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Fluctuation-dissipation theorem and the linear Glauber model
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We obtain exact expressions for the two-time autocorrelation and response functions of the d-dimensional
linear Glauber model. Although this linear model does not obey detailed balance in dimensions d�2, we show
that the usual form of the fluctuation-dissipation ratio still holds in the stationary regime. In the transient
regime, we show the occurrence of aging, with a special limit of the fluctuation-dissipation ratio, X�=1/2, for
a quench at the critical point.
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I. INTRODUCTION

It is widely recognized that the ferromagnetic Ising chain
with first-neighbor interactions and Glauber dynamics is one
of the simplest, exactly soluble, stochastic dynamical sys-
tems �1�. At finite temperatures, in the stationary regime, the
two-time spin autocorrelation, C�t , t��, and the associated re-
sponse function, R�t , t��, of this Glauber chain are time-
translationally invariant, and duly related by the usual ex-
pression of the fluctuation-dissipation theorem �2�. There is
also an aging regime, with violation of the usual form of the
fluctuation-dissipation theorem. At the critical point, at zero
temperature, for large values of the observation time t, the
fluctuation-dissipation ratio of the Glauber chain assumes the
nontrivial limiting value X�=1/2.

We now revisit a linearized version of the Glauber model,
proposed by one of us a few years ago �3�. As in the original
Glauber model on a d-dimensional hypercubic lattice, we
still consider a one-flip stochastic process. Each site r
=1, . . . ,N of the lattice is associated with a spin variable
�r= ±1. However, the time evolution is now governed by a
linear spin-flip ratio,

wr��� =
�

2�1 −
�

2d
�r�

�

�r+�� , �1�

where �� �0,1� is a parameter, the sum is over the 2d near-
est neighbors of site r, the time scale is set by the parameter
�, and � stands for a configuration of spin variables, �
= ��r	. The evolution of the probability P�� , t� of the spin
configuration � at time t is given by the master equation

d

dt
P��,t� = �

r��

�wr��r�P��r,t� − wr���P��,t�� , �2�

where �r is defined as the configuration � with �r replaced
by −�r. From these equations, it is straightforward to calcu-
late exact analytical expression for the site magnetization,
mr�t�= 
�r�t��, and the pair correlation function, qr,r��t�
= 
�r�t��r��t��. In contrast to the original Glauber model, de-
fined by a nonlinear transition rate, with exact solutions re-
stricted to d=1, we can now write expressions for mr�t� and
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qr,r��t� in all dimensions d. For 0	�
1, the linearized
model displays a disordered �paramagnetic� phase, with ex-
ponentially decaying pair correlations; at the critical point
�=1, correlations decay algebraically �3�.

It is important to distinguish between this linear Glauber
model and the so-called Glauber dynamics, associated with a
nonlinear transition rate, and which is used to simulate the
Ising model. The linear Glauber model may be regarded as a
voter model with noise �4�. It displays just one phase, for all
dimensions, as long as noise is finite. In the absence of noise
��=1� it becomes critical. In one dimension there is a close
identification between these two versions of the Glauber
model. For d�2, however, in contrast to the original model,
the analytically solvable linear Glauber model is microscopi-
cally irreversible �in other words, although having a station-
ary state, it does not obey detailed balance, and cannot be
associated with a Hamiltonian�. The fluctuation-dissipation
theorem is usually conceived for systems that do obey de-
tailed balance �5,6�. It is then reasonable to ask some ques-
tions, including the validity of the fluctuation-dissipation
theorem and the presence of an aging regime, about the dy-
namical behavior of systems that do not obey detailed bal-
ance. One of the purposes of this article is to carry out a
thorough analytical investigation of a particular system, as
the nonlinear Glauber model in d�2 dimensions, which be-
longs to the large class of microscopically irreversible mod-
els �3,4,7–9�.

