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Sporadic feedback control of flow turbulence
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In this work we consider the problem of flow turbulence control in a two-dimensional Navier-Stokes
equation. We suggest a control strategy which sporadically applies global feedback to a single velocity com-
ponent of the velocity field. It is found that this control strategy can significantly enhance the control efficiency
when the optimal fraction for the control period is suitably chosen, both larger and smaller control time
fractions may reduce the control precision. The physical mechanism underlying this interesting and strange
behavior is heuristically analyzed, based on mode-mode interactions.
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I. INTRODUCTION

Spatiotemporal chaos (STC) can appear in a large variety
of systems such as hydrodynamics, plasma devices, laser
systems, chemical reactions, Josephson junction arrays, and
biological networks. Because of the potential applications,
controlling STC in these systems has attracted much atten-
tion of scientists and technologists in the past decade [1-11].
Real-world flow turbulence is one of the most complicated
states of spatiotemporal chaos. Flow turbulence is undesir-
able in many cases, and control of such turbulence is thus of
great interest and importance. Although many passive and
active control methods have been proposed from the engi-
neering perspectives over the last few decades [12-18], the
basic dynamical methods of chaos control have been very
rarely applied to the control of flow turbulence in Navier-
Stokes systems.

Recently, some authors used global and local feedback
control methods developed in STC control to control flow
turbulence in incompressible Navier-Stokes equations (NSE)
[19,20]. In Ref. [20] the authors found that by applying pin-
ning control only to a single component (either u or v com-
ponent) of the flow velocity field, the whole velocity field
(u,v) can be partially controlled to the ordered targets, in the
sense that the control error is bounded by a small but non-
zero constant. The main purpose of this paper is to study how
to enhance the efficiency of flow turbulence control. We find
that a sporadic global feedback control method can consid-
erably improve the control results when the fraction of con-
trol time is properly chosen.

Sporadic control is known as a chaos control method that
saves the control time and energy. It has been generally ac-
cepted that with the sporadic control strategy a larger frac-
tion of control period (more control time and control energy)
may achieve better control results. However, in our work we
find interestingly that there exists an optimal fraction (less
than 1) of control time, for the best control results, and this
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optimal part-time control may achieve results better than that
of the full-time control. This strange and interesting feature
can be intuitively understood, based on mode-mode interac-
tions of the turbulent system.

This paper is organized as follows. In Sec. II, the dynami-
cal model, the numerical scheme, and the feedback control
method are introduced. Section III is devoted to the descrip-
tion of controlling flow turbulence with sporadic feedback
and demonstrating the results of this control method. The
physical mechanism underlying the efficiency of the optimal
sporadic control is analyzed in Sec. I'V. A brief conclusion is
presented in the last section.

II. MODEL AND NUMERICAL METHOD

In this paper we consider flow turbulence described by the
following incompressible two-dimensional NSE:

Jdu 1
—+u-Vu=-Vp+—Vu, la
ot P Re (12)

V-u=0, (1b)

with u=(u,v), r=(x,y). Here p is the pressure, and Re the
Reynolds number. Throughout this paper we keep Re
=5000, and the flow is thus in the regime of fully developed
turbulence. The flow is confined in a square domain
[0,27] X [0,27] with periodic boundary conditions for both
x and y directions. For the numerical treatment, a fourier
pseudospectral  method, the Adams-Bashforth-Crank-
Nicolson scheme [21], and a dealiasing technique [22] are
used together in our simulations. Spatial discretization of a
256 X256 grid is performed for the 27 X 27 physical do-
main. The validity of numerical results is confirmed by vary-
ing space and time steps. For freely decaying two-
dimensional flow turbulence, initial conditions are important
for the flow dynamics. Usually, the initial conditions are as-
signed in Fourier space with a specific energy spectrum such
as

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.056307

GUONING TANG AND GANG HU

FIG. 1. Dynamic behavior of system (1) without control. The
plots are contours of the vorticity field at (a) r=0, (b) =5, (c) t
=30, and (d) r=50. In the following the control signals will be
applied to the state (b) for turbulence suppression.
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where ¢ is the wave number and ¢, a constant. In this pre-
sentation, we use the initial energy spectrum Eq. (2) with
qo=5.0. The initial energy is 0.1. The time increment is set to
Ar=0.0025. The total integration length is 7=50, which cov-
ers several hundreds of initial eddy turnover time. In Fig. 1,
we present several snapshots of turbulence evolution from ¢
=0 to 50. Some typical characteristics of two-dimensional
flow turbulence, such as vortex forming, vortex collision and
merging, and vortex diffusion are clearly seen. We use this
turbulent dynamics as the reference for control.

