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Critical behavior of a colloid-polymer mixture confined between walls
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We investigate the influence of confinement on phase separation in colloid-polymer mixtures. To describe
the particle interactions, the colloid-polymer model of Asakura and Oosawa [J. Chem. Phys. 22, 1255 (1954)]
is used. Grand canonical Monte Carlo simulations are then applied to this model confined between two parallel
hard walls, separated by a distance D=5 colloid diameters. We focus on the critical regime of the phase
separation and look for signs of crossover from three-dimensional (3D) Ising to two-dimensional (2D) Ising
universality. To extract the critical behavior, finite size scaling techniques are used, including the recently
proposed algorithm of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)]. Our results point to “effective” critical
exponents that differ profoundly from 3D Ising values, and that are already very close to 2D Ising values. In
particular, we observe that the critical exponent 8 of the order parameter in the confined system is smaller than
in 3D bulk, yielding a “flatter” binodal. Our results also show an increase in the critical colloid packing fraction
in the confined system with respect to the bulk. The latter seems consistent with theoretical expectations,
although subtleties due to singularities in the critical behavior of the coexistence diameter cannot be ruled out.
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I. INTRODUCTION

The current technological demand for the production of
nanoscopic devices [1-5] renewed the interest in understand-
ing the phase behavior of fluid systems confined in pores of
nanoscopic linear dimensions [6,7]. In addition, porous ma-
terials with pore widths less than 50 nm are widely used in
the chemical, oil and gas, food, and pharmaceutical indus-
tries, for applications such as mixture separation and pollu-
tion control and as catalysts [6,8—10]. However, many such
applications rely largely on empirical knowledge, since the
theory-based understanding of confined fluids is still rather
incomplete [6,11-15]. Even the basic phenomenon of “cap-
illary condensation” of undersaturated gases in capillaries,
described already in the 19th century [16], still forms the
subject of longstanding investigations by analytical theory
[17-25] and computer simulations [20,26-35]. Regarding
confined binary mixtures, there is a close analogy between
the phase behavior of confined one-component fluids and the
preferential adsorption of one of the components of the mix-
ture to the walls. The miscibility gap of the mixture corre-
sponds to the coexistence curve (or binodal) that describes
the phase separation between liquid and gas in simple fluids,
and numerous theoretical and simulational studies have ad-
dressed the phase behavior of binary mixtures in cylindrical
pores or slit pores [36-47]. Depending on the details of the
wall-particle interactions in relation to the interactions
among the fluid particles of a binary (AB) mixture, it is clear
that there can be either the A-component or the B-component
attracted to the walls, apart from the very special case of
“neutral walls” which produce confinement only [48-50].
Similarly, in a one-component liquid-gas system “capillary
evaporation” [46,51-53] can occur for repulsive wall-particle
interactions. While for the liquid-gas transition and the de-
mixing transition of binary fluids the “order parameter” of
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the transition is a simple scalar, i.e., the transition belongs to
the “universality class” of the Ising (lattice gas) model [54],
related phenomena occur in systems with more complex or-
dering, e.g., confined liquid crystals where “capillary nema-
tization” may occur [55].

Understanding nanoscopic confinement of fluids consist-
ing of small molecules is difficult because the lateral varia-
tion of the wall potential, due to wall roughness or even
atomistic corrugation [56] of the wall potential, may have
drastic effects on the phase behavior of the confined fluid
[57]. In this respect, colloidal systems due to the mesoscopic
size of the colloidal particles pose distinct advantages: ato-
mistic corrugation of the confining wall potentials can safely
be neglected, and there is a great freedom in preparing sys-
tems with suitable interactions [58—60]. A particularly suit-
able class of systems is colloid-polymer mixtures, since both
bulk phase behavior and the interfaces separating the colloid-
rich and polymer-rich phases can be studied experimentally
in detail [61-64]. Furthermore, the Asakura-Oosawa (AO)
model [65,66] provides a simple theoretical description,
which seems to capture all the salient features of such phase-
separating colloid-polymer mixtures, and which is well
suited to computer simulation investigations [46,67-69].

Therefore, we use this model again in the present paper to
address the question: how does the critical behavior near the
demixing critical point change due to the confinement in slit
pores? While on general theoretical grounds one expects
[15,18,34,35,48-50] that in the ultimate vicinity asymptoti-
cally close to the critical point the critical exponents of the
two-dimensional (2D) Ising model should apply [70], this
limiting asymptotic behavior may be hard to observe, and the
need arises to consider the crossover from three-dimensional
(3D) to two-dimensional critical behavior in such thin films
[48-50]. This crossover behavior in itself is a difficult but
interesting problem [49]. Previous work considering this is-
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sue has been restricted to either simple Ising (lattice gas)
models [18,35,48] or strictly symmetric polymer mixtures
confined by neutral walls [50]. The complications due to the
asymmetry between liquid(-like) and gas(-like) phases in the
bulk have not been considered, and also the further asymme-
try arising from the preferential adsorption of one species to
the walls has been disregarded. Due to this preferential ad-
sorption, one expects near the critical point of the bulk the
formation of wetting layers at the walls [15,71-74] if the
width of the slit pore becomes very large.