The dynamical calculations of interest in this investiga-
tion are performed in the presence of a �small� perturbation.
In the treatment of stochastic models it is natural to introduce
the modified one-spin-flip rate,

wr��� = wr
0���e−hr�r, �3�

where wr
0��� is the unperturbed flipping rate associated with

the rth spin, and hr is the time-dependent disturbance
coupled to the dynamic variable �r. Alternatively, as the cal-
culations are restricted to small perturbations, we can write

wr��� = wr
0����1 − hr�r� . �4�

If the model is microscopically reversible, that is, if the un-
perturbed transition rate wr

0 obeys detailed balance, there is a
model Hamiltonian H0, and it is straightforward to show that
the perturbed transition rate wr, given by Eq. �3�, also obeys

detailed balance. In this reversible case, the model is de-
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scribed by the Hamiltonian H=H0−�rHr�r, where Hr
=hr /�, and � is proportional to the inverse of the tempera-
ture. This form of perturbation is then suitable for reversible
models, with a disturbance hr proportional to the external
field. Assuming this expression for the flipping rate, the
fluctuation-dissipation theorem is given by

R�t,t�� =
�

�t�
C�t,t�� , �5�

where

R�t,t�� =
1

N
�

r
� �mr�t�

�hr�t��
�

h↓0
�6�

is the response function, mr�t� is the average of �r at the
observation time t, and

C�t,t�� =
1

N
�

r


�r�t��r�t��� �7�

is the autocorrelation function of �r between the observation
time t and the waiting time t� �with t� t��. For systems obey-
ing detailed balance, we have hr=�Hr, and relation �5� re-
duces to the usual form of the fluctuation-dissipation theo-
rem. Another version of the fluctuation-dissipation theorem
relates the susceptibility, associated with a given dynamical
variable M, such as the total magnetization, and its variance,

d

dh

M� = 
M2� − 
M�2, �8�

where h is a static, time-independent disturbance, introduced
by the prescription of Eq. �3�.

In this work, we show that both forms of the fluctuation-
dissipation relation, Eqs. �5� and �8�, are valid for the linear
Glauber model in the stationary regime. In the transient re-
gime, where aging behavior takes place, these relations are
no longer obeyed. It is then appropriate to define �10,11� a
fluctuation-dissipation ratio,

X�t,t�� =
R�t,t��

�C�t,t��/�t�
. �9�

In the linear Glauber model, for all values of the dimension
d, we show that X�t , t��→1 in the limit t�→�, except at the
critical point, �=1, in which case X�� , t��→1/2.

The layout of this paper is as follows. Some results for the
linear Glauber model, including a discussion of the lack of
detailed balance for d�2, and calculations of the site mag-
netization and the spatial two-body correlations, are re-
viewed in Sec. II. These one-time functions play a major role
in the calculations of the two-time functions, as the autocor-
relation and the response functions, which are obtained in
Sec. III. In this section, we also consider the stationary limit
and make a number of comments on the nonstationary re-
gime. Section IV contains some conclusions.

II. THE LINEAR GLAUBER MODEL

We have already mentioned that the linear Glauber model

has been introduced by one of us �3� as an extension of the
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original Glauber model �1�, and may be regarded as a voter
model with noise. This linear Glauber model is defined by
the �linear� one-spin-flip rate given by Eq. �1�, which should
be inserted into the master equation �2�.

From Eqs. �1� and �2�, it is not difficult to obtain the
evolution equations for the site magnetization and the spatial
pair correlation,

1

�

d

dt
mr�t� = − mr�t� +

�

2d
�

�

mr+��t� �10�

and

1

�

d

dt
qr,r��t� = − 2qr,r��t� +

�

2d
�

�

�qr,r�+��t� + qr�,r+��t�� ,

�11�

for r�r�. If r and r� are nearest-neighbor sites, the right-
hand side of Eq. �11� contains terms like qr,r�t� and qr�,r��t�
which should be set equal to 1. The possibility of obtaining
these exact expressions, and of performing the exact calcu-
lations that are going to be reported in this article, is one of
the most relevant features of the linear Glauber model. As
shown by Oliveira �3�, for 0	�
1 this model displays a
disordered �paramagnetic� phase with exponentially decay-
ing correlations. For �→1, it becomes critical, with algebra-
ically decaying correlations at �=1.

The linear Glauber model in one dimension has a revers-
ible dynamics. In one dimension, the probability of occur-
rence of any sequence of states and the probability of the
associated reverse sequence of states are the same. In dimen-
sions larger than one, this is no longer valid. Consider, for
instance, the four states shown in Fig. 1, on a square lattice.
Suppose that the system follows the sequence of states A, B,
C, D, and returns to the initial state A. If the interval �t
between two successive states is small, then, according to the
spin-flip rate given by Eq. �3�, the probability of occurrence

FIG. 1. A possible irreversible sequence.
of the sequence A→B→C→D→A is given by
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P�A → B → C → D → A�

= P�A
D�P�D
C�P�C
B�P�B
A�P�A�

=
1

16
�1 −

�

2
�2

�1 + �����t�4P�A� .

