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In gyro-traveling-wave devices, several waves can be excited at different cyclotron harmonics simulta-
neously. This paper analyzes the interaction between three waves synchronous with gyrating electrons at
different cyclotron harmonics in two relativistic gyro-amplifier configurations; viz., gyro-traveling-wave tubes
and gyrotwystrons. Two types of nonlinear interactions are considered: �a� excitation of two waves at cyclotron
harmonics by a wave excited at the fundamental resonance, and �b� excitation of a wave at the fundamental
resonance and another wave at the third harmonic by a wave excited at the second cyclotron harmonic. The
effect of the overlapping of electron cyclotron resonances on the performance of relativistic gyrodevices is
investigated as well.
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I. INTRODUCTION

Interaction between three or four waves in nonlinear me-
dia is a topic extensively studied in the physics of plasmas
�1,2�, nonlinear optics �3,4�, and parametric systems �5�.
Such an interaction takes place when the wave frequencies �

and wave vectors k� obey the synchronism conditions. For
three-wave interaction these conditions have the form:

�1 + �2 = �3, k�1 + k�2 = k�3. �1�

In the sources of coherent electromagnetic �EM� radiation
driven by electron beams such a wave interaction occurs due
to the presence of an electron beam which can be treated as
an active nonlinear medium. This active medium may not
necessarily be active enough to excite all three waves in the
small-signal regime. It may happen that some of these waves
can be excited due to nonlinear interaction between the
waves only. In such a case a so-called decay process may
take place when an initially excited wave then gives rise to
others.

Since a beam excites the waves of a microwave circuit
�waveguide� the wave frequencies and axial wave numbers
obey the waveguide dispersion equation. This equation is
especially simple for standard waveguides used in gyro-
traveling-wave tubes �gyro-TWTs� because these tubes usu-
ally operate as fast-wave devices �6�:

�2 = �cut
2 + c2kz

2. �2�

In �2� �cut is the cutoff frequency of a waveguide, kz is the
axial wave number, and c is the speed of light.

The operation of gyrodevices is based on the cyclotron
resonance between Doppler shifted EM waves and electrons
gyrating in the external magnetic field:

� − kzvz � s� . �3�

Here, � and vz are the cyclotron frequency and axial velocity
of electrons, s is the resonant number of the cyclotron har-
monic. The width of the cyclotron resonance band is in-
versely proportional to the number of electron orbits in the
interaction space, N �see, e.g., �7��, which is typically large
enough, N�1. Therefore, the three-wave interaction deter-

mined by the condition �1� may take place only for waves
resonant with different cyclotron harmonics, while the four-
wave interaction determined by similar conditions and ana-
lyzed elsewhere �8� may take place in the case of all waves
synchronous with the same cyclotron harmonic.

In gyro-TWTs with cylindrical waveguides the synchro-
nism condition for the wave vectors �1� can be rewritten as

m1 + m2 = m3, �4�

and

k1z + k2z � k3z. �5�

In �4� ms are azimuthal indices of nonsymmetric waves ro-
tating in a circular waveguide.

The condition of synchronism between axial wave num-
bers �5� is absent in gyrotron oscillators, which operate at
frequencies close to cutoff. In gyro-TWTs, as follows from
�2�, this condition together with the cyclotron resonance con-
dition �3� can be fulfilled only for some specific waves. To
illustrate this important statement, consider the dispersion
diagram shown in Fig. 1 for symmetric TE01, TE02, and
TE03-waves, which can be in cyclotron resonance with gy-
rating electrons at the fundamental, second, and third cyclo-
tron harmonics, respectively. Assume that the first wave is
excited by a signal at frequency �s. Then, in an amplifier,
two other waves should be excited at 2�s �TE02-wave� and
3�s �TE03-wave�. These frequencies are shown in Fig. 1 by
dotted horizontal lines. As one can see, the intersection of
these lines with dispersion curves for the waveguide modes
takes place at a certain distance from the straight lines show-
ing the cyclotron resonance at corresponding harmonics.
This departure from the exact cyclotron resonance, of course,
should weaken the excitation of second and third waves. The
analysis of this effect is one of the main topics of our study.

Note that alternatively, in multistage gyro-amplifiers, op-
eration in frequency-multiplying regimes is possible. In such
devices, the beam can be modulated in the input stage �cavity
or waveguide� by an external signal at the frequency �s.
Then, in the drift section separating the input and output
stages of the device, this modulation gives rise to high-
frequency components in electron current density not only at
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�s, but also at its harmonics. As a result, the output stage of
such a device can operate at harmonics of �s �9�. In terms of
the dispersion diagrams shown in Fig. 1�a�, this means that
one can tune the external magnetic field to provide, for ex-
ample, the most efficient interaction in the output waveguide
with the TE02-wave at the second cyclotron harmonic. Then,
the departure from exact cyclotron resonance will take place
at the TE01- and TE03-waves �Fig. 1�b��.