We note that previous theoretical work on capillary con-
densation (or evaporation) based on density functional theory
(DFT), or other analytical approximations for the equation of
state, inevitably implies a parabolic shape of the binodal near
the critical value 7];,Cr of the polymer reservoir packing frac-
tion 7];, irrespective of whether one considers the bulk mix-
ture or a confined system. Therefore, despite the fact that
such theories are very powerful away from the critical point,
they cannot be used to describe the crossover in the critical
behavior due to confinement. Also previous Gibbs ensemble
simulations of the AO model confined to slit pores [46] did
not address this issue since the Gibbs ensemble cannot be
used to sample the critical point. In the present work, we
therefore extend the grand canonical techniques used in our
previous work on the critical behavior of the AO model in
the bulk [67,68] to study the critical behavior in confinement.

The outline of this paper is as follows. In Sec. II, we
briefly review crossover scaling relations that are expected to
describe the critical behavior of a confined fluid. Next, we
introduce the AO model and describe our simulation method.
In Sec. III, we present our results, using a finite size scaling
analysis of the critical properties for a very thin film of thick-
ness D=50,, with o, the diameter of the hard-sphere col-
loids. We end with a summary and conclusion in the last
section.

II. CROSSOVER SCALING

To define the problem of study more precisely, we recall
that the width of the binodal, or order parameter, of a colloid-
polymer mixture is given by

A= (.- )12, (1)

with 7. (7)) the colloid packing fraction in the colloidal
liquid (vapor) phase. In 3D bulk, the order parameter close to
the critical point is expected to scale as

A(0) =B, t.= /7 () - 1, ()
where B is a (nonuniversal) critical amplitude, and B
~(.326 the (universal) order parameter critical exponent of
the 3D Ising universality class [54,75,76]. The symbol % in
the above emphasizes that 7, is the critical value of the
polymer reservoir packing fraction appropriate for an infi-
nitely thick film, i.e. a bulk 3D system.

In a confined thin film of thickness D, however, the cor-
responding relation reads
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A(D)=B(D),  tp= /7, (D)~ 1. 3)

The critical polymer reservoir packing fraction is thus shifted
from its bulk value 7 (%) to a new value 7% (D). In ad-

p.cr p.cr
dition, the critical amplitude B(D) depends on the film thick-
ness D, and the critical exponent takes the value of the 2D
Ising universality class 8,=1/8 [54,70]. However, as D gets
large, the validity of Eq. (3) is expected to be observable
only in an extremely narrow region around 7p=0. This is
recognized when one formulates the appropriate crossover
scaling description [18,35,48,50,77]

A=D"P"F(D""1,), (4)

where v is the critical exponent of the correlation length for
the 3D Ising universality class [54,75,76], and F(X) a cross-
over scaling function with X=D""t,. Equation (4) may
qualitatively be interpreted using the finite size scaling prin-
ciple [78-81] in which the film thickness D scales with the

correlation length &= ét;”, where é is another critical ampli-
tude. To recover Eq. (2) from Eq. (4), one notes that the
scaling function F(X) must behave as F(X)oX? for X — .
At a fixed small value of t., the D dependence then cancels
out from the equation, as it should. On the other hand, Eq.
(3) may also be recovered from Eq. (4), by postulating that
for small X a singularity occurs when X approaches X,
namely

F(X) =f(X - Xcrit)ﬁ27 X=X <1, (5)

with f‘ another nonuniversal amplitude. This phenomenologi-
cal assumption implies a scaling relation for the shift of the
critical value of the polymer reservoir packing fraction

Xcrit= D””t;m:> tﬁcrit:XcmD‘””. (6)

Another scaling relation is implied for the critical ampli-
tude B(D), namely

B(D) = fD\BrPIv, (7)

It is clear that the crossover between both power laws, Egs.
(2) and (3), then also should occur when X is of order unity,
which implies very small values of 7, already when D is
large. The region of f.—1. .; where Eqgs. (3) and (5) then
hold is extremely small. Moreover, the general experience
with problems of this kind is that a crossover never occurs
abruptly [76,82—84], but rather spans several decades of the
corresponding crossover scaling variable (X—X_; in our
case). In fact, if not a large enough range of this crossover
scaling variable is accessible, one will instead observe a
power law with “effective exponents” and “effective critical
amplitudes,”

A(D) = Bt (8)

where B,<B.4<pB [50]. The effective exponents do not
have a fundamental deep meaning, of course, since their val-
ues depend on the range of 7, that is used for the analysis in
terms of Eq. (8), and hence are not really defined unambigu-
ously.
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III. MODEL AND SIMULATION METHOD