On the other hand, the reversed sequence, A→D→C→B
→A, has the probability

P�A → D → C → B → A�

= P�A
B�P�B
C�P�C
D�P�D
A�P�A�

=
1

16
�1 +

�

2
�2

�1 − �����t�4P�A� .

These two probabilities are distinct, so that the linear
Glauber model on a square lattice is indeed irreversible, the
only exception being the trivial case �=0. A generalization
of this result to larger dimensions is easily found by filling
the sites created by the introduction of more dimensions with
“� spins.” Hence, the detailed balance cannot be valid, and
the stationary state is a priori not known. The connection of
the transition rates with a Gibbs measure, as has been pos-
sible in the one-dimensional case, is now forbidden.

A. Site magnetization

We now introduce the Fourier transform of mr�t�,

m̃k�t� = �
r

mr�t�e−irk, �12�

and the Laplace transform of m̃k�t�,

m̂k�s� = �
0

�

dte−stm̃k�t� . �13�

Using these transforms, the differential equation �10� is re-
duced to the algebraic form

m̂k�s� =
m̂k

0

s + �f�k�
, �14�

where

f�k� = 1 −
�

d
�
j=1

d

cos kj , �15�

and m̂k
0 is the Fourier-Laplace transform of mr�0�.

The inverse Laplace transformation leads to

m̃k�t� = e−�f�k�tm̃k�0� . �16�

Inverse Fourier transforming, we then have

mr�t� = �
r�


r−r��t�mr��0� , �17�

where


r�t� =� eirk−�f�k�t ddk

�2��d . �18�

We can also obtain the site magnetization with reference to

an initial time t= t� instead of t=0. In this case, we just write
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mr�t� = �
r�


r−r��t − t��mr��t�� , �19�

where mr�t�� is the site magnetization at time t�.

B. Pair correlation

If we look for translationally invariant solutions of Eq.
�11�, the spatial correlation between sites r and r� will be a
function of distance, 
�r�t��r��t��=qr−r��t�=qr�−r�t�. We then
write Eq. �11� as

1

�

d

dt
qr�t� = − 2qr�t� +

�

d
�

�

qr+��t� , �20�

for r�0, with q0�t�=1 whenever it appears on the right-hand
side.

Using a method introduced by Oliveira �3�, let us write an
equation for r=0,

1

�

d

dt
q0�t� = − 2q0�t� +

�

d
�

�

q��t� + b�t� , �21�

where b�t� is chosen to ensure that q0�t�=1. Actually, b�t� is
defined by

b�t� = 2 −
�

d
�

�

q��t� . �22�

Consequently, Eqs. �20� and �21� can be written as

1

�

d

dt
qr�t� = − 2qr�t� +

�

d
�

�

qr+��t� + b�t��r,0, �23�

for all values of r.
Equation �23� can be examined from two points of view.

On the one hand, it is a first-order differential equation in
time. On the other hand, the summation over nearest neigh-
bors resembles a discrete lattice Laplacian, and from this
point of view it is a discrete second-order difference equation
that can be solved by the use of a Green function. We then
introduce the Laplace transform of qr�t�,

q̂r�s� = �
0

�

dte−stqr�t� , �24�

so that Eq. �23� may be written as

1

�
�− m0

2 + sq̂r�s�� = − 2q̂r�s� +
�

d
�

�

q̂r+��s� + b̂�s��r,0,

�25�

where b̂�s� is chosen such that q0�t�=1, which is equivalent
to taking q̂0�s�=1/s. For a random initial condition, which
corresponds to a quench from infinite temperature, it is ap-
propriate to take qr�0�=m0

2�1−�r,0�+�r,0.
To solve Eq. �25�, we introduce the lattice Green function

associated with a d-dimensional hypercubic lattice,

Ĝr�s� = �� eikr

s + 2�f�k�
ddk

�2��d , �26�
where the integration is over the first Brillouin zone, and
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f�k� = 1 −
�

d
�
j=1

d

cos kj . �27�

This Green function satisfies

1

�
sĜr�s� = − 2Ĝr�s� +

�

d
�

�

Ĝr+��s� + �r,0. �28�

In terms of this lattice Green function, the solution of Eq.
�15� can be written as