Now we show how the turbulent dynamics of Fig. 1 can
be controlled to a periodic target by feeding back one veloc-
ity component u only. This is motivated by the fact that in
experiments, controlling a single component of velocity field
could be easier than controlling the whole velocity vector.
We apply the feedback control signal

—e(u—uy) (3)

to the right-hand side of Eq. (1a), where u; is the x compo-
nent of the velocity field of the target, and & (£¢>0) is the
control strength. In the present work, we use solutions of the
NSE [21], which are spatially periodic and temporally vary-
ing, as the target for the control

= — cos(qx)sin(gy)e 24 ke,
vy= sin(gx)cos(gy)e 24 R,
g=1,23,.... (4)

The control is applied to the turbulent state Fig. 1(b), after
the system has evolved from the initial state of Fig. 1(a) for
t=5, and the evolution has passed the transient stage and
reached the turbulent regime. In order to characterize the
control efficiency, we define a quantity of control error be-
tween the system field and the target field at same time as
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FIG. 2. Control error Eq. (5) vs time for the velocity and the
vorticity when full-time control Eq. (3) with £=1.0 is applied. The
target of Eq. (4) with wave number g=1 is applied.
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i=1,j=1

op(t) = ([AF(x,y. ) )" = (256)*

(5)

where AF(x,y,t)=F(x,y,t1)—F/x,y,t),i,] represent the grid
indices, and F may indicate a velocity component of the flow
or the vorticity defined as w=v,—u,.

In Fig. 2, we present the control results of the global
feedback Eq. (3) with the target Eq. (4) with g=1. It is ob-
served that the global control method can successfully sup-
press flow turbulence, i.e., the control errors of the velocity
components and the vorticity decay to small but nonzero
constants in the given time interval 7=50. Nevertheless, this
nonzero value shows a certain imperfectness of control. In
the next section we will show that these control errors can be
considerably reduced (i.e., the control result is considerably
improved) by applying sporadic control.

III. CONTROLLING FLOW TURBULENCE WITH
SPORADIC FEEDBACK SIGNAL

The central task of the present paper is to improve the
precision of flow turbulence control. Namely, we focus on
how to decrease the nonzero control error for a given control
time length 7. Intuitively, one may expect that increasing the
energy of the driving signals may achieve better control re-
sults. Here we are interested in something different, namely,
in improving our control effect without increasing the input
energy, and with smaller total control energy. Therefore we
will keep the global feedback control idea with the control
strength & unchanged, and try to achieve a better control
result by changing the way feedback signals are injected.

Here we propose a control strategy of sporadic feedback.
The idea of sporadic feedback is the following. The feedback
control signal functions for sporadic times kr7<¢<(k+vy)7
and ceases to work otherwise (see Fig. 3). With sporadic
feedback control Eq. (1a) is modified to

du  Ju  Ju_ dp L<@+@>_s(t)(u—ur),

+ 2 2
ot ox y ox Re\dx~ dy
(6a)
v v v dp 1 Fv  Pu
—Hu—+v =+ |5 > 1 (6b)
t ox dy dy Rel\d. ay
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FIG. 3. Schematic figure of the sporadic control of Eq. (6¢). The
instant control strength &() varies between 1 and 0, and the fraction
of control time is 7.

s(t)z{s forkr<t<(k+y)r, (6)

0 otherwise,

0=<y<l,

k=0,1,2,....

The ratio 7y is the fraction of time period when control is
applied. We find that there exists an optimal fraction y<<1 at
which the control reaches the best efficiency (the smallest
control error o), considerably better than that of full-time
control of y=1.