We consider a mixture of hard-sphere colloids with diam-
eter o, and effective polymer spheres with diameter of gyra-
tion o, in the grand canonical ensemble. Throughout this
work, the colloid diameter o, is taken to be the unit of
length. In the grand canonical ensemble, the volume V and
the respective fugacities, z. and z, of colloids and polymers
are fixed, while the number of particles in the system fluctu-
ates. Following convention, the polymer fugacity is ex-
pressed in terms of a related (dimensionless) quantity called

the polymer reservoir packing fraction 7];,= szo*;/ 6. We also

introduce the colloid packing fraction 7,=7a"N,/(6V), with
N, the number of colloids in the system. The particles inter-
act via potentials that were originally proposed by Asakura
and Oosawa [65] (AO) and later, independently, also by Vrij
[66]. In this description, the so-called AO model, hard-sphere
interactions are assumed between colloid-colloid and
colloid-polymer pairs, while polymer-polymer pairs can in-
terpenetrate freely. The interactions are thus strictly athermal
such that the temperature plays no role. Instead, in the AO
model, the analogue of (inverse) temperature is played by the
polymer reservoir packing fraction 7];. As is well known, at
the coexistence colloid fugacity and for sufficiently large
colloid-to-polymer size ratios g= o,/ 0, the AO model ex-
hibits a phase separation into a colloid-rich phase (the col-
loidal liquid) and colloid-poor phase (the colloidal vapor),
provided 7]; exceeds a critical value. Grand canonical Monte
Carlo simulations are well suited to study this transition, and
when combined with finite size scaling techniques these
simulations also allow for investigations close to the critical
point. Recently, this approach was applied to the bulk AO
model, i.e., in the absence of walls, and the critical point was
determined for ¢=0.8, as well as the universality class,
which was shown to be that of the 3D Ising model [67,68].

In this work, grand canonical Monte Carlo simulations are
used to study the AO model in confinement. To this end, we
use a simulation box of dimensions L, XLy XL, with L,
=L,=L and L,=D; the system volume thus equals V=DL>.
To capture the effect of confinement, we implement a so-
called “sandwich” or “thin film” geometry. Here, periodic
boundary conditions are applied in the x and y directions,
while in the remaining z direction we place two parallel
walls: one in the z=0 plane and one in the z=L, plane. This
closely resembles Ref. [46] where capillary condensation and
evaporation of the AO model are investigated. Compared to
the bulk AO model, one additional parameter is thus intro-
duced, namely the film thickness D. For a film with thickness
D, the thermodynamic limit is defined as the limit where the
lateral dimensions L,=L,=L of the film are taken to infinity.
Throughout this work, the walls are taken to be hard, i.e.,
colloid-wall and polymer-wall overlaps are strictly forbid-
den. Note that this implies a strong attraction between the
colloids and the walls due to the depletion effect [46]. The
simulation method of Ref. [67] is then applied to the con-
fined system; the main ingredients are a grand canonical
cluster move [67] and a reweighting scheme [85].
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FIG. 1. Coexistence distributions of the confined AO model
with colloid-to-polymer size ratio g=0.8, lateral dimension L=15,
and film thickness D=3 (in units of o) for several values of 77;, as
indicated. Note that we have plotted the natural logarithm of
P (7| n;,zc), multiplied by kzT. In the above distributions, the
colloid fugacity is tuned in order to obey the equal-weight prescrip-
tion [86]. The barrier F in the distribution corresponding to 7,
=1.0 marks the average height of the peaks with respect to the
minimum in between the peaks.

IV. RESULTS

A. Binodal

For ¢=0.8 and D=5, the grand canonical distribution
P (7] 7,-2.) is measured, defined as the probability of ob-
serving a system with colloid packing fraction 7, at “inverse
temperature” 7/; and colloid fugacity z.. There will generally
be finite size effects in the lateral dimensions L,=L,=L of
the simulation box, denoted by the subscript L. Phase coex-
istence is established by tuning z. such that P;(7,] M 2c)
becomes bimodal with two peaks of equal area [86]. The
respective packing fractions 7, and nlc, of the colloidal vapor
and liquid phase, are obtained from the average peak posi-
tions. Typical distributions are shown in Fig. 1, plotted as
kgT In P (7| 7,,2c), with kg the Boltzmann constant and T
the temperature. In this way, the distributions correspond to
minus the free energy of the system. The height F; of the
peaks in kg7 In P, (7] n;,,zc), measured with respect to the
minimum in between the peaks (arrow in Fig. 1), thus re-
flects the free energy barrier separating the colloidal vapor
from the liquid phase [87]. In the two-phase region away
from the critical point, the peaks in P (7| 17,,z.) are well
separated and the barrier F; will be large. Upon approach of
the critical point, by lowering 7];, the peaks move closer
together and the corresponding barrier F; decreases pro-
foundly.

To obtain the binodal, P;(7,] 7];,ZC) is measured for a
range of 171rD and the average peak positions are recorded. The
result is shown in Fig. 2. For comparison, the binodal of the
bulk AO model is also shown, together with the bulk critical
point taken from previous work [67,68]. Note the familiar
finite-size rounding in the simulation data close to the critical
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FIG. 2. Binodal of the AO model with ¢g=0.8 in bulk and con-
finement. Open circles show the bulk binodal, where the black tri-
angle marks the corresponding critical point (7,=0.134; 7]?,:0.766)
obtained using finite size scaling [67,68]. Open and closed squares
show the binodal of the confined system with film thickness D=5
for two lateral dimensions L (in units of o,). The horizontal line
marks the critical polymer reservoir packing fraction 7712,cr of the
confined system in the limit L— o0 obtained using the cumulant
intersection method (see Fig. 3). Lines connecting the points serve
to guide the eye. Curve m shows the coexistence diameter (nlc
+1,)/2 of the confined system with L=20.

point (to describe the binodal correctly near the critical point
requires finite size scaling, which we postpone to Fig. 10).
Note that the phase behavior in Fig. 2 is analogous to that
observed in 3D Ising magnets confined in symmetric surface
fields [18]. Compared to the bulk, the critical point shifts to
lower temperature (so higher 7, in our case), accompanied
by a shift in the critical density toward the phase that is
preferred by the walls (in our case the colloidal liquid phase,
since the walls strongly attract the colloids).