Our study will be focused on the analysis of such interac-
tion between the waves in two configurations of gyro-
amplifiers, viz., the gyro-TWT and the gyrotwystron. The
latter device consists of an input cavity and an output wave-
guide separated by a drift section and, hence, combines the
merits of klystrons �high gain� and traveling-wave tubes
�large bandwidth�. We will consider the operation of these
devices driven by relativistic electron beams that is moti-

vated in part by development of relativistic gyro-amplifiers
for future linear colliders �10�. In high-power relativistic
gyro-amplifiers, the amplitude of the EM field acting on gy-
rating electrons can be so large that cyclotron resonances at
neighboring harmonics can overlap. This effect and corre-
sponding stochasticity of electron orbits was recently ana-
lyzed in �11�. In the present paper we analyze the effect of
this overlapping on the wave interaction.

The paper is organized as follows: Sec. II contains a
qualitative theory explaining the mechanism of nonlinear
wave interaction in gyrodevices. Then, in Sec. III we de-
scribe the formalism used in our study. �Details are given in
the Appendix.� Results of the study of gyro-TWTs and gyro-
twystrons in the absence of resonance overlapping are given
in Sec. IV, and the effects of overlapping on this interaction
are discussed in Sec. V. In Sec. VI we discuss the applica-
tions of the results obtained to possible realistic systems.
Finally, Sec. VII summarizes this work.

II. QUALITATIVE THEORY

To illustrate the physical nature of interaction between the
waves resonant with electrons at different cyclotron harmon-
ics, we can consider a very simple model, a two-wave inter-
action. Indeed, the two-wave interaction can be considered as
a degenerate case of the three-wave interaction determined
by �1� assuming that in �1� the frequency and the wave vec-
tor of the first and second waves are equal; thus �1�, �4�, and
�5� reduce to

2�1 = �2, 2m1 = m2, 2k1z = k2z. �6�

Here, we replaced the index of the third wave in �1�, �4�, �5�
by the index “2”. Assume also that the waveguide has strong
end reflections and, therefore, each wave is a standing wave
formed by two traveling waves bouncing back and forth, and
electrons are in resonance with the forward traveling waves
only. Since these strong reflections form a resonator from
this waveguide, the amplitudes of these standing waves, in
the nonstationary regimes, can depend on time.

In such formulation, the problem becomes similar to the
analysis of parametric instabilities in gyrotron oscillators car-
ried out in �12,13�. The only difference between the formal-
ism developed in �12,13� and our model is that in �12,13� it
was considered the interaction of gyrating electrons with the
modes having an arbitrary axial structure, while in our case
electrons interact with forward waves; hence the axial struc-
ture should be given as exp�−ikzz�. To describe the wave
interaction at a qualitative level, one can solve these equa-
tions of motion by the method of successive iterations as-
suming that the amplitudes of modes are small enough and,
hence, cause small perturbations in electron motion. �This
method used for gyrotron oscillators in �8,12� is essentially
the same as the one used in the theory of optical masers �14�
and nonlinear optics �4�.� Assume also that we consider an
ideal electron beam with no velocity spread. Since in calcu-
lating the source terms responsible for the excitation of EM
fields in a cylindrical waveguide by an electron beam, the

j�E� s
* product characterizing the interaction of an electron fila-

ment with the field of the sth mode should be averaged over

FIG. 1. Dispersion diagram when the magnetic field is optimal
for the fundamental harmonic �a� and the second harmonic �b� in-
teraction: diamonds indicate the operating points for all three waves
at corresponding harmonics of the signal frequency.
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initial gyrophases and over all azimuthal coordinates of elec-
tron guiding centers, only a few perturbation terms will be
left after double averaging. Then, the resulting equations can
be written for two typical cases obeying the first two condi-
tions �6� in the following way:

Case 1. An electron beam excites the first wave at the
fundamental cyclotron resonance, and this wave in the pro-
cess of wave interaction can excite the second wave resonant
with the second cyclotron harmonic. Such a problem has a
certain relevance to the generation of harmonics of the signal
frequency in gyro-TWTs that is the problem extensively
studied in linear-beam TWTs �15�. Corresponding simplified
equations for mode amplitudes can be given as �12� follows:

dA1

dt
= A1��1 − �1A1

2� ,

dA2

dt
= q�− �2A2 − A1

2 cos �� ,

d�

dt
= � − q

A1
2

A2
sin � . �7�

Here we ignored the effect of the second wave on the first
wave, but took into account the effect of the first wave on the
second one; �1 and �2 are the increment of the first and the
decrement of the second modes, respectively, �1 describes
the self-saturation of the first mode, q is the ratio of the
coupling impedances of these modes to the beam and �
��2−2�1 is the frequency mismatch. As follows from �7�,
the stable oscillations of the first mode with the intensity
A1

2=�1 /�1, due to the mode interaction, can be accompanied
with oscillations of the second mode: A2=A1

2 /��2
2+ �� /q�2,

tan �=� /q�2. As the frequency mismatch � increases, the
amplitude of these oscillations decreases.