In Fig. 4(a), we do the same as in Fig. 2 with sporadic
feedback using 7=0.5 and y=0.55. It is observed that spo-
radic control can suppress flow turbulence faster than full-
time feedback control of Fig. 2, and the control errors decay
to values smaller than those of full-time control for the same
evolution time period (T=50). In Fig. 4(b) we plot the con-
tour figure of the vorticity field after the sporadic control of
Eq. (6¢) is applied to the turbulent state Fig. 1(b) for =T
=50. The ordered target is perfectly realized and the turbu-
lent state of Fig. 1(d) is satisfactorily suppressed. In order to
have a quantitative comparison between various sporadic
controls for different y and 7, we plot in Fig. 5(a) o,(50) vs
vy for 7=0.25 (black squares) and 7=0.5 (circles), respec-
tively. We find an optimal ratio about y=0.55, at which spo-
radic control can reach minimum vorticity control error,
which is about eight times smaller than that for the full-time
feedback control. In Figs. 5(b)-5(d) we plot the contours of
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FIG. 4. (a) The same as Fig. 2 with sporadic control of 7=0.5
and y=0.55 applied. The control errors are considerably reduced
with the part-time control of y=0.55 in comparison with the full-
time control of Fig. 2. (b) Contour plot of the vorticity field of the
system at r=50. The target is reached perfectly with the application
of sporadic control of 55% control time.
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FIG. 5. (a) Control errors defined in Eq. (5) vs the fraction of
control time . The control strength and the target state are the same
as Fig. 2. There exists an optimal fraction y=0.55, at which the
control can reach much higher (about eight times higher) control
precision than the full-time control of y=1. (b)-(d) The contour
plots of vorticity error defined in Eq. (7) for 7=0.5 and different
v's. (b) y=0.35. (¢c) y=0.55. (d) y=1.0. The scale of the three
contour plots are identical.

Aw(-xny) = w(x’Y) - wT(X»}’)’ (7)

for different y. It is clear that with the same scale measuring
the control errors, Aw for the optimal y (y=0.55) is not
directly viewable while these errors can be observed clearly
for both larger (y=1.0) and smaller (y=0.35) v’s.

The behavior shown in Figs. 4 and 5 is interesting as well
as surprising. In chaos control we are familiar with various
sporadic control methods which are usually applied for the
sakes of saving control energy or better masking the mes-
sages of transmitted signals [23-25]. Nevertheless, it is gen-
erally accepted that sporadic control with a larger fraction of
control time [i.e., larger v in Eq. (6¢)] can reach better con-
trol results than with a smaller fraction of control time, be-
cause longer time injection can inject larger control energy,
and this is favorable to the suppression of turbulence. In this
regard, the effect of full-time control (y=1) is expected to be
always better than that of part-time sporadic control (1>
>0). In Fig. 5(a) we find that o,(50) decreases (i.e., the
control precision increases) as vy decreases (the control time
decreases) from y=1, and this is strongly against the above
intuition. We will explain heuristically this anti-intuition phe-
nomenon in the next section.

IV. MECHANISM UNDERLYING THE HIGH EFFICIENCY
OF OPTIMAL SPORADIC TURBULENCE CONTROL

The results in Fig. 5 can be heuristically understood,
based on mode-mode interactions. We make the Fourier
transformation of u# and v as
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F(x,y,t) = 2 [A g (m,n,t)cos(mx)cos(ny)

m=0,n=0
+ App(m,n, t)sin(mx)cos(ny)
+ Ap.(m,n,t)cos(mx)sin(ny)

+ Apg(m,n,t)sin(mx)sin(ny)],

F=u,,p, (8)

where A(m,n,t) is the amplitude of a mode (m,n). There are
four types of modes (a, b, ¢, d) for a single wave number
(m,n). By using the incompressibility condition Eq. (1b), we
obtain

mA ,(m,n,1) = — nA,.(m,n,t),
(9a)

mA ., (m,n,1) = nA, (m,n,1),

mA,(m,n,t) =—nA,,(m,n,t), mA,(m,n,t)=nA,,(m,n,t),

(9b)

Aua(m?o’t) =Aua(09n,t) = 0’ Aub(m507t) =Ayc(07n’t) = 07
(9c)
A,.(0,n,1) # A,,(m,0,1), A,(0,n,1) # A,,(m,0,1),
(9d)

nm % 0.

