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We show that the nontwist phenomena previously observed in Hamiltonian systems exist also in time-
reversible non-Hamiltonian systems. In particular, we study the two standard collision-reconnection scenarios
and we compute the parameter space breakup diagram of the shearless torus. Besides the Hamiltonian routes,
the breakup may occur due to the onset of attractors. We study these phenomena in coupled phase oscillators
and in non-area-preserving maps.
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I. INTRODUCTION

Dynamical systems are usually divided into two classes,
conservative and dissipative systems. Although this division
is conceptually useful, it can be misleading as far as there are
systems that display both dissipative and conservative
�quasi-Hamiltonian� dynamics, not only for different control
parameters but also coexisting in different regions of the
phase space. Systems with this counterintuitive property are
time reversible �1� but not Hamiltonian. Two decades ago
Politi et al. �2� reported on a system of this type in a set of
differential equations modeling a laser, and later other ex-
amples in arrays of Josephson junctions �3,4� and coupled
phase oscillators �5� have been investigated.

Recently, many fundamental studies in Hamiltonian dy-
namics have focused on nontwist systems, i.e., systems
where the twist condition is violated. The twist condition
asserts the nondegeneracy of the frequencies in the integrable
regime and it is assumed in many fundamental mathematical
results �6�. In generic situations we expect it to be locally
violated. In such cases it was shown that genuine nontwist
phenomena appear �7,8�. More recently, it has been shown
that such nontwist effects are fundamental for the under-
standing of many different physical systems �see Ref. �9� and
references therein�, e.g., the magnetic field lines in reversed
shear tokamaks �9–11� and the zonal flows in geophysical
fluid dynamics �12�.

In this paper we provide a link between these two aspects
of classical dynamics by showing that the nontwist phenom-
ena, studied so far in Hamiltonian systems, occur also in
time-reversible non-Hamiltonian systems. In particular, we
show the standard collision and reconnections around the
shearless torus and we study its breakup in a two-
dimensional parameter space. Regarding the breakup of the
shearless torus, we show that the usual Hamiltonian routes as
well as a “dissipative route” exist in time-reversible non-
Hamiltonian systems.

The paper is organized as follows. In Sec. II we present
the definition of the twist condition and discuss the class of
systems where it is expected to fail. In Secs. III and IV we
present examples of the nontwist behavior in time-reversible

non-Hamiltonian systems in continuous and discrete time,
respectively. We summarize our conclusions in Sec. V.

II. TWIST CONDITION IN TIME-REVERSIBLE SYSTEMS

The study of near-integrable Hamiltonian systems has led
to one of the greatest successes of modern classical mechan-
ics. Near-integrable Hamiltonian systems can be written as
H�I ,��=H0�I�+�H1�I ,��, where �I ,�� are the action-angle
variables of the integrable Hamiltonian, H0. In this approach,
many important mathematical results �e.g., the Kolmogorov-
Arnol’d-Moser �KAM� theorem� are valid assuming some

nondegeneracy condition of the frequencies �̇k=�H0�I� /�Ik

�see, e.g., Appendix 8 of Ref. �6��. The most common non-
degeneracy condition is the twist condition, defined as

det� ��̇k

�Ij

� � 0 and det� ��n+1
�k�

�In
�j� � � 0 �1�

for continuous- and discrete-time systems, respectively.
While the continuous version needs some modification when
the dynamics is restricted to a specific energy shell �6�, the
discrete version can be directly applied to both maps and the
reduced dynamics obtained by a Poincaré section of the flow.
In the �near-�integrable regime the twist condition assures
that the frequency of the invariant tori varies monotonically
with the action. Conversely, a local violation of the twist
condition usually implies the existence of a torus with maxi-
mum or minimum frequency, the so-called shearless torus.
Around the shearless torus different nontwist phenomena
were discovered in Hamiltonian systems, e.g., separatrix re-
connections and island chain collisions �7�, manifold recon-
nections of hyperbolic points in the chaotic regime �13�, me-
andering �14�, and the fractality of the shearless torus at
criticality �8,15,16�. These phenomena were observed in
area-preserving maps �7,8,17� and Hamiltonian flows with
one and a half �12,18� and two �19� degrees of freedom and
they typically have a strong impact in transport properties of
the system.