Case 2. An electron beam excites the second mode reso-
nant with the second cyclotron harmonic, and this mode, in
turn, due to the mode interaction process, supports oscilla-
tions of the first mode resonant with the fundamental cyclo-
tron frequency. This problem is relevant to the design of
gyro-TWTs operating at the second cyclotron harmonics
where some parasitic traveling waves can be excited at the
fundamental cyclotron resonance. Corresponding equations
can be given as �12� follows:

dM1

dt
= − 2M1�1 − A2 sin �� ,

dA2

dt
= A2�� − �A2

2� − 2M1 sin � ,

d�

dt
= − � + �2A2 −

M1

A2
�cos � . �8�

Here M1=A1
2 is the intensity of the first mode excited at the

fundamental cyclotron resonance. In the absence of self-
saturation effects in the dynamics of the second mode ��
→0�, Eqs. �8� are reduced to those studied in Ref. �16�,
where it was shown that such a simple set of equations can

exhibit an interesting sequence of pitchfork bifurcations re-
sulting in the onset of chaotic oscillations. After these intro-
ductory remarks and examples we can move to the formula-
tion of the problem under study.

III. FORMALISM

We consider here an ideal beam of relativistic electrons
�velocity spread is not taken into account� gyrating in a con-
stant magnetic field and interacting with traveling fast EM
waves in a cylindrical structure. The self-consistent set of
equations describing electron motion and the wave excitation
are very similar to those derived in Refs. �7� and �17�. These
equations hold for both the gyrotwystron and the gyro-TWT
since they both employ a waveguide, although the boundary
conditions at the waveguide entrance are different.

Let us start from equations describing the excitation of
waves, which obey conditions �4� and �5�. The electric field
can be represented as a superposition of transverse electric
�TEmp� modes:

E� = Re	

s

As�z,t�E� s�r���ei��st−kszz�� . �9�

For simplicity the index s instead of m , p is used to label the
modes. In �9�, As�z , t� is the complex amplitude of the mode

labeled s, E� s describes the transverse structure of this mode
in a waveguide of length L, ksz is its axial wave number, and
�s is the mode frequency. Assume that the axial wave num-
ber obeys the condition

	/L 
 ksz 
 �s/c , �10�

the left part of which �	 /L
ksz� implies that one can neglect
electron interaction with the nonresonant backward wave
�proportional to exp�i��st+kszz�
�, while the right part �ksz


�s /c� allows one to ignore the changes in electron axial
momentum in the process of interaction �6,7�. Since the com-
plex amplitude, As�z , t�, in �9� is a slowly varying function of
time ��dAs /dt � 
�sAs�, one can readily derive from Maxwell
equations the following envelope equation for the mode am-
plitudes:

�As

�z
+

1

vgrs

�As

�t
=

− 4	�s

c2Nsksz
���

s�

j��s�
· E� s

*eikszzds���
, �11�

where, Ns is the norm of the wave given by

Ns =
c

4	
�

s�

�E� s�2ds�. �12�

In �11�, the double brackets, Š�¯�‹, denote averaging over
the wave period and over the electron entrance phases, vgrs

is

the wave group velocity, and j��s�
is the transverse compo-

nent of the high frequency current density

j� = Re�j��s
exp�i�st�
 . �13�

The components of the transverse electric field E� s can be
expressed via the Hertz potential �, which satisfies the
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membrane equation ���+k�
2 �=0 with the boundary con-

dition that the normal derivative of � at the wall vanishes.
The spatial dependence of the EM field for a cylindrical
waveguide can be written as follows:

E� s =
ks

ks�
2 �1

r

��

�

r̂ −

��

�r

̂� . �14�

As shown elsewhere �7,18�, the membrane function of the
field acting upon electrons gyrating in an external magnetic
field with the electron cyclotron frequency � and Larmor
radius a=v� /� can be represented as �=


l

Jl�ks�a�Ll

�exp�−il
�. Here the Bessel function Jl�ks�a� describes the
amplitude of the lth order multipole responsible for interac-
tion at the lth cyclotron harmonic. The operator Ll describes
the transverse structure of the rf Lorentz force acting on elec-
trons with transverse polar coordinates of the electron guid-
ing center R0 ,�0. For cylindrical waveguides

Ll = J�l�m��ks�R0�exp�i�l � m��0� . �15�

The index l indicates the number of the resonant cyclotron
harmonic ���1��, m is the azimuthal index of the wave.
The index l−m is used when the azimuthal rotation of the
wave in the cylindrical waveguide is in the same direction, as
the direction of rotation of the electron in the external mag-
netic field, l+m corresponds to the case of rotation in oppo-
site directions.