The reason why the two components of the velocity field of
NSE can be controlled to the periodic target by applying
feedback injections to a single component only can be ex-
plained through mode-mode interactions. In order to under-
stand the control mechanism, we transform the controlled
NSE (6) to the mode amplitude form as

0A, (m,n,t 1
u( ) = S[AT(m9n’t) —AM(M,n,l‘)] - _(m2 + nz)
ot Re
XAu(man7t) _Pu(m,nJ) + [5im,(m,n,t)
- 5(,un,(m,n,t)Au(m,n,t)], (10a)
JA (m,n,t 1
—”( ) =— —(m? +n®)A,(m,n,t) - p,(m,n,1)
ot Re

+ [ 8 (m,n, 1) = 8, (mun,)A, (m,n,1)].
(10b)

The last terms of the right-hand sides of Eq. (10) &,,(m,n,t)
and §,,,(m,n,1)A(m,n,t) have rather complicated forms re-
lated to mode-mode interactions such as

u—+uv—. (11)

Instead of specifying their complicated forms, we simply re-
mark that 8, (m,n,t) and 8,,(m,n,1)A(m,n,t) are related to
the energy gain and energy loss of mode (m,n) through
mode-mode interactions, respectively, and they decease as
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the amplitudes of the interacting modes decrease. From Eq.
(10) it is clear that the feedback signal is applied to the u
component, and thus all modes of this component are di-
rectly controlled. On the other hand, the modes of v compo-
nent appearing in Egs. (9a)—(9¢) are coupled with some of
the u modes strictly through the incompressibility condition,
and thus can also be regarded to be controlled by the feed-
back signal directly (called the direct modes). Since the feed-
back control has a dissipative nature, all the above modes
may be driven by the control signal to zero or to the target
[(1,1) mode] in a direct way. However, there exist some
modes of the v component [the v-modes in Eq. (9d)] which
are neither directly controlled by the feedback signal, nor
strictly related to the direct modes. These modes are indi-
rectly controlled modes (simply called the indirect modes
afterwards), they are influenced by the control through the
mode-mode interactions of the NSE dynamics Eq. (10), and
these modes have relatively lower damping rates. In particu-
lar, the indirect modes with small wave numbers (i.e., small
m) have the most serious effects on the control errors. On the
one hand, these modes damp to zero slowly, yielding large
o, li.e., large A, (m,0,7)]. On the other hand, these large
A,(m,0,1) can also influence the direct modes though mode-
mode interactions [i.e., yield relatively large &,,,(m,n,1)] and
make the direct modes damp to zero slowly too. This leads
also to relatively large control errors o, and o,

Based on the above picture we can heuristically explain
why the optimal part-time control can achieve results better
than that of the full-time control. With full-time control, the
direct modes may damp quickly in the early stage of the
evolution, while the indirect modes hardly feel the influence
of the control, so that the amplitudes of the direct modes
become very small in comparison with the indirect modes.
This makes the coupling from the direct modes to the indi-
rect modes ineffective and consequently makes the damping
of the indirect modes slow. The slowness of the indirect-
mode damping produces the large control error o, in Fig. 2
and also a relatively large control error o, through the cou-
pling. With the optimal sporadic feedback, the direct modes
damp a bit slowly and both the direct and the indirect modes
have similar damping rates. Then the amplitudes of both di-
rect and indirect modes are comparable, and there exist rela-
tively large interactions between both types of modes, allow-
ing all the modes to damp more effectively than the full-time
control. This effect considerably reduces the control errors in
Fig. 4. This explanation is supported by the following obser-
vation: full-time control of y=1 is always better than any
sporadic control of y<<1 if the feedback signals are applied
to both # and v components as shown in Fig. 6. (Then all
modes are directly controlled by the feedback signals and
mode-mode interactions are not of crucial importance for the
control.)

The investigation of Sec. III was conducted for a target
with wave number g=1, and a single quantity of control
error oy [Eq. (5)] was used for measuring the control results.
To end the present section we briefly discuss the control
results for a target with high wave number by measuring the
behavior of some other important physical quantities. Spe-
cifically, we use the target of Eq. (4) with ¢=3, and study the
evolutions of energy E and enstrophy E,,
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FIG. 6. The same as Fig. 5(a) with both components («,v) of
Eq. (1) being controlled by the feedback signals &(7)(ur—u) and
e(t)(vy—v), respectively, with T=15, 7=0.25,0.5. Since all modes
are directly controlled by the feedback signals, mode-mode interac-
tions are not crucial for the control efficiency. Now o, (T=15) is
minimum at full time control y=1, and o ,(15) increases monotoni-
cally as 7y decreases.