In this paper we show the existence of the nontwist phe-
nomena in time-reversible non-Hamiltonian maps and flows.
A dynamical system is called time reversible if there is an
involution G �i.e., G2= Id� that reverses the direction of time.
For example, for dynamical systems described by a first-
order differential equation dx /dt=F�x� or by a mapping
xn+1=Lxn reversibility implies �1�
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d�Gx�
dt

= − F„G�x�… and L � Gxn+1 = Gxn, �2�

respectively. This condition alone does not ensure the obser-
vation of quasi-Hamiltonian dynamics. Additionally, the di-
mension of the invariant set of G should be large enough
compared to the dimension D of the phase space. As dis-
cussed by Topaj and Pikovsky �5� dim�Fix�G���D /2 �D
even� ��D−1� /2 �D odd�� is usually required for continuous
systems.

The twist condition is defined for time-reversible non-
Hamiltonian systems locally in the regions of the phase
space where quasi-Hamiltonian dynamics is observed. Simi-
lar to the Hamiltonian case, a regime where the dynamics is
locally integrable is needed in order to define action-angle
variables �I ,�� to be used in Eq. �1�. Many fundamental re-
sults have been obtained for the quasi-Hamiltonian dynamics
of time-reversible non-Hamiltonian systems �2� �including
the extension of the KAM theorem with the same optimal
nondegeneracy conditions �20��, but until now there was no
systematic study of the breakdown of the twist condition in
these systems.

A major question in this context is in which kind of sys-
tems �Hamiltonian or time-reversible non-Hamiltonian� the
violation of the twist condition is to be expected. Though we
do not intend to give a general answer to this question, we
note that systems possessing a symmetry in the phase space,
apart from time reversibility, exhibit naturally a shearless
torus. Considering that two tori related by this symmetry
have the same frequency, and assuming continuity, we con-
clude that in the integrable limit there is at least one shearless
torus between the two symmetric tori. This torus is invariant
under the symmetry, what can be used �together with the
involution G� to locate indicator points �IPs� �16�. IPs are
points that belong to the shearless torus whenever it is not
broken. Further examples are dynamical systems described
by phase variables �i.e., evolving on TD�, where the symme-
try is given by the periodicity �=�+2� of the variables.
This case is exemplified in Fig. 1 for a non-Hamiltonian
time-reversible system composed of phase oscillators, de-
scribed by Eq. �5� below. Figure 1�a� shows that the phase
space of the system is foliated by tori. Figure 1�b� shows the
rotation number of these tori as a function of one phase space
variable for three different control parameters �. Due to the
periodicity of the phase variables, at least two shearless torus

exist �maxima and minima of the frequency�. As emphasized
in Fig. 1, one is located at the diagonal and the second con-
tains the IPs �1=−�3= ±� /2.

III. CONTINUOUS-TIME SYSTEMS

Time-reversible non-Hamiltonian flows are encountered
in several physical situations �see �1� for a survey� such as an
externally injected class-B laser �2� or arrays of N coupled
differential equations �3,5�. One system where the properties
discussed in Sec. II can be found is an array of N coupled
phase oscillators like the one considered by Topaj and
Pikovsky�5�:

	̇k = 
k + �f�	k−1 − 	k� + �f�	k+1 − 	k�, k = 1, . . . ,N , �3�

with boundary conditions 	0=	1, 	N+1=	N and vanishing
coupling when the phases of the oscillators are equal, i.e.,
f�0�=0. Taking the phase differences �k=	k+1−	k the num-
ber of variables is reduced by 1:

�̇k = �k + �f��k−1� + �f��k+1� − 2�f��k�, k = 1, . . . ,N − 1

�4�
with �k=
k+1−
k.

If f is an odd function and the natural frequencies are
taken symmetrically �k=�N−k the system is reversible. The
associated involution �2� is G :�k→�−�N−k; and Fix�G� is
given by �k+�N−k=�. In order to visualize the nontwist phe-
nomena mentioned in Sec. II we restrict ourselves to three
variables �N=4 in Eq. �4��, and we analyze the dynamics by
means of a two-dimensional Poincaré section at �2=� /2.
The set of differential equations �for concreteness we already
take f�·�=sin�·�� we will study is

�̇1 = � − 2� sin �1 + � sin �2,

�̇2 = 1 − 2� sin �2 + � sin �1 + � sin �3,

�̇3 = � − 2� sin �3 + � sin �2, �5�

where �rescaling coupling and time� we may set �2=1. In
addition to the coupling variable �, we take ���1=�3 as a
second parameter of our system. This allows a better explo-
ration of the behaviors of the systems �e.g., codimension-2
points�; and it is also useful in order to compare our results
to those obtained in the so-called standard nontwist map by
two-parameter sweep �14,16�.