B. Cumulant analysis

To obtain the critical polymer reservoir packing fraction
7; o Of the confined system, the fourth-order cumulant
U4 (m?)?/{m*) is measured, with m=7,—(7,), as function
of np for various lateral dimensions L. The cumulant is
obtained by taking appropriate moments of the distribution
P(7] 7,.2:). For example, the average colloid packing
fraction may be written as (7ML, 75,20)
=[o 1P L(7| 7, 2.)d 7, and similarly for the pth-order mo-
ment (m?)(L, 7,,2) =[] 7= ne) )P P (7] p-2)d7:. Note
that the outcome will generally depend on np, the colloid
fugacity z., and the lateral system size L.

At the critical point and for some appropriate choice of z,
the cumulant becomes L independent and assumes an univer-
sal value [88]. In other words, plots of U, as a function of 17;
for different system sizes L are expected to show a common
intersection point, leading to an unbiased estimate of 7, ., as
well as an indication of the universality class. However, in
the present case of confinement, where a crossover in critical
behavior from 3D Ising toward 2D Ising universality is an-
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FIG. 3. Cumulant analysis of the confined AO model with
¢=0.8 and film thickness D=5. Shown is the fourth-order cumulant
U, as function of 77;3 for several lateral dimensions L as indicated
(in units of o). The dots show, from left to right, the intersection
point of the data sets (L=10; L=12.5), (L=12.5; L=14), and so
forth, up to (L=20; L=22).

ticipated, the behavior of the cumulant will be more subtle.
Rather, by increasing the system size L, one expects a
gradual shift of the cumulant intersection point, away from
the 3D Ising value U,~0.629, and toward the 2D Ising value
U,=0.856. For the confined AO model, the resulting cumu-
lant data are shown in Fig. 3, where we emphasize that the
measurements were taken using the colloid fugacity at which
the equal-weight prescription [86] was obeyed. Indeed, the
data in Fig. 3 confirm the anticipated drift of the intersection
point toward the 2D Ising value. Ultimately, in the confined
system, a common intersection point at the 2D Ising value
will be observed, but the required system sizes become very
large and are currently not feasible for simulations. As a
consequence, 7;; o cannot be very accurately obtained. In
fact, Fig. 3 suggests that 77 o may be as high as 7] o
~(0.925. This estimate is also shown in Fig. 2 (horlzontal
line). Defining the coexistence diameter as (7.+7))/2 and
ignoring finite size effects in this quantity for the moment,
the intersection of the horizontal line with curve m (marked
with a cross in Fig. 2) yields as rough estimate for the critical
colloid packing fraction 7,..~0.159 (a more precise esti-
mate, taking into account finite size effects, is presented in
Sec. IV E). As expected, compared to the bulk system, the
critical colloid packing fraction has shifted to a slightly
larger value.
Additional confirmation of the crossover in critical behav-
ior may be obtained from an analysis of the cumulant slope
=dU,/d 7] evaluated at the critical value of 77p It is ex-
pected that Y LY, with v the critical exponent of the cor-
relation length and L the lateral system size. Of course, np’cr
is not precisely known, but the cumulant slopes seem rather
constant over the range of Fig. 3, and so it is expected that v
can be obtained quite reliably nevertheless. Indeed, by se-
lecting for n;’cr several values in the range 0.917-0.925, the
exponent is evaluated to be v.;=0.90-0.95, which is al-
ready surprisingly close to the pure 2D Ising value. Obvi-
ously, v.; must be interpreted as an “effective” critical expo-
nent.
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FIG. 4. Finite size dependence of the free energy barrier F;
between the colloidal vapor and liquid phase, for the confined AO
model with ¢=0.8 and film thickness D=5. Shown is F; as a func-
tion of 1/L at the indicated value of 77, with L the lateral dimension
of the simulation box (in units of o). The barrier was extracted
from equal-area [86] distributions P; (7| n;,zc) (see also Fig. 1).

C. Free energy barrier and interfacial tension

Next, we consider the free energy barrier F'; between the
colloidal vapor and liquid phase. At the critical point, the
grand canonical distribution scales with the system size L as
[88,92]

PZ( 77(:) = bOLB/VPO(bOL'B/VﬂC), (9)

where P}(7,.) is the distribution P;(7,] 7,,2.) measured in
the finite system at the critical values of 77; and z, by is some
nonuniversal constant, and P° is a function independent of
system size (in the present case of confinement, the critical
exponents B and v assume 2D Ising values). Recall from Fig.
1 that F; is given by the peak-to-valley height in the loga-
rithm of P, (7,] 7,-2c). The scaling form of Eq. (9) thus im-
plies that F; becomes system-size independent at the critical
point, providing an alternative route to locate n;,cr (see Ref.
[93] where this approach is applied to the Lennard-Jones
fluid). To locate 77;,”, the barrier is recorded as a function of
L for several values of 7. At the critical value of 7, a
plateau should be visible. For the confined AO model, the
latter is verified in Fig. 4, which shows F; as function of 1/L
for various 17; around the critical region. The figure shows an
increase in F; with system size at high 7];, and a decrease at
low 7,. The plateau occurs in the interval 77,=0.923-0.927.
Although not very precise, this estimate is consistent with
the previous result based on the intersection of the cumulant.