In relativistic gyro-amplifiers, when the wave amplitudes
are large the cyclotron resonances at different harmonics can
overlap. Then, as shown in Ref. �19�, Eq. �11�, with the use
of �13�–�15� can be reduced to

�Fs

��
+

1

�grs

�Fs

�t�
= − Is

1

2	
�

0

2	

p�e−i��st−kszz��b1Js��âs�ei


+ b2J2��âs�ei2
 + b3J3��âs�ei3
�d
0. �16�

In �16�, �=�sz /c�z0
is the normalized axial coordinate, t�

=�st /�z0
is the normalized time variable, and 
 is the elec-

tron gyro-phase with an initial value 
0. Also, Fs
=eAsLs /m0c�s is the normalized field amplitude, and b1,2,3
= �L1,2,3 /Ls� is the ratio of the coupling impedances of elec-
trons to the wave at different cyclotron harmonics. Note that
one of the b parameters �the one, which corresponds to the
dominant cyclotron resonance for a given wave� is equal to
unity, bs=1. The Bessel function argument is given by âs
=ks�a=ks�c��s /�=�sp� /�, where �=�0 /�s is the ratio
of the initial cyclotron frequency to the signal frequency. The
upper prime means the derivative of Bessel functions. The
electron momentum components are normalized to mc�0

��0 is the initial electron energy normalized to the rest en-
ergy�, �grs

is the group velocity, vgrs
, normalized to the speed

of light: �grs
=vgrs

/c=cksz /�s. The normalized current pa-
rameter Is is defined as

Is = 4
eIb

moc3

�s
2Jm−s

2 �ks�R0�
hs��2 − m2�Jm

2 ���
. �17�

Here, hs=kszc /�s, and �s=ks�c /�s=�1−hs
2 are the normal-

ized axial and transverse wave numbers, respectively, Ib is
the DC current beam, R0 is the guiding center radius of elec-
trons in a thin annular electron beam. The quantity � is the
eigenvalue for the TEmp wave �it is the pth root of the equa-
tion Jm� ���=0�.

Below we consider three symmetric waveguide modes:
TE01, TE02, and TE03, resonant at the fundamental, second,
and third harmonic of the cyclotron frequency, respectively.
Using the derivation procedure detailed in the Appendix, one
can obtain from �16� the following simplified equations de-
scribing the evolution of the wave amplitudes:

dF1

d�
= −

I1

2	
e−i�1��

0

2	 p�

2
e−i��1 + b2

p�

2
ei
 + b3

p�
2

8
ei2
�d�0,

�18a�

dF2

d�
= −

I2

2	
�

0

2	 p�

2
e−i2��b1e−i
 + p� + b3

p�
2

2
ei
�d�0,

�18b�

dF3

d�
= −

I3

2	
e−i�3��

0

2	 p�

2
e−i3
��b1e−i2
 + b2

3p�

2
e−i


+
9

8
p�

2 �d�0, �18c�

where the Bessel functions have been replaced by their poly-
nomial expansions. The parameters �1 and �3 account for the
departure of the TE01 and TE03 waves from exact resonance,
respectively. These parameters are given by �A5�. The phase
variable �= ��2t−k2zz� /2−
 is the phase of the wave with
respect to the electron gyrophase for the second harmonic
resonance �
=
0+���. So averaging over �0 in �18� is
equivalent to the averaging over 
0 in �16�.

Equations for the normalized electron energy and phase
are similar to those given in Refs. �11� and �19�, where the
interaction between an electron beam and a single wave was
considered:
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d�

d�
=

p�

2
Re	F1ei��+�1���1 + b2

p�

2
e−i
 + b3

p�
2

8
e−i2
� + F2ei2��b1ei
 + p� + b3

p�
2

2
e−i
�+ F3ei�3�+�3���b1ei2
 + b2

3p�

2
ei


+
9

8
p�

2 �� , �19�

d�

d�
= � − 1 + � − Re	iF1ei��+�1����1 −

�

p�
2 � p�

2
+ b2�1 −

2�

p�
2 � p�

2

8
e−i
 + b3�1 −

3�

p�
2 � p�

3

48
e−i2
� + iF2ei2��b1�1 −

�

2p�
2 �p�ei


+ �1 −
�

p�
2 � p�

2

2
+ b3�1 −

3�

2p�
2 � p�

3

6
e−i
�+ iF3ei�3�+�3���b1�1 −

�

3p�
2 �3p�

2
ei2
 + b2�1 −

2�

3p�
2 �9p�

2

8
ei
 + �1 −

�

p�
2 �9p�

3

16
�� .