Figure 1�a� shows a Poincaré section of the phase space
for small coupling �. Phase space is foliated by tori with

FIG. 1. �Color online� �a� Poincaré section
��2=� /2� of the system in Eq. �5� for �=1,�
=0.2 where two nontwist tori are emphasized. IPs
are marked with the symbol �. �b� Rotation num-
ber of the tori as a function of the coordinate �3

at fixed �1=−� /2 for �=1 and different values
of � �see legend�.
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different rotation numbers r �Fig. 1�b��. Equation �5� is in-
variant under the transformation �1,3→�3,1 which imposes
the existence of the invariant manifold �1=�3 that corre-
sponds to the diagonal shearless torus in Fig. 1. The symme-
try with respect to this diagonal torus together with the in-
volution G that maps a torus into itself allow us to locate the
IPs ��1=−�3= ±� /2� for the off-diagonal shearless torus
showed in Fig. 1 �we will refer to it as the shearless torus
�ST��. For the case �=0.2 illustrated in Fig. 1�a� there are
no further shearless tori. However, increasing the control
parameter the rotation number of these tori may pass
from maximum to minimum �or vice versa� creating other
pairs of shearless tori �e.g., �=0.3 shown in Fig. 1�b��. We
are specially interested in the region around the ST, where
we will report in what follows the nontwist phenomena men-
tioned in Sec. II.

A. Collision-reconnection scenarios

We start describing the two standard collision-
reconnection scenarios studied so far in nontwist Hamil-

tonian systems �7,30�. Figure 2 shows the two scenarios for
our system: periodic orbit collision �Figs. 2�a�–2�c�� and
separatrix reconnection �Figs. 2�d�–2�f��. We find the same
phenomena as in Hamiltonian systems, the only appreciable
difference being the local non-volume-preservation of the
flow �5�. Since in the quasi-Hamiltonian dynamics the phase
space volume is preserved only in time average, we see in
Figs. 1�a� and 2 bunches of tori compressed and expanded in
different regions of the phase space and Poincaré-Birkoff
chains composed of islands of different sizes. Apart from
these nonsymplectic features, Fig. 2 essentially displays the
two standard scenarios.

�i� Figures 2�a�–2�c� show the collision sequence of two
symmetry related Poincaré-Birkhoff chains with 3:4 rotation
number, by increasing � at fixed �. The collision occurs in
Fig. 2�b�, and in Fig. 2�c� one may see the resulting dipolar
structures formed by two saddle cycles on the torus and one
center at each side of the ST. When � is increased further the
dipolar structure shrinks and finally disappears �at the point
where the two saddle cycles on the torus annihilate each
other�.

FIG. 2. �Color online� Poincaré section of
system �5� for fixed �=0.25 and different values
of �. Sequence �a� �=0.868, �b� �=0.868 760 6,
and �c� �=0.869 illustrates the collision of 3:4
island chains. Sequence �d� �=0.801, �e� �
=0.801 523, and �f� �=0.802 illustrate a recon-
nection around 2:3 resonances.
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�ii� Figures 2�d�–2�f� show the reconnection scenario.
Twin Poincaré-Birkhoff chains with 2:3 rotation number are
out of phase �Fig. 2�d�� and approach each other with the ST
between them. At a critical parameter �27� the separatrices of
both islands reconnect �Fig. 2�e��. Finally, past the bifurca-
tion, the torus exhibits a characteristic meandering, due to
the exchange of saddles between the two involved chains of
islands.

As usually found in the literature, scenario �i� is observed
for rotation numbers with even denominators, whereas sce-
nario �ii� applies to odd denominators. Nevertheless, as dem-
onstrated in �11�, scenario �i� is not expected in the absence
of symmetries �scenario �ii� is then observed for both even
and odd cases� �see, e.g., �19��. As final remarks we mention
that the shearless torus on the diagonal also exhibits the col-
lision scenario �type �i��. Heuristically the reconnection sce-
nario �type �ii�� cannot occur because this torus is con-
strained to the diagonal and cannot meander. Another remark
is that for resonances with small denominator �e.g., 1:1 and
1:2� a more complicated reconnection scenario occur due to
the interplay of simultaneous resonances of both shearless
tori �the diagonal one and the ST�.