A more precise estimate of 77, .. may be obtained from the
critical behavior of the interfacial tension v, in the thermo-
dynamic limit. Upon approach of the critical point, starting
in the two-phase region, the interfacial tension is expected to
vanish as [76]

Vo=Tot", u=2-a-v, (10)

with 1=7,/7, —1 the relative distance from the critical
point, critical amplitude I', and critical exponents listed in
Table I. For 2D Ising systems we thus obtain w,p=1 and for
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TABLE 1. Critical exponents of the order parameter (), corre-
lation length (), and specific heat (@) for the two-dimensional (2D)
and three-dimensional (3D) Ising model, as well as the mean-field
values (MF). Also listed is the value of the fourth-order cumulant
(Uy) at criticality for the 2D and 3D Ising model.

B v o Uy
2D 1/8 1 0 0.856 [89]
3D 0.326 [90] 0.630 [90] 0.109 [90] 0.629%
MF 1/2 1/2 0

Obtained from the 3D Ising universal fixed point distribution of
Ref. [91].

3D Ising systems us;p=2v, where in the latter the hyperscal-
ing relation 2—a=dv was used (with d the spatial dimen-
sion). For 3D bulk, the expected exponent 2v was already
confirmed by us in Ref. [68]. In the present case of confine-
ment, however, the crossover scaling scenario implies a tran-
sition in the critical behavior of 7., from singular (x=2v) in
three dimensions to purely regular (u=1) in two dimensions.
This particularly affects the slope of 7., versus t at the critical
point, which should be zero in 3D and finite positive in 2D.

In order to test if evidence for this change in critical be-
havior is present in our simulation data, we use the free
energy barrier F; to measure the interfacial tension. Follow-
ing Ref. [87], the interfacial tension vy, in a confined system
of thickness D and finite lateral dimension L>D equals y;
=F;/(2LD), where the factor of 2 stems from the use of
periodic boundary conditions. The thermodynamic limit L
— can be evaluated through an elimination of finite size
effects using the extrapolation equation [87]

= +ﬂ+a21n(L)
L — Voo

, 11
LD LD ()

where the constants a; and a, are a priori unknown. The
interfacial tension in the thermodynamic limit y..(7;,) at a
given value of 77, may thus be obtained by fitting Eq. (11) to
corresponding measurements of y,(7},) in finite systems. We
have applied this approach using different system sizes be-
tween L=12.5-22 and furthermore assuming a,=0 in Eq.
(11). The latter choice is based on empirical findings that the
logarithmic term in Eq. (11) is typically rather weak, at least
for Ising-like systems [68,94]. The result is summarized in
Fig. 5. The main frame shows the thermodynamic limit in-
terfacial tension 7. as a function of 1]; for the confined AO
model, as well as the bulk tension taken from previous work
[68]. Note the pronounced decrease in the interfacial tension
of the confined system with respect to the bulk, a direct
consequence of the upward shift in 7 .. For the confined
system, the vanishing of ., at the critical point yields n;,cr
=0.9241, consistent with our previous estimates. Moreover,
the interfacial tension seems to vanish with finite slope, a
point further emphasized in the inset where .. is plotted as a
function of the relative distance from the critical point on
double logarithmic scales. Note that the interfacial tension in
the confined system is already well described by the 2D Ising
exponent.
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FIG. 5. Main frame: Interfacial tension v.. of the confined AO
model with ¢=0.8 and D=5 as function of 7;; (solid curve), as well
as the corresponding bulk interfacial tension (dashed curve). Inset:
v.. of the confined system as a function of the relative distance from
the critical point 7, on double logarithmic scales, where nfmr
=0.9241 in r was used. The dashed lines illustrate 2D and 3D Ising
exponents.

D. Order parameter

Another consequence of the crossover scenario is that the
binodal should appear “flatter,” since the critical exponent 8
of the order parameter for the 2D Ising model is smaller than
in 3D. In this section, we use the finite size scaling algorithm
of Kim er al. [95] to study the critical behavior of the order
parameter in confinement. The algorithm is based on the de-
pendence of the cumulant U, on the temperature-like vari-
able 7, the colloid fugacity z., and the system size L (recall
that Uy is defined in Sec. IV B). For fixed 7, and L, it is
straightforward to measure U, and (7,) as a function of z,. A
plot of U, versus (7,), which is thus parametrized by z,
reveals two minima separated by a maximum (see Fig. 6).
The location of the minimum at low colloid packing fraction
is denoted 7, (L, 7];), with O~(L, 7];) the corresponding mini-
mum value. Similarly, the location of the minimum at high
colloid packing fraction is denoted 7 (L, 7/;), with Q*(L, 77;)
the corresponding minimum value. Note that the location of
the minima, and the corresponding minimum values, depend
on 7]; and L, but obviously not on z.. In the thermodynamic
limit L—o, U, approaches 1/3 in the one-phase region
(horizontal dashed lines in Fig. 6). On the phase-boundary,
7.(L, 77,) and 7.(L, 7,) approach the thermodynamic values
7.(77,) and 7710(77;), respectively, while Q7(L,7,) and
Q*(L, 7,) approach zero [96]. The L dependence shown in
Fig. 6 is consistent with this scenario (see also the inset).

