me	0 /�D /e2, where me is the electron
mass. As an illustration, the result of one such fit is shown in
Fig. 5 for a temperature of 30 000 K. The agreement be-
tween the Lorentzian fit and the QMD simulations is correct
at low energy where there are no interband transitions. The
collisional relaxation time and the mean ionization ZD ob-
tained from this fitting procedure are displayed in Table II.

The mean ionization ZD inferred from the Drude model,
assuming NFE behavior of warm dense gold, is the first of
three different estimations of the mean ionization that we
obtained from QMD simulations. Two other methods were
used to define a representative value of the number of free
electrons. Such estimations provide a useful metric and can
be used to compare and validate the electronic structure cal-
culated by the various plasma models. In the second method,
the number of electrons having their energy level beyond the
Fermi energy is calculated using Fermi-Dirac occupations.
The results are noted ZFL in Table II. In the third method, we
used an ideal plasma model assuming that �i� we can separate
the thermodynamics functions of ions and electrons; �ii� the
ions form an ideal gas; and �iii� the electrons form a free-
electron gas without interactions. The validity of each of
these assumptions in the low-temperature and intermediate
density regime studied here is questionable. Nevertheless,
such model provide a simple and useful metric knowing the
total pressure of the plasma. By subtracting the pressure of

the ideal gas from the QMD pressure, an electronic contri-
bution to the pressure is obtained from which we extract a
mean ionization, noted ZIP in Table II. The last column dis-
played in Table II is the TFD mean ionization ZTFD. In this
intermediate density regime, the TFD mean ionization is 3
times greater than ZD at 15 000 K and 1.4 times greater at
30 000 K. The three criteria lead to three different values of
the mean ionization, and the difference between these three
values and the TFD mean ionization reduces when the tem-
perature increases.

The difference between the inferred mean ionizations
shows that an accurate calculation of the local electronic
structure of WDM is still a theoretical challenge. Despite
mean ionization being key data to calculate transport prop-
erties in dense plasmas, there is no unequivocal definition for
it. QMD calculations overcome this disability and allow a
direct determination of transport coefficients, such as thermal
conductivity �33�. Furthermore, by providing an accurate
self-consistent set of transport coefficients and thermody-
namic data, QMD simulations could be used to benchmark
the various plasma statistical physics models in the WDM
regime.

V. CONCLUSION

To summarize, we have carried out an experiment mea-
suring directly electrical resistivity, pressure, and internal en-
ergy variation of gold plasmas at a density of �=0.5 g/cm3

in the internal energy range 8–12 MJ/kg. In this thermody-
namic regime, close to the saturation curve and in the vicin-
ity of the metal-insulator transition, QMD simulations are in
good agreement with the experimental equation of state data
as well as the electrical resistivity for temperatures ranging
from 15 000 to 30 000 K. These comparisons demonstrate
the capabilities of QMD simulations to accurately calculate
the constituency of warm dense gold and also the various
density effects. The behavior of the calculated frequency-
dependent conductivities shows a clear dependence with the
temperature. An important contribution of the 6s→6p and
5d→6p transitions is observed as well as an increase of the
free-free transitions, i.e., a Drude form, when the tempera-
ture is increasing. Different estimations of the mean ioniza-
tion were obtained from different physical criteria, leading to
different value of this quantity. Such study illustrates the
problem of the mean ionization calculation in dense plasma

FIG. 5. Frequency-dependent conductivity for gold at �
=0.5 g/cm3 and T=30 000 K.

TABLE II. Temperature T, electrical conductivity 	0 as given by the Kubo-Greenwood formula, colli-
sional relaxation time �D, and mean ionization ZD, deduced from the Drude fit of the low-frequency part of
the calculated frequency-dependent conductivity, mean ionization ZIP deduced from the ideal plasma model,
mean ionization ZFL from the fraction of electrons having their energy level beyond the Fermi level, and TFD
mean ionization ZTFD.

T �K� 	0 ��
 m�−1� �D �fs� ZD ZIP ZFL ZTFD

15 000 9 800 1.50 0.15 0.05 0.29 0.46

20 000 23 800 1.72 0.32 0.16 0.61 0.66

25 000 38 100 1.68 0.53 0.37 0.97 0.85

30 000 50 300 1.62 0.72 0.54 1.24 1.02
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models. This latter point is at the heart of the difficulty in
calculating transport and thermodynamic properties along
the transition into the WDM regime using standard plasma
statistical physics models. We showed that QMD simulations
should be used to validate such models by providing an ac-
curate self-consistent set of transport coefficients and ther-
modynamic data.
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