B. Destruction of the shearless torus

Our next numerical experiment was to vary the two con-
trol parameters �� ,��, in order to find the region of param-
eter space where the ST exists, and in this way understand
the routes for the destruction of the ST. Due to the rather
difficult numerical implementation of our system �if com-
pared to a two-dimensional map�, we needed to find an effi-
cient method to detect the existence of the ST for a large set
of parameter values. By far the most efficient way we found
was to resort to Slater’s theorem �21�. In short, we start an
initial condition at one IP and we check whether the number
of different recurrence times to a small box around this point
is at most 3 �see the Appendix for details�.

The result of our calculation is shown in Fig. 3. The

shaded region indicates the parameter values where the ST
exists, while in the white zone the ST does not exist. The
fractal character of the border limiting these two regions is
apparent �see inset� �cf. �14,16��. The solid lines indicate the
regions where a few collisions �1:2,3:4� and reconnections
�2:3,1:1� occur. Regions where a couple of saddle orbits lie
on the ST �as in Fig. 2�c�� are considered as regions where
the ST exists �hence the shaded region between the two 1:2
lines in Fig. 3�. As expected, the torus breakup is favored by
the global bifurcations at the collisions and reconnections,
and accordingly there is a match between the solid lines and
the white “wedges” in Fig. 3. Singular points at the tips of
the shaded region correspond to noble irrational rotation
numbers where the torus is expected to be fractal �15,22,23�.
Figures 4�a� and 4�b� show the torus just before and after
destruction.

Since the system is not Hamiltonian the existence of at-
tractors cannot be excluded �5�. For instance, below the dot-
ted line �denoted FP line� in Fig. 3 a globally attracting fixed
point exists �a periodic orbit in the full phase space�. Dissi-
pation introduces alternative ways for the destruction of the
ST, as shown in Figs. 4�c� and 4�d�. The bifurcation mecha-
nism for the system �5� follows. At the FP line a marginally
stable fixed point is created on the invariant set of G at �1
=� /2 �=�3�. This point belongs to the diagonal shearless
torus, which is broken only through this bifurcation. Below
the FP line four fixed points exist: one attractor, one repeller
�mirror of the attractor as demanded by reversibility�, and
two saddles on the invariant set of G �see Fig. 4�d��. Going
back to the original system of N=4 phase oscillators, the FP
line marks the onset of synchronization of oscillators 1-2,
and 3-4 �i.e., a two-cluster state�. Note that the usual saddle-
node bifurcation in this kind of transition to synchronization
is forbidden due to reversibility: for every attractor a mirror
repeller must exist. In a wide region above the FP line a
�chaotic� attractor and a set of Hamiltonian-like tori sur-
rounding the diagonal torus coexist.

FIG. 3. �Color online� Parameter space �� ,��
of Eq. �5�. The shaded region indicates the pa-
rameters where the ST exists; the inset evidences
the fractal structure of the border. Several solid
lines indicate the collision-reconnection param-
eters for rotation numbers 1:2, 2:3, 3:4, and 1:1.
The symbols ��, �, �, �� are located at param-
eter values with characteristic dynamics shown in
the corresponding figures. The dotted line FP
marks the onset of an attracting fixed point in the
system.
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C. Other systems

In addition to the system studied above, Eq. �5�, it is
interesting to mention the case of an array of N Josephson
junctions subject to a parallel resistive load. This case may
be described by globally coupled phase oscillators �see �3�
where the case N=2 is studied in detail�. For N=3 and as-
suming that two of the junctions �say j=1 and 3� are identi-
cal, we get a set of equations with the same symmetries as in
Eq. �5�:

�̇1 = 
 + a sin �1 +
1

3�
j=1

3

sin � j ,

�̇2 = 
̃ + ã sin �2 +
1

3�
j=1

3

sin � j ,

�̇3 = 
 + a sin �3 +
1

3�
j=1

3

sin � j . �6�

We have observed in this system the same collision-
reconnection scenarios described previously for system �5�.
As before, the diagonal torus �1=�3 ceases to exist by the
onset of a stable fixed point �of the Poincaré section �2
=� /2�. However, differently from system �5�, at first this
stable fixed point is not globally attracting �as in the N=2
case studied in �3��. Thus, the “dissipative breakup” of the
off-diagonal shearless torus does not occur right after the
bifurcation but only when the basin of attraction of the fixed
point becomes the whole phase space.