�20�

Here, � is the electron energy normalized to its initial value
�0, and �=1−h2�z0

−� is the cyclotron resonance detuning
or initial synchronism mismatch. In this normalization, elec-
tron energy and momentum are related as �2=�0

−2+ p�
2 + pz

2.
Note that in the absence of overlapping of cyclotron reso-
nances, i.e., when b=0, the self-consistent Eqs. �18�, �19�,
and �20� are greatly simplified. Then, each wave interacts
with the electron beam at a single harmonic.

For the gyro-TWT the boundary conditions for all vari-
ables in �18�–�20� are

��0� = 1, ��0� = �st0 − 
0 = �0 � �0,2	�, p��0� = ��0
.

�21�

In the case of the gyrotwystron with a single-cavity funda-
mental harmonic prebunching, the boundary conditions at
the entrance of the output waveguide are:

��0� = 1, ��0� = �0 + q sin �0 + �dr,

�0 � �0,2	�, and F�� = 0� = 0, �22�

Equations �18�–�20� form a self-consistent set where param-
eters q and �dr are the bunching parameter and electron
transit angle through the drift section, respectively. These
parameters are defined in �20�.

Equations �18� and �19� form a self-consistent set of equa-
tions from which follows the energy conservation law:

I1
−1��F1�2 − �F1�0��2� + I2

−1��F2�2 − �F2�0��2�

+ I3
−1��F3�2 − �F3�0��2� = 2�1 − �0

−1�� , �23�

where Fs�0� is the initial amplitude of the wave and � is the
efficiency of the electron beam-wave interaction,

� =
�1 − ����
�1 − �0

−1�
. �24�

Here the angular brackets mean averaging over initial phases
�0.

IV. RESULTS

The set of Eqs. �18�–�20� with corresponding boundary
conditions was studied for the case of the absence of reso-

nance overlapping �b=0� in the gyro-TWT and the gyrotw-
ystron. An annular beam of radius 0.8 cm, 500 kV, 400 A,
and pitch factor �=1 was considered. The waveguide radius
was 2.1 cm and the RF driver frequency was 9 GHz �the
motivations for this choice of parameters will be explained
later.� These values of the beam and waveguide parameters
correspond to normalized beam currents I1=0.045, I2
=0.008, I3=0.004, and frequency mismatch parameters �1
=0.132, and �3=−0.098. The normalized axial wave num-
bers of the three waves were h1=0.25, h2=0.46, and h3
=0.51, respectively. The parameter � characterizing the ex-
ternal magnetic field, and, correspondingly, the detuning � in
Eq. �20� was varied in simulations.

A. Gyro-TWT Results

We were interested in the effect of a mode excited initially
by a driver on the excitation of two other modes. Two inter-
action cases described in Sec. I were considered. First, we
assumed that an electron beam interacts with the TE01 wave
at the fundamental cyclotron resonance and studied the ef-
fects of this wave on the excitation of the TE02 and TE03
waves. The magnetic field was optimized for achieving the
most efficient interaction between the beam and the TE01
wave. The results are presented in Figs. 2�a�–2�d� for the
initial normalized field amplitudes F1�0�=0.005, F2�0�=0,
F3�0�=0, and the initial cyclotron resonance detuning �=0
�recall that �=1−h2�z0

−��. In Fig. 2�a� the normalized
wave intensities are shown as functions of the axial distance.
This figure exhibits a significant growth of the high fre-
quency waves. The excitation of the TE02 and TE03 waves is
a typical case of the generation of signal frequency harmon-
ics known in TWT’s �15�: the resonance interaction between
the TE01 wave and the electron beam gives rise to harmonics
of the signal frequency in the current density term, which in
turn excites the high-order modes. The gain of the TE01 wave
is shown in Fig. 2�b�. This curve does not depend on the
other waves because the second and third waves absorb only
a small amount of energy from the beam. Figure 2�c� shows
the electron phases as a function of the normalized axial
waveguide length and Fig. 2�d� shows the position of elec-
trons in the phase space �px= p� cos � and py = p�sin �� at
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the entrance of the waveguide and at the point of maximum
efficiency. From these two figures it is clear that the TE01
wave is the dominant mode because a single electron bunch
is formed.

In the second case, the electron beam interacts primarily
with the TE02 wave at the second cyclotron harmonic. The
axial dependence of the intensities of all three waves is
shown in Fig. 3�a� for initial normalized field amplitudes
F1�0�=0.0001, F2�0�=0.005, F3�0�=0.0001, and initial cy-
clotron resonance detuning �=0.046. The normalized inten-
sities of the two waves TE01 and TE03 can be seen increasing
with the axial length, but they remain significantly smaller
than the primary wave intensity. The excitation of the neigh-
boring harmonics due to the excitation of the second har-
monic wave can be attributed to the nonlinear “four-photon”
process described in �21�. The gain curve presented in Fig.
2�b� �dashed line� shows no significant change due to the
presence of two other waves. However, the maximum gain is
smaller than the value obtained for the fundamental har-
monic operation. The phase plot and the electron trajectories

presented in Fig. 3�b� and 3�c� show two bunches separated
by an angular distance of 	. This confirms that the second
harmonic TE02 mode is the strongest mode in this interac-
tion, because the formation of two electron bunches corre-
sponds to the quadrupole nature of the second harmonic
resonance field �see, e.g., Ref. �7��.