In order for the scaling algorithm to succeed, simulation
data for at least three different system sizes are required. In
this work, L=15, 17.5, and 20 are used. In addition, mea-
surements over a rather broad range in 77; are required, start-
ing in the two-phase region and stretching toward the critical
point. Here, five different 7;{) are simulated per system size,
evenly distributed over the range 77;%0.9—1.0. Estimates of
properties at intermediate 7, are obtained using histogram
extrapolation [97]. The purpose of the scaling algorithm is to
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FIG. 6. Cumulant ratio U, as function of the average colloid
packing fraction (7). The data were obtained for the confined AO
model with ¢=0.8 at 7)2,:0.93, film thickness D=5, and several
lateral dimensions L as indicated (in units of o). Dashed horizontal
lines correspond to the limiting value U,=1/3 (see details in text).
The inset shows the region around 7 (L, 7;;) on an expanded scale.

evaluate the order parameter A as function of 77; in the ther-
modynamic limit

+L, Ty _ _L, r
A(n:))leimnc( ﬂp)znc( np)‘ (12)

Following Ref. [95], we define the quantities

Q*(L,7,) + Q" (L, )

Qmin(Ls 7];) = 2 s (13)
(L) = Quill f)ln(—“ ) (14)
X ) = min ] r ’
77]3 77[3 eQmin(L5 77p)
+ L. T _ ;L, r
VL) = n.(L,n,) = 7.(L,77,) (15)

2A(7,)

The algorithm starts in the two-phase region, with a value of
7]; significantly above its critical value. The peaks in
P (7| 7,-2.) are then well separated and the free energy
barrier F; will be large (see, for example, the distribution
corresponding to 77,=1.0 in Fig. 1). This regime is called the
“Gaussian limit” because P;(7.|7,,z.) may be described by
a sum of two Gaussians in this case [95]. In the Gaussian
limit, it can be shown rigorously that the points (x,y) of
different system sizes L should all collapse onto the line y
=1+x/2. Recall that A(n;) in Eq. (15) is the order parameter
in the thermodynamic limit at the considered 7];, precisely
the quantity of interest, which may thus be obtained by fit-
ting until the best collapse onto y=1+x/2 occurs. Next, 77; is
chosen closer to the critical point, the points (x,y) are calcu-
lated as before, but this time around A(n;) is chosen such
that the new data set joins smoothly with the previous one,
yielding an estimate of the order parameter at the new 7];.
This procedure is repeated as closely as possible to the criti-
cal point, where A vanishes, yielding an estimate of n;,cr.
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FIG. 7. Order parameter A as function of 7]; for the confined AO
model with ¢=0.8 and film thickness D=5 (in units of o). The
main frame shows A in the thermodynamic limit as a function of 771r3
on linear scales, where the curve through the simulation data is a fit
to Eq. (8). The inset shows the result as a function of the relative
distance from the critical point t= 7];)/ n;cr— 1, on double logarith-
mic scales, where the slopes of the lines reflect 2D and 3D Ising
critical exponents.

For the confined AO model, the output of the scaling al-
gorithm is illustrated in Fig. 7. The main frame shows the
order parameter as a function of 77; on linear scales. The
dashed curve is a fit to the simulation data using Eq. (8) from

which n;’cr=0.9223, éeff=0.173, and B.;=0.17 are obtained.
As before, B plays the role of an effective critical expo-
nent. Note that B is already rather close to the pure 2D
Ising value. This point is emphasized in the inset of Fig. 7,
which shows the order parameter as a function of the relative
distance from the critical point 7, where 7, ,=0.9223 in ¢
was used. Also included are power laws illustrating 2D and
3D Ising critical exponents. As expected, the simulation data
slowly approach the slope of the 2D Ising exponent. By per-
forming additional simulations using larger lateral dimen-
sions L, the data can in principle be extended to smaller
values of ¢, where the pure 2D Ising exponent will become
visible. However, such simulations are computationally very
demanding and beyond the scope of the present investiga-
tion. In contrast, adding data at larger values of 7 in order to
observe the 3D Ising exponent is not possible, since then we
leave the critical regime. In hindsight, the thickness D=5
considered here is too small to observe the full crossover
from 3D to 2D Ising critical behavior. For such thin films,
the critical behavior is already essentially 2D Ising. The full
crossover is expected to be visible only in much thicker
films, where 2D Ising behavior shows up at extremely small
t.