IV. DISCRETE-TIME SYSTEMS

A simple procedure to obtain a time-reversible map is to
integrate a time-reversible differential equation ẋ=F�x�
semi-implicitly �28�:

xn+1 − xn = k�F�xn+1� − F�xn�� , �7�

where k measures the finite-time integration step. Applying
this procedure to equations of phase oscillators, similar to
those studied in Sec. III, we have obtained time-reversal
maps on the torus where the same nontwist phenomena were
observed. Certainly, the fact that mapping �7� is defined im-
plicitly has several drawbacks; however, avoiding details, we
note that the methods to construct �explicit� time-reversal
mappings described in Ref. �1� are not suited for the torus
topology. In this section we study a different two-
dimensional time-reversible explicit map defined on a cylin-
der, which illustrates that nontwist phenomena are not re-
stricted to dynamics on a torus.

Consider the following map L:

yn+1 =
yn + a sin�2�xn�

1 + byn sin�2�xn�
,

xn+1 = xn + cos�2�yn+1� mod 1, �8�

which is a particular example of a class of time-reversible
maps discussed on p. 103 of Ref. �1�. Equation �8� diverges
for 1+byn sin�2�xn�=0 and thus we restrict it to the in-
variant region −�a

b 
y
�a
b �limited by the invariant lines

y= ±�a
b � and the control parameters to 0�ab
1.

The map �8� can be written as L=M1 �M2, where M1,2 are
the following involutions:

FIG. 4. �Color online� Two different routes
for the breakup of the shearless torus: �a�, �b�
Hamiltonian-like through critical point and �c�,
�d� dissipative. �a� Torus near criticality �
=0.425 256, �=1.0335 �the inset shows the frac-
tal structure of the torus�. �b� Torus after critical-
ity �=0.425 257, �=1.0335 �the inset show that
the torus is destroyed�. �c� Near-integrable phase
space �=0.1, �=0.2. �d� Attracting fixed point
�=0.11, �=0.2.
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M1 : x� = − x, y� =
y + a sin�2�x�

1 + by sin�2�x�
,

M2 : x� = − x + cos�2�y�, y� = y .

This property ensures time reversibility under G=M2
�1�. The determinant of the Jacobian is given by

J=
1−ab sin2�2�x�

�1+by sin�2�x��2 and shows that the map is Hamiltonian only

in the case b=0 �when one recovers the Harper map �17��. In
the limit of small control parameters the dynamics of map
�8� can be considered as a perturbation of an integrable
Hamiltonian system and it remains integrable almost every-
where since the KAM theorem, generalized to time-
reversible systems, applies �20�.

In Sec. III we argued that when at least one symmetry is
present in the system, apart from time reversibility, the twist
condition must be violated in the near-integrable regime.
In the case of map �8� this symmetry is given by x�=x
+ 1

2 ,y�=−y, which can be used �together with M2� to deter-
mine the indicator points x=0.25,y=0 and x=0.75,y=0. Ac-
cording to Eq. �1� the twist condition is violated in map �8� at
y=−a sin�2�x�. In the upper inset of Fig. 5 we show the
phase space of the map �8� for a=0.11, b=5. The ST inter-
sects the curve where the twist condition is violated �8�. Us-
ing the method described in the Appendix we determined the
regions of the parameter space �a ,b� where this torus exists.
The results are shown in Fig. 5 where a fractal-like border
similar to the one observed in Fig. 3 is clearly recognizable.
Indeed, we have observed numerically that all nontwist phe-
nomena discussed in Sec. III are also observed in the time-
reversible non-area-preserving map given by Eq. �8�.

V. CONCLUSIONS

Time reversibility does not appear exclusively in Hamil-
tonian systems. Remarkably, there are time-reversible non-
Hamiltonian systems that may exhibit, in addition to dynam-
ics approaching an attractor, quasi-Hamiltonian dynamics.

While major results in this context have been achieved in the
past 20 years, a complete understanding of which features of
Hamiltonian dynamics can be extended to reversible systems
is still lacking.