B. Gyrotwystron Results

It was assumed that a modulated electron beam interacts
primarily with the TE01 wave. The magnetic field was opti-
mized so as to achieve the most efficient interaction between
the electron beam and the TE01 mode. The results are pre-
sented in Figures 4�a�–4�c�, which show the axial depen-
dence of normalized intensities �a�, the interaction efficiency
�b�, and the electron positions in phase space �c� for �=
−0.03 and bunching parameter q=1.5. In Fig. 4�a� the nor-
malized intensity of each wave is shown for two interaction
cases: when the beam interacts with a single wave �solid
lines� and when the beam interacts with a wave in the pres-

FIG. 2. Operation of the fundamental harmonic gyro-TWT for b=�=0: axial dependences of normalized wave intensities �a�, gain �b�,
and electron phases �c�. Figure �d� shows electron locations in the phase space of the gyro-TWT at the waveguide entrance ��=0—circles�
and at �=80 �dots� where the gain and efficiency are maximal �px= p� cos �, py = p� sin ��.
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ence of other waves �dashed lines�. It is apparent from Fig.
4�a� that the radiation intensity of each wave decreases
slightly when the wave interacts with the beam in the pres-
ence of other waves �parametric interaction�. This can be
explained by the fact that each wave extracts some energy
from the same beam. The net efficiency of the device is
shown in Fig. 4�b� along with the efficiency curves for the
case of single wave interaction. It is clear that the net effi-
ciency of the device is a little higher than the efficiency
obtained when only the dominant mode �TE01� interacts with
the beam. Therefore, the nonlinear excitation of the side
modes can slightly improve the net efficiency of the device
in this case. In Fig. 4�c� the electrons are shown at the en-
trance of the waveguide and at �=34 where the efficiency is
maximum. One can see that a single electron bunch at the
entrance is formed due to ballistic bunching in the drift space
and then this bunch is decelerated.

V. OVERLAPPING OF RESONANCES EFFECTS

In this section we assume that electron beam interacts
with each of the waves at the first three cyclotron harmonics

simultaneously, i.e., the parameter b in Eqs. �18�–�20� is now
nonzero. We present the results for the gyro-TWT and the
gyrotwystron separately.

A. Gyro-TWT

Two distinct cases, viz., the dominant TE01 and the domi-
nant TE02 waves, were again considered. For the first case
with �=0, the results are shown in Fig. 5�a� as the wave
intensities for nonoverlapping �b=0—solid lines�, and over-
lapping �b=0.5—dashed lines� cyclotron resonances. One
can note that while the maximum intensity of each of the
waves remains essentially the same, the overlapping of reso-
nances causes significant rippling in the intensity curves of
the TE02 and TE03 waves. The gain curve is similar to the
one obtained for b=0 and shown in Fig. 2�b� by a solid line.
For the second case, when the magnetic field is tuned so as to
excite the TE02 wave, the results are shown in Fig. 5�b� for
�=0.046. It is apparent from the normalized intensity plots
in Fig. 5�b� that the overlapping of resonances increases the
intensity of the TE01 and TE03 waves insignificantly. The

FIG. 3. Operation of the second harmonic gyro-TWT for b=0 and �=0.046: axial dependences of normalized wave intensities �a�, and
electron phases �b�. Figure �c� shows electron locations in the phase space of the gyro-TWT at the waveguide entrance ��=0—circles� and
at �=80 �dots� where the gain is maximum �px= p� cos �, py = p� sin ��.
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maximum gain for the case of resonance overlap is the same
as the value obtained in the absence of resonances overlap.
The curves are similar to those obtained in Fig. 2�b� with the
exception that for b=0.5 a significant amount of rippling
appears.

B. Gyrotwystron

Equations �18�–�20� were studied for the same initial con-
ditions as in Part B of Sec. IV above with b=0.5. The results
are presented in Figs. 6�a� and 6�b�. The normalized wave
intensities are shown for the case of single harmonic inter-
action of the electron beam and waves �solid lines�, and for
the overlapping of resonances �dashed lines� in Fig. 6�a�. The
efficiency curves are plotted for both cases in Fig. 6�b�. From
these figures it is apparent that while the overlapping of reso-
nances does not cause significant changes in the net effi-
ciency of the device, it causes significant rippling in the in-
tensity curves.