In addition to the order parameter, the scaling algorithm
also yields y as a function of x. The latter function, or scaling
curve, is significant because it is universal within a univer-
sality class. For bulk 3D fluids, belonging to the 3D Ising
universality class, universality of the scaling curve has been
verified for the hard-core square-well (HCSW) fluid [95], the
restricted primitive model (RPM) [95], the decorated lattice
gas [95], the AO model [98], and the Widom-Rowlinson
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FIG. 8. Order parameter scaling curve y~%, with ¢=1/8 and
B=1/8, for both the 3D bulk HCSW fluid [95], and the confined
AO model (g=0.8 and D=5) of this work. Also shown is the exact
small x form y=1+x/2 of the Gaussian limit.

mixture [99]. In the present case of confinement, however,
the scaling curve is expected to deviate profoundly from the
bulk 3D Ising form. The latter is verified in Fig. 8, which
shows the scaling curve of the confined AO model obtained
in this work, together with the scaling curve of the 3D bulk
HCSW fluid [95]. Following the convention of Ref. [95], the
scaling curve has been raised to an exponent —¢p=—1/, with
B=1/8 the critical exponent of the 2D Ising model. An im-
portant feature of Fig. 8 is that, for small x, the data of the
confined AO model correctly approach the limiting form y
=1+x/2. In addition, we observe that the data from the three
different system sizes have collapsed accurately onto a single
curve. As expected, the scaling curve of the 3D bulk HCSW
fluid differs profoundly from the one of the confined AO
model, a direct consequence of the different universality
classes. Note in particular the large difference in x,. at which
the scaling curve vanishes. For the HCSW fluid, x.~0.286
[95], which exceeds the value of the confined AO model x,
~(0.165 by over 60%. For the 2D Ising model, x.~0.46 is
reported [95], which overestimates our value significantly.
Note, however, that the scaling curve of Fig. 8 must be re-
garded as an “‘effective” scaling curve, and that deviations
from the pure 2D Ising form are to be expected.

E. Coexistence diameter and critical density

Finally, we turn to the critical behavior of the coexistence
diameter 6= (7.+7)/2, in general given by [100]

8= o1+ Arp™P + Ayt ™+ Ay1), (16)

with 7, the colloid packing fraction at the critical point, ¢
the relative distance from the critical point, and nonuniversal
amplitudes A;. The term proportional to t># is due to pressure
mixing, and for systems where pressure mixing is absent
A,p=0. It is not yet clear which features determine the de-
gree of pressure mixing in a fluid. Of the bulk 3D fluids
where this issue has been investigated, only the RPM exhib-
its substantial pressure mixing [95]. In the decorated lattice
gas, pressure mixing is absent [95], and the same seems to be
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the case for the Widom-Rowlinson mixture [99]. Simulations
of the HCSW fluid [95] and the AO model [98] point to
rather weak pressure mixing.

To obtain the coexistence diameter of a bulk 3D fluid is
still challenging. In the present case of confinement the situ-
ation is even more subtle. Assuming negligible pressure mix-
ing, the critical behavior of the diameter is dominated by
t'=@. The crossover scaling scenario then implies a transition
from weak singular behavior a=0.109 in 3D, to purely
regular behavior a=0 in 2D (see Table I). On the other hand,
if pressure mixing is important, the diameter remains singu-
lar and dominated by ¢*#, with ultimately 8=3, the critical
order parameter exponent of the 2D Ising model. To deter-
mine which of these scenarios is realized in the confined AO
model, we again use the finite size scaling approach of Kim
et al. [95]. Note that, in addition to the order parameter, these
authors also present an algorithm to extract the diameter. As
before, the algorithm generates a scaling curve, starting with
data obtained well away from the critical point, and then
recursively working its way down toward criticality. How-
ever, the quantities needed to construct the scaling curve are
different. In particular, they involve the asymmetry factor

0" (L, ) - Q (L, 7,)
O* (L, ) + O (L, )’

with O*(L,7,) defined previously. Unfortunately, for the
confined AO model, we were unable to extract the diameter
in this way. Closer inspection of our data revealed that A,;,
as a function of 77;J changes sign from negative to positive
upon approach of the critical point, and this makes the pro-
cedure numerically unstable. In contrast, for 3D bulk sys-
tems, A, remains positive (at least for the AO model and
the Widom-Rowlinson mixture) and so the problem does not
occur there.

Hence, our attempt to extract the critical behavior of the
diameter in confinement is unsuccessful. To at least obtain
the critical colloid packing fraction, the approach of Ref.
[101] is used instead. Here, the quantity (7.); is measured,
defined as the average colloid packing fraction in a finite
system of lateral dimension L at the critical value of 77; in
the thermodynamic limit. Assuming that n{)’cr is known, one
can investigate the L dependence of (7.);, for different
choices of the colloid fugacity z., and extrapolate to L— .
Note that, up to now, our analysis has mostly been based on
choosing for z,, that value which obeys the equal-weight pre-
scription. Close to the critical point, it is instructive to also
consider alternative choices. To this end, we choose to ex-
amine (7.); along the k locus [101], whereby z. is chosen
such that the modified susceptibility

x(k) = ((8NJ*IVYI(NYV)* (18)

is maximized, with N,=N.,—(N,), and N, the number of
colloids. Note that all the k loci are asymptotically critical in
the sense that they spring from the true critical point when
L— [101]. Figure 9 summarizes the main result, using
77,:=0.9223 obtained in the previous section. Plotted is
(7.)7 as a function of 1/L for several k loci. We decided to
extrapolate in 1/L and thus obtain an estimate free of as-