q̂r�s� =
m0

2

s + 2��1 − ��
+ b̂�s�Ĝr�s� , �29�

where b̂�s� should be chosen so that q̂0�s�=1/s. This leads to

b̂�s� =
1

Ĝ0�s�
�1

s
−

m0
2

s + 2��1 − ��� , �30�

from which follows �3� the solution

q̂r�s� =
m0

2

s + 2��1 − ���1 −
Ĝr�s�

Ĝ0�s�
� +

Ĝr�s�

sĜ0�s�
. �31�

For a completely random initial condition, m0=0, we have
m�t�=0,

b̂�s� =
1

sĜ0�s�
, �32�

and

q̂r�s� =
Ĝr�s�

sĜ0�s�
. �33�

III. TWO-TIME RESPONSE AND AUTOCORRELATION
FUNCTIONS

The calculation of the two-time response function,

R�t,t�� =
1

N
�
r��

� �mr�t�
�hr�t��

�
h↓0

, �34�

requires the application of a small perturbation, which is in-
troduced according to the prescription �4�, and from which
one measures the response of the system. As pointed out in
Sec. I, we assume a perturbed spin-flip rate, given by

wr��� =
�

2�1 −
�

2d
�r�

�

�r+���1 − hr�t��r� , �35�

where hr�t� is a time-dependent disturbance coupled to the
dynamic variable �r�t�. We then write the equation of motion
for the site magnetization,

1

�

d

dt
mr�t� = − mr�t� +

�

2d
�

�

mr+��t� + hr�t��1 −
�

2d
�

�

q��t�� ,

�36�
which can also be written as
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1

�

d

dt
mr�t� = − mr�t� +

�

2d
�

�

mr+��t� +
1

2
hr�t�b�t� , �37�

where b�t� is given by Eq. �22�.
Using the same procedures adopted to solve Eq. �10�, and

taking into account that the last term in Eq. �37� is a known
function of time, we have

mr�t� = �
r�


r−r��t�mr��0�

+
�

2 �
r�
�

0

t


r−r��t − t��hr��t��b�t��dt�. �38�

From this expression, we calculate

�mr�t�
�hr��t��

=
�

2

r−r��t − t��b�t�� , �39�

which leads to the response function,

R�t,t�� =
�

2

0�t − t��b�t�� . �40�

The correlation 
�r�t��r�t��� of a spin at a given site r, at
time t�, with the same spin at a later time t�t� t�� is formally
written as


�r�t��r�t��� = �
�

�
��

�r�t�P��,t
��,t���r��t��P���,t�� ,

�41�

where P�� , t 
�� , t�� is the conditional probability of finding
the configuration � at time t given the configuration �� at an
earlier time t�. Noting that the site magnetization, mr�t�
= 
�r�t��, with the initial condition mr�t��=�r��t��, may be
written as

�
�

�rP��,t
��,t�� = mr�t� , �42�

and using Eq. �19�, we have

mr�t� = �
r�


r−r��t − t���r��t�� , �43�

which can be inserted into Eq. �41� to give


�r�t��r�t��� = �
��

�
r�


r−r��t − t���r�
� �t���r�P���,t�� ,

�44�

which finally leads to

C�t,t�� = �
r


r�t − t��qr�t�� . �45�

A. Stationary regime

In the stationary regime the waiting time t� and the obser-
vation time t grow without limits, but the difference t− t� is
fixed. To be more precise, t�→�, with t� t� and �= t− t�

fixed.
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From the Laplace transform final value theorem, we have

qr��� = lim
t→�

qr�t� = lim
s→0

sq̂r�s� =
Ĝr�0�

Ĝ0�0�
, �46�

so that

C�t,t�� = C��� = �
r


r���
Ĝr�0�

Ĝ0�0�
, �47�

which can be written as

C��� =
1

Ĝ0�0�
� 1

2f�k�
e−�f�k�� ddk

�2��d . �48�

On the other hand, taking into account that

b��� = lim
t→�

b�t� = lim
s→0

sb̂�s� =
1

Ĝ0�0�
, �49�

the response function �40� can be written as

R�t,t�� = R��� =
�

2

0���

1

Ĝ0�0�
. �50�

Using the definition of 
r�t�, given by Eq. �18�, we have

R��� =
�

2Ĝ0�0�
� e−�f�k�� ddk

�2��d . �51�

Both quantities, C��� and R���, are time-translationally
invariant �functions of � only�, as should be anticipated in a
stationary regime. Moreover, the fluctuation-dissipation theo-
rem is trivially satisfied, with R���=−dC��� /d�. For large
time differences, and ��1, it is easy to see that both the
autocorrelation and the response functions decay exponen-
tially, according to exp �−��1−����, with the equilibration
time �eq=1/ ���1−���.