VI. DISCUSSION

In the numerical analysis presented above the relativistic
beam characteristics were similar to those of the beam used

in the relativistic gyrotwystron experiments at the University
of Maryland �10�. The relatively high efficiency obtained
here �30% compare to 21% obtained in the experiment� can
be explained by the fact that we considered a cold beam in
our simulations. Maximum efficiency was achieved for a
waveguide length of 26 cm in the gyro-TWT and 11 cm in
the gyrotwystron for 9 GHz signal frequency. These wave-
guide length values may give rise to the excitation of para-
sitic backward waves, which were not taken into account in
our analysis.

From numerical results it appears easier to excite high
frequency waves when operating at low frequency mode. In
the case of operation at the second harmonic, for example,
we noticed that the excitation of the first and third waves
could not start from noise level, i.e., with F1�0�=F3�0�=0.
Therefore, we did simulations with a small, but nonzero
value of F1,3�0�. The initial normalized field amplitude of the
excited wave, F�0�=0.005, corresponds to an input power of
about 57 kW for the fundamental cyclotron harmonic reso-
nance operation and 81.4 kW for the case of second har-
monic resonance operation. These approximate values were
obtained with the use of the following relation �22�:

FIG. 4. Parametric interaction �dashed lines� and single wave interaction �solid lines� in the gyrotwystron when b=0 and �=−0.03: axial
dependences of normalized wave intensities �a�, and efficiency �b�. Figure �c� shows electron position in the phase space of the gyrotwystron
at the waveguide entrance ��=0—circles� and at �=34 �dots� where the efficiency is maximum.

NGOGANG et al. PHYSICAL REVIEW E 73, 056401 �2006�

056401-8



F�0� = 0.96 � 10−3�2�GcplPin�kW�/h . �25�

Here, Gcpl is the coupling coefficient �cf. Eq. �17�� for an
annular beam of radius R0 interacting with the TEm,p mode of
a circular waveguide given by

Gcpl =
Jm�s

2 �k�R0�
��2 − m2�Jm

2 ���
. �26�

The nonlinear excitation of additional waves due to the
parametric interaction appears to affect the gyrotwystron per-
formance more than the gyro-TWT performance, certainly,
because in the former the waves are excited in the output
waveguide by a prebunched electron beam, which already
contains harmonics of a signal frequency in its current den-
sity spectrum. The overlapping of resonances appears not to

have a significant effect on the performance of the devices.

VII. SUMMARY

In this paper the interaction between three waves at dif-
ferent harmonics of the electron cyclotron frequency in gyro-
traveling-wave amplifiers was studied. The paper focused
primarily on synchronous waves. It was shown that when an
electron beam excites one of the waves, two other waves
could be excited through one of two nonlinear interactions
similar to the “three-photon” or “four-photon” processes. It
was observed that this parametric interaction does not have a
significant effect on the net efficiency or gain of the device.
It was also noticed that when the overlapping of cyclotron
resonances was considered together with parametric interac-
tion the maximum efficiency remained essentially un-
changed. This study is relevant to relativistic high power

FIG. 5. Effect of the overlapping of cyclotron resonances in the
cases of fundamental and second harmonic gyro-TWT operation:
axial dependence of normalized wave intensities in the fundamental
harmonic gyro-TWT �a� and in the second harmonic gyro-TWT �b�
for b=0 �solid lines� and b=0.5 �dashed lines�.

FIG. 6. Effect of the overlapping of cyclotron resonances on the
gyrotwystron operation: axial dependences of normalized wave in-
tensities �a�, and efficiency �b� for b=0 �solid lines� and b=0.5
�dashed lines� when �=−0.03.
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gyro-amplifiers that are being considered as possible drivers
for future linear accelerators.
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APPENDIX: DERIVATION OF SIMPLIFIED WAVE
EXCITATION EQUATIONS

Let us assume in �16� that the TE02 wave interacts with
the electron beam at exact cyclotron resonance. Then the
electron gyrophase with respect to this wave can be defined
as

� = ��2t − k2zz�/2 − 
 . �A1�

The electron gyrophase with respect to the TE01 and TE03
waves can be expressed in terms of � as follows:

�1 − k1zz − 
 = � + �k2z/2 − k1z�z

= � + �z0	�1 − ��02

2R̂
�2

−�1 − ��01

R̂
�2�� ,

�A2�

�3 − k3zz − 3
 = 3� + �3k2z/2 − k3z�z

= 3� + 3�z0	�1 − ��02

2R̂
�2

−�1 − ��03

3R̂
�2�� , �A3�

where R̂=�1RW /c is the normalized waveguide wall radius,
�01, and �03 are the TE01 and TE03 waves eigenvalues, re-
spectively. Substituting �A1� and �A3� into �16� we have

�F1

��
+

1

�gr1

�F1

�t�
= − I1

1

2	
�

0

2	

p�e−i��+�1���J1��â1�

+ b1J2��â1�ei
 + b2J3��â1�ei2
�d�0,

�A4a�

�F2

��
+

1

�gr2

�F2

�t�
= − I2

1

2	
�

0

2	

p�e−i2��b1J1��â2�e−i


+ J2��â2� + b2J3��â2�ei
�d�0, �A4b�

�F3

��
+

1

�gr3

�F3

�t�
= − I3

1

2	
�

0

2	

p�e−i�3�+�3���b1J1��â3�e−i2


+ b2J2��â3�e−i
 + J3��â3��d�0, �A4c�

where

�1 = �z0	�1 − ��02

2R̂
�2

−�1 − ��01

R̂
�2� and

�3 = 3�z0	�1 − ��02

2R̂
�2

−�1 − ��03

3R̂
�2� .