Amin(L, 7)) = (17)
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FIG. 9. Estimation of the critical colloid packing fraction 7, . of
the confined AO model with ¢=0.8 and D=5. Plotted is (7.); as
flunction of 1/L along the k-locus with k=0, ﬁ, 1'—6, 11—0, é, é, é, and
5 (from top to bottom). A value 7, ,=0.9223 was assumed. Lines
are linear least square fits; L is expressed in units of o.

sumptions on exponent values; see also the discussion in
Ref. [101]. Repeating the entire analysis using 7,
=0.9241, obtained from the vanishing of the interfacial ten-
sion, yields similar results. Overall, we conclude 7.,
=0.157x0.002. This estimate is sufficiently accurate to dem-
onstrate the increase in the critical colloid packing fraction
with respect to the bulk value 7, ,;=0.134 [68]. In contrast,
to address the importance of pressure mixing, more precise
estimates of 7., and indeed n;’cr, are badly needed. To
obtain such estimates requires simulations in the regime
where one is no longer plagued by crossover effects. The
system sizes then become intractable, and the question as to
which term in Eq. (16) ultimately dominates remains, at this
point, unanswered.

V. DISCUSSION AND CONCLUSION

In this work, we have investigated the critical behavior of
a colloid-polymer mixture confined to a thin film of thick-
ness D=5. The main finding is that for such thin films, 2D
Ising universality is clearly visible. The latter is manifested
by the critical exponents of the correlation length, the inter-
facial tension, and the order parameter. Since the order pa-
rameter exponent in 2D Ising systems is smaller than in 3D,
the binodal in the confined system should appear “flatter.” To
emphasize this point, we have combined the order parameter
data of Fig. 7 with the coexistence diameter of the largest
system in Fig. 9 and constructed the binodal in the thermo-
dynamic limit. The result is shown in Fig. 10 as the solid
curve, where the closed triangle marks the location of the
critical point. As expected, away from the critical point, the
binodal obtained via finite size scaling joins smoothly with
the raw finite-size simulation data (squares). For comparison,
the binodal of the bulk system in the thermodynamic limit is
also shown, taken from previous work [68]. The different
curvature of the binodals should be detectable in experi-
ments. The result of Fig. 10 may furthermore be relevant to
Gibbs ensemble simulations of fluids in confined geometry.
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FIG. 10. Thermodynamic limit binodals, obtained using finite
size scaling, of the AO model with ¢=0.8 in bulk and confinement.
The dashed curve shows the bulk binodal; the solid curve is the
binodal in the confined system with thickness D=5 colloid diam-
eters. Triangles mark the corresponding critical-points; squares and
circles are raw simulation data obtained in finite systems away from
the critical point.

Here, the critical point is typically determined via a fitting
procedure assuming 3D Ising exponents. In contrast, Fig. 10
indicates that for thin films, extrapolations using 2D Ising
exponents may be more appropriate.

In addition to a flatter binodal, the location of the critical
point also changes with respect to the bulk. Our results indi-
cate a pronounced shift of the critical point toward higher
values of 7;;, as well as a slight increase in the critical colloid
packing fraction 7. The increase in 77|r3 is consistent with
previous work on capillary condensation in the AO model
that was based on DFT and Gibbs ensemble simulations [46].
The behavior of %, is more subtle. For films with D
=50,, DFT shows an increase in 7, with respect to the
bulk value, while for very thin films a decrease is predicted
[46]. It is not obvious if the corresponding Gibbs ensemble
simulations also follow this trend [46]. At first sight, the
increase in 7, ., observed in our simulations seems consistent
with the trend predicted by DFT for films with D=50,.
However, for very thick films, 7, ., must ultimately approach
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its bulk value again, and it is not clear how the DFT of Ref.
[46] approaches this limit. Interestingly, recent Gibbs en-
semble simulations of the confined Lennard-Jones fluid with
film thickness D=12 particle diameters show a pronounced
decrease in the critical density [102], which differs from
both the present simulation result, and the DFT trend for this
rather thick film.

All in all, the critical density seems to depend quite sen-
sitively on the details of the particle and wall interactions, as
well as on the film thickness. Key to a reliable estimate of
the critical density is a precise description of the coexistence
diameter. The latter may be obtained using the finite size
scaling approach of Ref. [95], as was recently demonstrated
for 3D bulk fluids [95,98,99]. The issues pertaining to the
shift of the critical density in confinement inspired us, in Sec.
IVE, to apply this scaling algorithm to the confined AO
model. Unfortunately, we were unable to extract the diameter
because the scaling algorithm of Ref. [95] seems to behave
profoundly different in confinement; the source is a numeri-
cal instability arising from a change in sign of the asymmetry
factor given by Eq. (17). At this point, we see no reliable
way to extract the coexistence diameter of the confined AO
model, nor do we understand the significance of the change
in sign in A;,. To resolve these issues would be the subject
of further work.

Regarding the order parameter, no difficulties were en-
countered in applying Ref. [95] to the confined AO model.
This was demonstrated by the accurate collapse of the data
from different system sizes onto a single scaling curve. Also
the estimated effective critical exponent B.; is consistent
with the crossover scaling scenario. Nevertheless, the large
discrepancy in x,. at which the scaling curve vanishes, be-
tween the confined AO model and the 2D Ising model, is
concerning. To understand the source of this discrepancy,
too, would require further work.
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