E(7) J (u® + v?)dxdy, (12a)

__1
T 202m)?

E, ()= (12b)

! f 2dxd
202m2 ) ¢
respectively.

In Fig. 7(a) we do the same as Fig. 5(a) with target uy
replaced by g=3. The optimal sporadic control can be ob-
served at y=~0.41. In Figs. 7(b) and 7(c) we measure the
energy E and enstrophy E, respectively, for the case of free
evolution (solid lines). It is found that the energy of turbulent
flow damps slowly, and the enstrophy damps quickly in the
early time stage and then decreases slowly at a certain non-
zero level (about E,=0.26). On the other hand, with control
both energy and enstrophy (with the target components ex-
cluded) damp much quicker than those without control, indi-
cating quick suppression of turbulence by control [dashed
lines in Figs. 7(b) and 7(c)]. In Fig. 7(d) we plot a snapshot
of the contour pattern of the vorticity field at 7=50 under
control. The ¢=3 mode ordering (with some imperfectness)
is obviously established. In order to understand the detailed
evolution and exchange of the energy of different modes, we
define the energy of g mode as

1

E0 2wy

f (ulzi + vlzi)dxdy,

u,(t) == A,(g,t)cos(gx)sin(gy),
v,(t) =A,(g,1)sin(gx)cos(qy),

g=1,2,...,10 (13)

and we plot variations of the energies of various g modes
without [Fig. 8(a)] and with [Fig. 8(b)] control. It is observed
that without control the energies of different modes oscillate
randomly with time, together with a slow damping. The
modes of large wave vectors have smaller energies. With
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FIG. 7. Results of sporadic control with 7=0.5 and the target
state  u3p=—0.5 cos(Sx)sin(?ay)e‘zX33’/Re and  v37=0.5 sin(3x)
Xcos(3y)e‘2X33’/Re. The control strength is €=3. (a) The same as
Fig. 5(a) with the target replaced by ¢=3. An optimal time fraction
of control y=0.41 is seen. (b)—(d) Part-time control with y=0.41 is
applied. (b) Solid line: E(f) defined in Eq. (12a) without control
plotted vs ¢. Dashed line: E” defined by the difference of the total
energy E of Eq. (12a) and the target mode energy. E~ damps much
more quickly than E(f), indicating the quick suppression of turbu-
lence by control. (c) The same as (b) with the enstrophy E, mea-
sured. (d) Contour pattern of the vorticity field of the system under
control at ¢=50.

control the energy of the target mode increases quickly to a
certain value and then remains there almost unchanged over
the time interval =< 7=50. Note that the target energy should
also damp according to the rule of Eq. (4); the damping rate
is, however, very small for large Reynolds number Re> 1.
An interesting observation in Fig. 8(b) is that E5 can increase
from a value much smaller than E; and E, to a value much
larger than them, indicating an upstream energy flow by tur-
bulence control.

FIG. 8. Energy E, of modes (¢,9), ¢=1,2,...,10 plotted vs .
(a) Energies E, plotted vs time without control. (b) Energies E,
plotted vs time with sporadic control of y=0.41. The control pa-
rameters and the target state are the same as Fig. 7(d).
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V. CONCLUSION

In summary, we have studied the problem of controlling
flow turbulence by applying global sporadic feedback signals
to a single velocity component. We find that part-time spo-
radic control may obtain better control results than full-time
control if the fraction of control time is properly chosen. It is
a significant result to use lower energy for the control signals
to achieve lower control error with the same control strength
and the same evolution time length. This interesting achieve-
ment is physically understood based on mode-mode interac-
tions during the control process.

The practical realization of dynamical control of flow tur-
bulence turns out to be a difficult and complicated task from
an engineering perspective. The control scheme used in the
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present study is an active control strategy. This method re-
quires instant variable measurement, and immediate feed-
back injection. Such direct flow manipulations are difficult.
Nevertheless, we can expect that the realization of this con-
trol strategy may become possible with the development of
new microsensors and microactuators of micron size, fabri-
cated by microelectromechanical-systems (MEMS) technol-
ogy. Our theoretical work will shed light on flow turbulence
control in realistic applications.
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