�A5�

If we perform the following change of variable

� = �t� −
�

�z0

�� 1

�gr
−

1

�z0

�−1

, �A6�

and replace the Bessel functions Js��â�, by their polynomial
expansion �Js�x�� 1

s!
� x

2
�s�, Eqs. �A4� can be reduced to the

following:

�F1

��
+

1

�gr1

�F1

�t�
= −

I1

2	
e−i�1��

0

2	 p�

2
e−i��1 + b1

p�

2
ei


+ b2
p�

2

8
ei2
�d�0, �A7a�

�F2

��
+

1

�gr2

�F2

�t�
= −

I2

2	
�

0

2	 p�

2
e−i2��b1e−i
 + p�

+ b2
p�

2

2
ei
�d�0, �A7b�

�F3

��
+

1

�gr3

�F3

�t�
= −

I3

2	
e−i�3��

0

2	 p�

2
e−i3��b1e−i2


+ b2
3p�

2
e−i
 +

9

8
p�

2 �d�0. �A7c�

Using the following independent variable for the wave char-
acteristic

u = � − � , �A8�

the time dependence of the field amplitude Fs�� ,��
→Fs�� ,u� can be eliminated

�Fs

��
+

�Fs

��
=

�Fs

��
. �A9�

Correspondingly, Eqs. �A7� reduce to �18�.

NGOGANG et al. PHYSICAL REVIEW E 73, 056401 �2006�

056401-10



�1� B. B. Kadomtsev, Collective Phenomena in Plasmas �Perga-
mon Press, 1982�.

�2� R. C. Davidson, Methods in Nonlinear Plasma Theory �Aca-
demic Press, New York, 1972�.

�3� A. Yariv, Quantum Electronics �John Wiley & Sons, New
York, 1975�.

�4� N. Blombergen, Nonlinear Optics �Benjamin, New York,
1965�.

�5� W. H. Louisell, Coupled Mode and Parametric Electronics
�John Wiley & Sons, New York, 1960�.

�6� K. R. Chu, Rev. Mod. Phys. 76, 489 �2004�.
�7� G. S. Nusinovich, Introduction to the Physics of Gyrotrons

�The Johns Hopkins University Press, Baltimore, 2004�.
�8� G. S. Nusinovich, Int. J. Electron. 51, 457 �1981�.
�9� A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys.

Quantum Electron. 10, 794 �1967�.
�10� V. L. Granatstein and W. Lawson, IEEE Trans. Plasma Sci. 24,

648 �1996�.
�11� G. S. Nusinovich, R. Ngogang, T. M. Antonsen, Jr., and V. L.

Granatstein, Phys. Rev. Lett. 93, 055101 �2004�.

�12� G. S. Nusinovich, Int. J. Electron. 72, 795 �1992�.
�13� G. P. Saraph, T. M. Antonsen, Jr., G. S. Nusinovich, and B.

Levush, Phys. Plasmas 2, 2839 �1995�.
�14� W. E. Lamb, Jr., Phys. Rev. 134, 1429 �1964�.
�15� A. S. Gilmour, Jr., Principles of Traveling Wave Tubes �Artech

House, Boston, 1994�.
�16� J. M. Wersinger, J. M. Finn, and E. Ott, Phys. Rev. Lett. 44,

453 �1980�; Phys. Fluids 23, 1142 �1980�.
�17� N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J.

Electron. 61, 881 �1986�.
�18� M. I. Petelin and V. K. Yulpatov, Radiophys. Quantum Elec-

tron. 18, 212 �1975�.
�19� G. S. Nusinovich, P. E. Latham, and O. Dumbrajs, Phys. Rev.

E 52, 998 �1995�.
�20� G. S. Nusinovich and H. Li, Phys. Fluids B 4, 1058 �1992�.
�21� G. P. Saraph, T. M. Antonsen, Jr., G. S. Nusinovich, and B.

Levush, Phys. Fluids B 5, 4473 �1993�.
�22� G. S. Nusinovich and M. Walter, Phys. Plasmas 4, 3394

�1997�.

WAVE INTERACTION IN RELATIVISTIC HARMONIC¼ PHYSICAL REVIEW E 73, 056401 �2006�

056401-11