B. Global fluctuation-dissipation relation

The fluctuation-dissipation theorem can also be written in
terms of global variables, as the magnetization and the cor-
responding answer to a static perturbation. Let M denote the
magnetization,

M�t� =
1

N
�

r


�r�t�� , �52�

and let us consider a static homogeneous disturbance h, de-
fined by Eq. �3�. Then

dM�t�
dh

= ��t� , �53�

where ��t� is a variance,

��t� =
1

N
�

r
�
r�

�
�r�t��r��t�� − 
�r�t��
�r��t��� . �54�

Due to the translational invariance of the lattice, M�t�
= 
�0�t��. This quantity is the solution of Eq. �37�, which is

now given by
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1

�

d

dt
M�t� = − �1 − ��M�t� +

1

2
hb�t� , �55�

with the stationary solution

M = h
b���

2�1 − ��
= h

1

2�1 − ��Ĝ0�0�
. �56�

For �
1, the magnetization vanishes as h→0, so that the
variance is given by

��t� = �
r

qr�t� . �57�

From Eq. �23� it follows that

1

�

d

dt
��t� = − 2�1 − ����t� + b�t� , �58�

with the stationary solution

� =
b���

2�1 − ��
=

1

2�1 − ��Ĝ0�0�
. �59�

From Eqs. �56� and �59�, it is seen that relation �53� is clearly
satisfied in the stationary regime.

C. Aging regime

The temporal behavior of the autocorrelation and the re-
sponse functions, as calculated in this section, already sug-
gests the existence of an aging regime. Equations �40� and
�45�, for R�t , t�� and C�t , t��, are valid for all values of t� and
t, with t− t�=��0. The dependence of these functions on
both t and t�, and not on � only, leads to the existence of
aging. In this regime, the role of the spatial correlations is
still crucial, since they are responsible for the realization of
the aging scenario. In the stationary regime, it should be
noted that qr becomes a time-independent quantity in the t�
→� limit only, and this is the reason for the dependence of
the two-time functions on � only.

In the transient regime, we do not expect the validity of
the usual form of the fluctuation-dissipation relation given by
Eq. �5�. It has been convenient �10,11,2,12,13� to character-
ize the distance to the stationary regime by the fluctuation-
dissipation ratio,

X�t,t�� =
R�t,t��

�C�t,t��/�t�
. �60�

A particular interesting quantity is the limit

X� = lim
t�→�

X��,t�� , �61�

where

X��,t�� = lim
t→�

X�t,t�� . �62�
From the results of this section, it is easy to write
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X��,t�� =
b�t��

2b�t�� − 2�1 − ����t��
, �63�

where ��t�� is the sum given by Eq. �57�. At the critical
point, �=1, it follows that X�� , t��=1/2 for any time t�, so
that X�=1/2. In the disordered phase, ��1, Eqs. �58� and
�59� may be used to conclude that X�=1.

IV. CONCLUSIONS

We have reported a number of exact calculations for the
dynamical behavior of a d-dimensional linearized version of
the stochastic Glauber model. In one dimension, both the
linear and the original model are essentially equivalent. For
d�2, however, the rates of transition of the linear Glauber
model do not obey the conditions of detailed balance. This
linear model can be regarded as a voter model with noise; it
displays just one stable phase as long as noise is finite, and
becomes critical in the absence of noise ��=1�. Since the
dynamical properties are usually conceived for systems that
do obey detailed balance, we decided that it was appropriate
to carry out some explicit calculations for a microscopically

irreversible model.
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We have obtained expressions for the two-time autocor-
relation, C�t , t��, and response functions, R�t , t��, which de-
pend on both observation time t and waiting time t�	 t. In
the stationary, infinite time limit, t�→�, in the presence of
noise �0
�
1�, the spatial correlations are independent of
time, and the two-time functions become translationally
invariant �depending on the difference �= t− t� only�. The
usual form of the fluctuation-dissipation theorem, X�t , t��
=R�t , t�� /�C�t , t�� /�t�=1, is trivially observed in this regime.

In the scaling regime �t→��, for 0	�
1, we obtain a
nontrivial fluctuation-dissipation ratio, X�� , t���1. At the
critical point, �=1, we have X�� , t��=1/2, which further in-
dicates that the dynamical behavior of the d-dimensional mi-
croscopically irreversible linear Glauber model is very simi-
lar to the behavior of its one-dimensional reversible
counterpart.
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