Frequently, time-reversal symmetry is not the only sym-
metry of a system, in which case we have argued that the
twist condition �i.e., the nondegeneracy of the frequencies� is
violated. We have investigated the existence of nontwist phe-
nomena, previously studied in Hamiltonian systems, in time-
reversible non-Hamiltonian systems. From our results, ob-
tained in both continuous- and discrete-time systems, we
may conclude that the same nontwist phenomena are repro-
duced in non-Hamiltonian systems. In order to study the
breakup of the shearless torus we have developed a numeri-
cal method to compute the parameter space breakup diagram
�see Appendix�. Our method is potentially useful in a wide
class of problems concerning the detection of quasiperiodic
motion in a multiparameter space. We have identified the
parameter regions of the usual Hamiltonian routes of
breakup of the shearless torus �through collision-
reconnection and through a critical-fractal torus� and the pa-
rameters where the breakup is due to the onset of attractors.

Besides the theoretical interest of expanding the class of
systems where the nontwist phenomena occur, our results are
relevant for the comprehension of specific time-reversible
non-Hamiltonian systems. Many dissipative systems posses
an attractor of limit-cycle type where a marginally stable
phase dynamics exists. The interaction of such systems may
lead to quasi-Hamiltonian phase dynamics, in which case
nontwist phenomena should be expected. Usually a large
number of oscillators are coupled, what provides additional
motivation for the extension of the nontwist phenomenology
to higher dimensions �31�. Indeed conservative dynamics has
been already observed in phase models such as the dynamics
of solitary waves in chains of dispersively coupled oscilla-
tors �24�, and the finite-dimensional Kuramoto model �25�.
The role of time reversibility and the violation of the twist
condition in these non-Hamiltonian models remains to be
understood.

FIG. 5. �Color online� Parameter space of the
map �8�: shaded regions indicate the parameters
where the ST exists. Above the curve b=1/a the
map is not defined. Lower inset: magnification
showing the white wedge structure in finer scale.
Upper inset: phase space for parameters a=0.11,
b=5.
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APPENDIX

The knowledge of the critical parameter values of a map
where an invariant rotational circle breaks can be crucial in
many situations. We briefly describe here the techniques pre-
viously employed to calculate the breakup diagram of the
shearless torus and we introduce a method that has proven to
be computationally efficient. Even though we have applied
our method to compute the breakup diagram it is rather gen-
eral and we believe that it can be useful whenever quasiperi-
odic motion has to be efficiently detected.

The first breakup diagrams were calculated �16� consider-
ing the torus to be destroyed whenever a trajectory started at
an IP leaves a region that certainly would contain the curve.
A slightly different method was proposed in Ref. �14� using
the fact that a trajectory in a periodic or quasiperiodic motion
leads to a converging winding number. These procedures can
be computationally expensive: in a typical mixed phase
space we expect that a trajectory will stick around the com-
plex structure of cantori and regular islands while wandering
into the chaotic sea and the time needed to detect the nonex-
istence of the tori could be very large. A refined method
relies on Greene’s residue criterion and can be used when
high accuracy is needed �e.g., to precisely locate critical
points in the breakup diagram corresponding to noble rota-

tion numbers� while it is not suited to explore a large param-
eter region �8,22�.

Here we take advantage of a simple property of rotations
in one dimension to develop a method that is together fast
and quite robust, and hence suited to scan a large set of
parameters. The quasiperiodic dynamics restricted to the
torus can be reduced to a simple rotation of the circle using a
natural parametrization of the curve �an example can be
found in �26��. Slater’s theorem �21� states that for any irra-
tional rotation � and for any connected interval there are at
most three different return times. Moreover, in the case of
three different return times one of them is the sum of the
other two and two of them are always consecutive denomi-
nators in the continued fraction expansion of the irrational
number �.

Accordingly, our method simply consists in counting the
number of different return times of the iterates of the IP x0
inside an arbitrary region that contains a connected part of
the torus around x0 �for the specific cases Figs. 3 and 5 we
used a box centered at one IP �29��. The torus is considered
to be broken whenever the different return times violate the
conditions imposed by Slater’s theorem �e.g., whenever their
number exceeds 3�. When the rotation number of the torus is
not known a priori �as in our case� the additional restriction
that uses its continued fraction expansion cannot be used.

The implementation of the procedure is straightforward
provided one point on the torus is known �IP�. It is evident
that the constraints on the return times are quite restrictive
and they are typically rapidly failing when the torus is bro-
ken and the trajectory enters the chaotic sea.
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